
MOOSE Crossing:
Construction, Community, and Learning

in a Networked Virtual World for Kids

by

Amy Susan Bruckman

Bachelor of Arts, Physics (1987)
Harvard University

Master of Science in Visual Studies, Interactive Cinema (1991)
Massachusetts Institute of Technology

SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES,
SCHOOL OF ARCHITECTURE AND PLANNING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1997

© Massachusetts Institute of Technology, 1997. All Rights Reserved

A u t h o r _
Program in Media Arts and Sciences

March 17th, 1997

Certified by_ _
Mitchel Resnick

Associate Professor of Media Arts and Sciences
Massachusetts Institute of Technology

Accepted by_ _
Stephen A. Benton

Chair, Departmental Committee on Graduate Students
Program in Media Arts and Sciences

Massachusetts Institute of Technology

3

MOOSE Crossing:
Construction, Community, and Learning

in a Networked Virtual World for Kids

by

Amy Susan Bruckman

SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES,
SCHOOL OF ARCHITECTURE AND PLANNING ON MARCH 17, 1997,

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

ABSTRACT

In research about the Internet, too much attention is paid to its ability to provide access to
information. This thesis argues that the Internet can be used not just as a conduit for
information, but as a context for learning through community-supported collaborative
construction. A “constructionist” approach to use of the Internet makes particularly good use of
its educational potential. The Internet provides opportunities to move beyond the creation of
constructionist tools and activities to the creation of “constructionist cultures.”

These issues are explored through a specific example: MOOSE Crossing, a text-based virtual
world (or “MUD”) designed to be a constructionist learning environment for children ages 8 to
13. On MOOSE Crossing, children have constructed a virtual world together, making new
places, objects, and creatures. Kids have made baby penguins that respond differently to five
kinds of food, fortune tellers who predict the future, and the place at the end of the rainbow—
answer a riddle, and you get the pot of gold.

This thesis discusses the design principles underlying a new programming language (MOOSE)
and client interface (MacMOOSE) designed to make it easier for children to learn to program on
MOOSE Crossing. It presents a detailed analysis, using an ethnographic methodology, of
children's activities and learning experiences on MOOSE Crossing, with special focus on seven
children who participated in a weekly after-school program from October 1995 through
February 1997.

In its analysis of children's activities, this thesis explores the relationship between
construction and community. It describes how the MOOSE Crossing children motivated and
supported one another's learning experiences: community provided support for learning through
design and construction. Conversely, construction activities helped to create a particularly
special, intellectually engaging sort of community. Finally, it argues that the design of all
virtual communities, not just those with an explicitly educational focus, can be enhanced by a
constructionist approach.

Thesis Supervisor: Mitchel Resnick
Associate Professor of Media Arts and Sciences,

Massachusetts Institute of Technology

This work was performed at the MIT Media Laboratory. Support for this work was provided by
AT&T, British Telecom, Digital Equipment Corporation, Gruppo Grauso, Interval Research,
The LEGO Group, The National Science Foundation (grant 9358519-RED), the Media Lab’s

News in the Future Consortium, Nintendo, and Telecom Italia.

4

5

Doctoral Dissertation Committee

Thesis Advisor_ _
Mitchel Resnick

Associate Professor of Media Arts and Sciences
Massachusetts Institute of Technology

Thesis Reader_ _
Pavel Curtis

Principal Architect
PlaceWare, Inc.

Thesis Reader_ _
Henry Jenkins

Director, Program in Film and Media Studies
Massachusetts Institute of Technology

6

In memory of
my grandmothers:

Florence Fox Bruckman
Norma Brodney Cohen

7

Acknowledgments
A number of people deserve not just thanks, but direct credit for some of the
work this thesis represents. In particular, much of the intellectual work of
this thesis took place in conversations with my advisor, Mitchel Resnick.
Mitch has been not just a great advisor, but a great friend.

A number of MIT Undergraduates worked on the project under the auspices
of MIT’s Undergraduate Research Opportunities Project (UROP). The UROP
program is one of the best parts of being at MIT. Working on the MacMOOSE
client in chronological order were: Greg Hudson, Adam Skwersky, Steve
Tamm, Jon Heiner, and Drew Samnick. Steve Shapiro handled the port to
JavaMOOSE. Special thanks are due to Steve Tamm for sticking with the
project over time, and working hard to support his successors on the
development team.

On the server and people side, Albert Lin helped with the launch of
MediaMOO, and with early work on MOOSE Crossing. Trevor Stricker
helped with the MOOSE language design, wrote the server modifications for
data collection, and kept the kids laughing. Austina Vainius helped with
every aspect of the project, including writing documentation, designing
objects for the MOOSE Crossing world, helping with revisions of the MOOSE
language and client based on feedback from kids, and taking terrific notes on
the kids’ learning experiences. She has spent countless hours working with
children online. One visitor to a MOOSE-Crossing classroom commented
that telling the kids he had met Austina was like admitting he knew Elvis.

A number of people gave thoughtful comments on drafts of this thesis. I’d
like to single out Danny Bobrow and Carol Strohecker in particular, for giving
me some new ways to think about things. Other extremely helpful
comments came from Andy Begel, Aaron Brandes, Justine Cassell, Mark
Guzdial, Greg Kimberly, Jon Orwant, David Shaffer, Vanessa Stevens,
Michael Travers, Austina Vainius, and Terry Winograd. My advisor Mitch
Resnick read each chapter of this document two to four times, carefully each
time. My thesis readers Pavel Curtis and Henry Jenkins provided lots of
helpful feedback.

Pavel Curtis wrote the MOO software, on top of which MOOSE is built. He
made a number of modifications to MOO to make MOOSE possible. Special
thanks to Pavel for being a diligent thesis reader despite having other tiny
little things like a startup company to worry about.

Henry Jenkins is an inspiration in all of his work. I thank Henry for
reminding me to believe not just in active readers, but in the basic creativity
and intelligence of people.

8

Sherry Turkle taught me how to think about how people relate to media. It
was Sherry who encouraged me that thinking about MUDs and people’s
relationships to them and within them was a topic worthy of intellectual
study.

Brian Silverman gets a gold star for being there to help me pull the technical
pieces together. One afternoon in 1994, I tickled Boo Boo Bear and then went
to get a cup of coffee while I waited for him to laugh. That was when I
realized we had some serious performance problems. Brian helped me tear
the system apart and put the pieces back together more efficiently.

Glorianna Davenport, my master’s thesis advisor, gave me the chance to be at
the Media Lab in the first place, and has continued to support my work.

I’d like to thank members of the Media Lab’s narrative-intelligence reading
group for helping to create a greater sense of intellectual community at the
lab. Other communities that have helped sustain my MIT experience are the
AI Lab dance group, and the thirsty-magic gang.

Michael Maier made the nifty moose icon used on the
MacMOOSE application and other parts of the MOOSE
Crossing project.

Jon Callas, Randy Farmer, and Dean Tribble contributed
ideas to the design of the MOOSE language. Developing a

friendship with Randy online has probably been my best personal experience
with use of this medium. I’ve benefited greatly from all of Randy’s
experience from Habitat and beyond.

I’d like to thank Brenda Laurel, Howard Rheingold, and Sandy Stone for
existing. And for having more faith in my work than I deserve.

Thanks to the members of MediaMOO and MOOSE Crossing for making
these projects happen. On MediaMOO, special thanks to members of
MediaMOO’s Membership Advisory Committee for all their time, especially
Michael Day, Randy Farmer, Beth Kolko, and Diane Maluso. Thanks to Tari
Fanderclai and Greg Siering for organizing The Tuesday Café. Finally, thanks
to all of MediaMOO’s volunteer janitorial staff, especially Judy Anderson,
Gustavo Glusman, and Seth Rich.

On MOOSE Crossing, special thanks are due to the children who participated
in the Media Lab’s MOOSE Crossing after-school program, and to their
parents—for letting me study their children, and for transporting them to and
from the lab each week for almost a year and a half. I’d also like to thank

9

residents of The Pond area of the lab for putting up with the noise and the
litter of empty hot-chocolate cups each Monday. Special thanks are also due
to the teachers who brought MOOSE Crossing into their classrooms, especially
BJ Conn, Andrea Martin, and Richard Smyth. I hope it was worth the effort.

Thanks to members of the Epistemology and Learning Group for being such a
great group of people to learn and play with. Special thanks to my officemate
David Cavallo for many long conversations about the meaning of it all, and
for putting up with my mess.

Thanks to Jon Orwant for moral and emotional support, emergency Perl
scripting, and sharing his Nintendo 64.

Finally, thanks to my family: Mom and Bernie; Dad and Mari, Danielle,
Alicia, Rachael, Lucy, and Yikes. Not to mention Gilda and Judy; Betty,
Midge, and Drew. For everything.

10

Table of Contents

Abstract... 3

Acknowledgments... 7

Table of Contents ... 10

1. Introduction: MOOSE Crossing ... 13

1.1 An Evening at The Crossing ... 13

1.2 Construction and Community ... 16

1.3 What is a MUD?... 19

1.3.1 MUD History... 19

1.3.2 Personas ... 20

1.3.3 Places... 22

1.3.4 Objects... 25

1.4 Prior Work: MediaMOO.. 27

1.5 The MOOSE Crossing Project.. 27

1.6 Outline ... 30

2. The Day After Net Day: Approaches to Educational Use of
the Internet.. 33

2.1 The Hype and the Reality... 33

2.2 Distance Education .. 35

2.3 Information Retrieval .. 37

2.3.1 Children Accessing Controversial Information 38

2.4 Knowledge-Building Communities.. 40

2.4.1 Global Science... 40

2.4.2 CSILE... 42

2.4.3 Professional Communities.. 43

2.4.4 Real-Time Writing.. 46

2.5 Technological Samba Schools... 47

11

3. Designing Enabling Technologies: The MOOSE Language
and the MacMOOSE Client.. 53

3.1 The Need for a New Language ... 53

3.2 The Design of the MOOSE Language... 56

3.2.1 A Gently-Sloping Learning Curve... 58

3.2.2 Intuitive Simplicity Versus Formal Elegance 59

3.2.3 Be Forgiving.. 64

3.2.4 Leveraging Natural-Language Knowledge 65

3.2.5 Avoid Non-Alphanumeric Characters... 68

3.2.6 Make Essential Info Visible and Easily Changeable 72

3.2.7 It’s OK to have Limited Functionality... 74

3.2.8 Hide Nasty Things Under the Bed... 75

3.2.9 A Design Philosophy... 77

3.3 The Need for a New Programming Environment 78

3.4 The Design of the MacMOOSE Client ... 80

3.4.1 A Tour of MacMOOSE.. 81

3.4.2 Equal Access for Few Versus Unequal Access for Many 88

3.5 Designing Empowering Technologies .. 89

4. Collaborative Learning Strategies: Storm’s Weekend with
Rachael... 91

4.1 Storm’s Weekend with Rachael... 91

4.2 Friday: Diving In... 93

4.3 Saturday: Independent Progress .. 102

4.4 Sunday: More Mutual Reinforcement... 105

4.5 Monday: Camaraderie Combats Frustration................................ 108

4.6 Tuesday: Collaboration.. 110

4.7 Seven Months Later: Meeting Face to Face.................................... 114

4.8 Conclusion: Integrating Technological and Social
Contexts.. 116

5. Community Support for Construction... 119

5.1 Uzi’s Frustration .. 119

5.2 Pilot Study: Programming for Fun .. 120

12

5.3 “Did You Really Make This?”: The Importance of Role
Models.. 124

5.4 Situated, Ubiquitous Project Models ... 126

5.5 Emotional and Technical Support... 128

5.6 An Appreciative Audience.. 135

5.7 Local Community and Online Community.................................. 145

5.8 An Extended Example: Lady's First Script..................................... 149

6. Constructionist Culture.. 159

6.1 A Felicitous Type of Community... 159

6.2 “Television Fans and Participatory Culture” 159

6.3 Objects of Construction... 160

6.4 Worlds Made by Their Inhabitants.. 166

6.5 Sharing Scarce Resources... 168

6.6 Believing in Users ... 170

6.7 Construction and Community ... 172

7. Conclusion: Constructionism and Virtual Communities 175

7.1 Open Research Questions .. 175

7.1.1 The Social Implications of Distributed Systems............................ 175

7.1.2 The Cognitive Implications of Graphical Media 176

7.1.3 Gender, Technology, and Learning Styles...................................... 178

7.2 Contributions.. 183

Appendix: Five Children’s Creations .. 187

Goofy... 188

Mouse... 189

Angela .. 212

Werdna .. 213

Rowena .. 219

Bibliography.. 224

13

1. Introduction: MOOSE Crossing
1.1 An Evening at The Crossing
It’s early evening on a Thursday in September, 1996. Hermes1 (boy, age 9) is
working on his Magic Subway Station. Miranda (girl, age 11)2 is in her room.

Miranda sees:
You sense that Hermes is looking for you in Magic Subway Station.
Hermes pages, 'Hi! can i come over?'

Hermes sees:
All of a sudden, you hear a clap of lightning and a rumble of

thunder. You look into the sky, and see Miranda's message written
in the stars!

Miranda pages, 'Ok '

Hermes types: join Miranda
He sees:
Miranda's room
A bright room in what look 3 like the center of the sun, all around
you there is a bright yellow light. A green hand emerges from the
wall and shoves a pair of sunglasses on your face. The sun glasses
turn the bright light into a dull glow. You can barely make out a
arm chair and sofa. The floor is covered in a gold rug.
 Obvious exits: ..crazy........Miranda's Crazy Gadgets shop
 ..fly..........Travel Agency
 ..fortune......The Fortune Tellers Caravan
 ..in...........< Paradise Island >
 ..stroll.......The GreenHouse
 You see Juju, Huey, and Duey here.
 Miranda is here.

They both see:
Hermes shatters the air with his explosive arrival.
Google arrives, following Hermes.
Miranda says, 'Hi!'
Miranda says, 'How old are you?'
Hermes says, '9'
Hermes says, 'you?'
Miranda says, 'oh, I'm 11, I'm Mouse's sister'

1I have changed the children’s character names to protect their identities. Although their
character names are already aliases, changing them gives an added level of privacy. I tried to
pick names which convey the same flavor as the original, but are not obviously identifiable as
the same person. People who work in and around the area of The Media Lab known as “The
Pond” contributed many creative name suggestions.
2Miranda started participating in MOOSE Crossing when she was ten years old. At the time of
this writing, she is still an active member and is now twelve. Many children have
participated for more than a year. I will indicate their age with a range when I am refering to
their participation in general terms. When I quote a specific incident or completed project, I
will list their age at the time the event took place or the project was created. As a result, some
children’s ages will be listed differently in different sections of this thesis.
3Miranda presumably meant to use the word “looks” here. The children’s conversations and
descriptions of their creations are presented unedited and uncorrected (except where otherwise
noted, and where editing was necessary to protect their privacy.)

14

Miranda types: become Athena

Miranda waves her hand over her entire body. Every place her hand
passes, changes into a new person!

Hermes says, 'mind having the magic subway connected to paradise
island?'

Miranda has built a vacation resort called Paradise Island where you can
swim and build a summer home. She also made a travel agency and car
rental agency to arrange trips there.

Hermes types: become Cloudstreamer

Hermes suddenly floats up in the air and is engulfed in light. The
old form melts away and is magically transfomed into an eagle.
It's Cloudstreamer!

Athena says, 'Fine with me, but would you mind connecting it to my
Travel Agency? you don't have to’

Cloudstreamer says, 'ok, but you have to help connect it.'

Miranda/Athena and Hermes/Cloudstreamer work to connect his magic
subway station to her travel agency. While they are working, he notices that a
new member, Scribbles (girl, age 13), has connected.

Scribbles sees:
You sense that Cloudstreamer is looking for you in Magic Subway

Station.
Cloudstreamer pages, 'hi! i'm new too'

Cloudstreamer sees:
You sense that Scribbles is looking for you in MOOSE Crossing.
Scribbles pages, 'hi! can I join you? Love the name!'

Cloudstreamer has to go to dinner, but says he’ll be back in half an hour. Not
long after:

Cloudstreamer pages Scribbles, 'im baaack!!come on over!'

Scribbles types: join Cloudstreamer
She sees:
Magic Subway Station
Welcome to The Magic Subway Station! Please select your destination
and step through the magic portal!
 Obvious exits: ..CR...........Crossroads
 ..EA...........Emerald Apartments
 ..HC...........Home in the Clouds
 ..NM...........North Main Street
 ..PI...........< Paradise Island >
 ..RF...........Redwood Forest
 ..TA...........Travel Agency
 You see Google here.
 Cloudstreamer is here.

Scribbles teleports in.

15

Scribbles says, 'Hi there!'
Cloudstreamer says, 'hi'

Cloudstreamer types: look Scribbles
He sees:
You see a brand new MOOSE Crossing member.
She is awake and looks alert.

Scribbles grins
Cloudstreamer says, 'wach this'
Scribbles says, 'this is my very first time on. How about you?'
Cloudstreamer says, 'probably my 10th'

Cloudstreamer types: become Widget

Cloudstreamer is suddenly covered by robot mechanics the size of mice
carrying wrenches and drills and screwdrivers. Body parts fly
everywhere! (Grownups, don't read this!) Yikes! Duck! There
goes an eyeball! The metal mice vanish, and before you now stands
... drumroll, please! ... the one and only Widget!!!

Widget says, 'good. huh'
Scribbles jumps up and down.
Scribbles says, 'Yes. AWESOME!'
Scribbles says, 'how'd you do it?'
Widget says, 'wanna do it?'
Scribbles says, 'it might be kinda fun.'

Hermes/Cloudstreamer/Widget shows Scribbles how to describe herself, and
how to have multiple personas. He’s just built a home for himself on Sparky
II, a mobile community made by Rufus (boy, age 12). He shows her how to
build a home there too. Soon he has to go to bed. After he leaves, Scribbles
works more on her description:

A small, cinnamon-colored ball of short, fluffy fur and green
splendor stares up at you with twinkling eyes and a vivacious smile.
A mouse, you realize after a moment - a mouse wearing a tiny, white
silk shirt and close fitting green velvet breeches. She bows deeply
and doffs a triangular, green hat with a bobbing golden plume pinned
to the side. You can't help wondering where she obtained this odd
attire in such a minute size. There is no doubt that it is of the
finest make. Graceful vines, embroidered in thread-of-gold, climb up
the sides of her breeches and adorn the neck and cuffs of her shirt.
Tiny boots of a soft brown velvet lace up to her fuzzy knees. Her
hat, which she has now returned to her head, is a perfect miniature
of those you have seen in full size. Yet there is something else
about her something that draws your attention more than her odd dress
or her tiny size. It is something in the way she carries herself,
the way she looks expectantly up at you with her paws on her hips and
her booted feet set slightly apart. She looks like someone who has
been through a great deal, and always come out on top. Like someone
who knows their destiny

In real life, Miranda is in Massachusetts, Hermes is in Florida, and Scribbles is
in Maryland. They have never met face to face. They are participating in a
text-based virtual world (or “MUD”) for kids called MOOSE Crossing. They

16

are imagining new places and objects, and creating them with words and
programs. In their spare time for fun they are reading, doing creative writing,
and writing computer programs. Through these activities, they are learning
in a self-motivated, self-directed, peer-supported fashion.

This research examines how the Internet can be used not just as a conduit for
information, but as a context for learning through community-supported
collaborative construction. In Mindstorms, Seymour Papert has a vision of a
“technological samba school.” At samba schools in Brazil, a community of
people of all ages gather together to prepare a presentation for carnival.
“Members of the school range in age from children to grandparents and in
ability from novice to professional. But they dance together and as they dance
everyone is learning and teaching as well as dancing. Even the stars are there
to learn their difficult parts” (Papert 1980). People go to samba schools not
just to work on their presentations, but also to socialize and be with one
another. Learning is spontaneous, self-motivated, and richly connected to
popular culture. Papert imagines a kind of technological samba school where
people of all ages gather together to work on creative projects using
computers. MOOSE Crossing is an attempt to realize that vision.

1.2 Construction and Community
The central claim of this thesis is that community and construction activities
are mutually reinforcing. Working within a community helps people to
become better dancers/programmers/designers and better learners.
Conversely, working on design and construction projects together helps to
form a strong, supportive community.

This interdisciplinary thesis is addressed to several overlapping
communities: computer scientists, educators, educational researchers,
researchers in computer-supported cooperative work (CSCW), designers of
virtual communities, and members of virtual communities. The underlying
research draws ideas from each of these communities, and is also strongly
influenced by concepts from anthropology, cultural studies, gender studies,
psychology, and sociology. Different facets of this central theme about
construction and community need to be highlighted for each of these
communities.

From an education perspective, MOOSE Crossing shows how
constructionism can be supported by community. “Constructionism” is a
term first coined by Seymour Papert as an expansion of Jean Piaget’s
“constructivism.” Papert writes:

We understand “constructionism” as including, but going beyond,
what Piaget would call “constructivism.” The word with the v

17

expresses the theory that knowledge is built by the learner, not supplied
by the teacher. The word with the n expresses the further idea that this
happens especially felicitously when the learner is engaged in the
construction of something external or at least shareable... a sand castle,
a machine, a computer program, a book. This leads us to a model of
using a cycle of internalization of what is outside, then externalization
of what is inside. (Papert 1991)

Mitchel Resnick expands on this notion, writing “They might be constructing
sand castles, LEGO machines, or computer programs. What’s important is
that they are actively engaged in creating something that is meaningful to
themselves or to others around them” (Resnick 1994). This thesis gives new
attention to those “others around them” and the essential role they play in
the learning process.

While the term “constructionism” was only coined in the 1980s, research in
this spirit to design computerized tools to help children learn by making
things began in the 1960s. However, tools alone are not enough. All too
often, tools designed to empower learners end up being used in the same old
disempowering ways. The educational philosophy and spirit in which the
tools were designed needs to be distributed together with the software or
hardware. It’s not possible to communicate these ideas through a software
interface, or through a manual no one will read. Tools can be effectively
constructionist only when they are embedded in a constructionist culture.
Constructionism works best when it is situated in a supportive community
context. A kind of constructionist culture often emerges when the tool’s
designer is present to help grow a community of users, but this spirit usually
fails when dissemination is tried on a larger scale. Computer networks can be
used to help create and spread constructionist cultures.

Papert imagined his technological samba school as a physical place. Virtual
communities can be used to create such a “place” on the Internet. Both real
and virtual places can help to create a supportive context for human activity
and social interaction. You can also get the best of both worlds by using a
virtual community to link many small face to face communities (such as
after-school programs) into a larger whole.

At the time of this writing, an increasing number of educators are coming to
realize that The Net is not an educational panacea. The process of getting
computers hooked up to the Internet has been increasingly politicized—on
Net Day in California in 1996, the President and Vice President of the United
States themselves rolled up their sleeves and pulled red, white, and blue cable
through a school. The day after Net Day, however, many educators found
themselves wondering: Now we have net connections, but what exactly are
we supposed to do with them? What is the real educational potential of this
technology? I hope classroom educators will find this research to be one

18

useful model. Chapter Two, “The Day After Net Day: Approaches to
Educational Use of the Internet,” reviews various approaches to using the net
as an educational tool. Most applications focus on information—receiving it,
retrieving it, or sharing it. MOOSE Crossing focuses on seeing the Net as a
place for learning through community-supported collaborative construction.

From a computer science perspective, MOOSE Crossing demonstrates the
viability of end-user programming, and the value of community support for
learning to program. As technologies increasingly surround the every day
lives of ordinary people, it remains an open question how much control
people will have over those technologies. On MOOSE Crossing, children as
young as seven years old have been able to write simple computer programs;
thirteen-year-olds have been able to write moderately complex ones. I
designed the MOOSE programming language and MacMOOSE client interface
to help make this possible. Chapter Three, “Designing Enabling
Technologies: The MOOSE Language and the MacMOOSE Client,” reviews
their design. MOOSE is a special-purpose language designed for only one
application: helping kids to make creative, cute objects in a text-based virtual
reality environment.

While good, expressive tools are essential, I believe the real key to expanding
what users can accomplish is community support. Computer networks can
enable that essential support. Researchers in computer-supported
cooperative work (CSCW) have long recognized this potential. Readers from
a CSCW background will be most interested in Chapter Four, “Collaborative
Learning Strategies: Storm’s Weekend with Rachael” and Chapter Five,
“Community Support for Construction.” The detailed data collected on
children’s learning experiences on MOOSE Crossing sheds new light on the
ways in which community support can help motivate and support an
individual’s work.

From a virtual communities perspective, MOOSE Crossing and MediaMOO
(an earlier community I designed) demonstrate the benefits of letting users be
creators, not just inhabitants, of virtual worlds. Cyberspace is not
Disneyland—it’s not a place for people to obediently wait on line, and then sit
strapped into a seat viewing what is presented. It’s a place for people to
participate and create (Bruckman 1995). It’s essential to view users as creators,
not merely recipients, of content. Constructionist ideas are of central
importance to the design of virtual communities. Chapter Six,
“Constructionist Culture,” argues that constructing things together helps to
create a particularly special, supportive sort of community.

At the intersection of these various communities are educators designing
applications of virtual communities. To that community I would like to
plead: please don’t have virtual classes where students sit behind virtual
desks and teachers write on virtual blackboards. To do so combines some of

19

the worst aspects of both traditional pedagogy and virtual worlds. Children
learn better by working on personally meaningful projects than by being
lectured to. This is even more true in the virtual world than in face to face
classrooms. A constructionist pedagogy makes better use of the affordances of
MUDs. Like any medium, MUDs have affordances and limitations: things
they are good for and things they are not good for. They should not be used
for every application. They are lousy places to conduct traditional classroom-
like education. They are superb places for constructionist learning.

1.3 What is a MUD?
1.3.1 MUD History
MOOSE Crossing is a “MUD.” For historical reasons, “MUD” stands for
“Multi-User Dungeon.” The first MUDs were networked multi-player
dungeons and dragons games. Since many current applications of MUD
technology have moved far from their origins as violent games, some people
prefer to say that the “D” stands for some other word such as “Domain” or
“Dimension.” I prefer to use the historically correct word.

MUDs have their origins in text-based adventure games. The first such game,
“ADVENT,” was written by Will Crowther and Don Woods around 1967
(Crowther 1992). In the late 1970s, Roy Trubshaw and Richard Bartle at Essex
University in Great Britain put a multi-user text-based world up on the
Arpanet and called it “MUD” (Bartle 1990). (It’s commonly referred to now as
“MUD1” to avoid confusion with the generic use of the term.) At around the
same time, Alan Klietz made a similar program called “*E*M*P*I*R*E*,”
which was soon renamed “Scepter of Goth” (Klietz 1992). All MUDs for the
next ten years would be modeled on Dungeons and Dragons games where
players try to kill monsters and find magic treasure.

In 1989, a graduate student at Carnegie Mellon University named James
Aspnes decided to see what would happen if he removed the monsters and
the magic swords. In most MUDs up until this time, extending the virtual
world was a privilege reserved for either the owners of the computer the
game ran on, or those who had dedicated hundreds of hours of playing time
and succeeded in winning the game by completing all of its quests. Aspnes
decided to let everyone extend the virtual world. He removed many of the
combat-oriented commands from the MUD software he was modifying, and
the resulting code was much more compact. Consequently, he called his
software “TinyMUD.” The choice of names is ironic, because TinyMUD soon
became huge. With few controls on who could build how many rooms, the
database grew out of control. Students from several universities built
detailed replicas of their campuses. The model of MIT included a detailed
copy of The Media Lab. In the lab’s cube auditorium was the set of a play then
being performed there, and a negative review of the play was posted on the

20

wall. The original TinyMUD soon got too big for the computer it was
running on, and was shut down.

TinyMUD was a more egalitarian and pacifist community than its
predecessors. I asked James Aspnes if those ideals came from himself and the
community’s founders. What had been his design goals? He replied:

You raise an interesting question about the ideals of the TinyMUD
community coming from the few founding members. Most
adventure-style games and earlier MUDs had some sort of scoring
system which translated into rank and often special privileges; I didn't
want such a system not because of any strong egalitarian ideals
(although I think that there are good egalitarian arguments against it)
but because I wanted the game to be open-ended, and any scoring
system would have the problem that eventually each player would hit
the maximum rank or level of advancement and have to either
abandon the game as finished or come up with new reasons to play it.
This approach attracted people who liked everybody being equal and
drove away people who didn't like a game where you didn't score
points and beat out other players (I did put in a "score" command early
on since almost everybody tried it, but most players soon realized that
it was a joke). I think that this effect created a kind of natural selection
which eventually led to the current egalitarian ideals. I like the
egalitarianism, but it wasn't my original goal. (Aspnes 1992; Bruckman
1992)

Somewhat inadvertently, Aspnes had created a more egalitarian community,
and a new kind of learning environment. It’s a remarkable fact that at any
given moment there are tens of thousands of people doing creative writing
and computer programming in their spare time just for fun on MUDs.

The rest of this section describes what a MUD is by analyzing its three primary
components: personas, rooms, and objects.

1.3.2 Personas
When you first connect to a MUD, you must pick a name. You may also
chose your gender and describe what you look like. If we are in the same
room on MOOSE Crossing and you type “look at Amy,” you will see:

Amy is 5'8 with shoulder-length wavy brown hair, and a mischievous
grin which seems to say "Can you believe I get paid to do this?"
She is awake and looks alert.
Carrying:
 randomizer Generic Returning Object
 A Carrot Cake Amy's card
 generic business card frob

21

On some MUDs (including MOOSE Crossing), participants may have more
than one persona and may switch between them, as Hermes demonstrated in
Section 1.1 by becoming Cloudstreamer and Widget, and Miranda
demonstrated by becoming Athena. Each persona has a different description
and gender. Rachael (girl, age 12) extended the software on MOOSE Crossing
so each persona can also have different clothes. MUDders often work
through issues of personal identity through the activity of constructing and
role playing different personas (Bruckman 1992; Turkle 1995).

Sometimes MUD players are explicitly taking on fictional roles, pretending to
be someone else; however, at most communities most of the time,
participants are primarily just being themselves—it’s more like a costume
party than an actor’s workshop. On MOOSE Crossing, only small amounts of
real role playing take place. Notably, Rachael organized a sub-community she
calls “The Nest” for medieval role playing. Nest members have homes at
The Nest Gathering Grounds, and special nest personas who pretend to be
living in medieval times and not to know about things like telephones and
computers. Different MUD communities vary in what percentage of the time
players typically are playing a role versus simply being themselves. People
tend to stay “in character” more of the time on MUDs with themes taken
from popular culture such as Star Trek or Anne McCaffrey’s Dragonriders of
Pern series of books. However, on most MUDs most of the time, people may
have fanciful names and descriptions, but they are primarily talking about
issues of real-world concern to them.

This is certainly true on MOOSE Crossing. For example, Miranda’s alter-ego
SuperMiranda talks in all capital letters and jokes about being a super hero.
However, she usually changes into this persona very briefly, and then
changes back. This is the only one of her several personas which behaves at
all different from the others. Whichever name she is using, she is primarily
just being herself. She talks to the other children on MOOSE Crossing about
the things she’s making there, and about elements of her real life (her new
braces, her friends, the first day of the new school year). Similarly, Hermes,
Cloudstreamer, and Widget don’t behave observably different. Jo (girl, age 12-
13) tries to behave differently when she is her gothic alter-ego Rowena, but
she doesn’t entirely succeed. Here is Rowena’s description:

You see a tall girl of about 16. Her hair is died black and she is
wearing a long black dress. Her complexion is very light, almost
white, as if she has never seen the light of day. Her face never
smiles, though she's really quite friendly.

In one conversation, she talks about how successful this persona is with
Scribbles and Werdna (boy, age 9). Werdna is in another room, but is talking
to the others through his puppet “hawk”:

22

Rowena says, 'scrib, on a scale of one to 10, 10 being a total goth,
how gothic is my character? You too werdna'

hawk [Werdna] says, '8 and a half'
Rowena says, 'better than I expected, but what's missing'
Scribbles says, 'your character looks gothic, but she doesn't act

like it. She acts like my Stacey:)'
[Stacey is Rowena’s real name.]
hawk [Werdna] says, 'well i couldn't say'
Scribbles says, 'and htat would sound odd to the outsider...'
Scribbles says, 'but that's ok.'
Rowena says, 'I'm still trying to get into it, its hard being

depressed when your pale purple'

Despite the fact that the children rarely explicitly role play, the way a child (or
adult) chooses to describe himself or herself is still a window onto that child’s
sense of self. It’s not an accident that Miranda’s younger sister chose the
character name “Mouse.” As the younger child in the family, Mouse (girl, age
8-10) has an acute sense of being small and not able to do all the things her big
sister can do. Her self confidence (and her writing ability) have grown over
the last year. Contrast the description she made the day she joined MOOSE
Crossing to one made more recently:

a blown up, purple mouse. She has a weel on her butt. [November 1995]

A little baby tulip. She is Red and very cute. She has blue eyes and
a small mouth. She is the cutest tulip you've ever seen. [September
1996]

The earlier description conveys a sense of being small, unattractive, and
trapped. (How would a mouse get around with a wheel stuck to its behind?)4

The more recent description in contrast is attractive and confident. She’s still
small, but she’s proud of being small, and feels good about herself. Describing
a fictional persona provides people with an unusual opportunity to express
how they feel about themselves, and potentially to reflect on that expression.

1.3.3 Places
The virtual world of MUDs is structured into different “rooms.” When you
“say” something, it is heard by others in the same room. If I type:

--> say hi

I see:

You say, ‘hi’

4In November 1996, I asked Mouse to describe her very first MOOSE Crossing description
(written a year before), and she remembered it clearly. Asked why she chose that particular
description, she laughed and said she had no idea. She said she had imagined the wheel not
as being something the mouse could ride on but as something just stuck there. It was not the sort
of wheel a mouse runs on, but a regular wheel.

23

Everyone else in the room sees:

Amy says, ‘hi’

You can also “emote” to take actions. If I type:

--> emote laughs

Everyone in the room (including me) sees:

Amy laughs

If you want to talk to someone not in the same room, you can “page” them.
Hermes began his conversation with Miranda in Section 1.1 by paging her
asking if it was OK for him to come over. It’s considered good manners to
page someone before barging into their room.

Places provide contexts for social interaction. On MediaMOO (see Section 1.4),
people behave differently if they are in my office than if they are in a café or
the ballroom. On MOOSE Crossing, kids behave differently if they are
swimming at Miranda’s Paradise Island or Jack’s swimming pool than if they
are standing in the library. Here’s a transcript of Rufus and Hermes going for
a swim in Jack’s pool. Jack is a thirteen-year-old boy who is not connected at
the time of this log, but his pool is still there for others to enjoy. Jack has
programmed the pool so that you can do lots of things there including dive,
surface, splash someone, dunk someone, and swim laps. Rufus drives
Hermes there in Sparky II, his bus with homes in the back:

Rufus says, 'We are here!!'
Rufus says, 'Just type exit.'

As they each get out of the bus, they see:

You are in a nice pool, with clear blue water. YOu can set the
tempiture of the pool, and you can dive and swim under water. You
can also dunk peoples, splash, lap, check underwater, talk
underwater, and surface from underwater!
You see fluffey and Sparky II here.
Austina [*sleeping*], Alexander [*sleeping*], and Jack [*sleeping*]
are here.

Hermes changes into his dolphin personality, Flipper. Rufus says, 'Watch
this!' and types “dive.” Jack’s dive program prompts him “Describe your
dive. Put it in the form of an emote,” and then asks him for the name of the
dive. It puts these two things together and prints the performance of the dive
to everyone in the room:

24

 Rufus climbs up onto the diveing board and takes the form of a
Rufusflop. Then, Rufus flips off the board and emote flips into
the air five and a half times before doing a bellyflop.!

Jack’s program’s instructions are a little confusing—Rufus didn’t need to
proceed his description of what he does with the word “emote.”
Hermes/Flipper types “splash Rufus,” but Jack’s program tells him “you can't
splash someone who is below the surface of the water...” Jack’s pool keeps
track of who is underwater, at the surface of the water, and by the side of the
pool. Rufus types “surface” and they both see, “Rufus comes back out of the
water!” Flipper tries “splash Rufus” again, and this time it works:

Flipper splashs Rufus! Rufus is all wet!
Rufus says, 'How was it?'
Rufus says, 'Hey!'

Rufus types, “dunk Flipper” in revenge for being splashed. They see:

Rufus dunks Flipper! Flipper comes up sputtering!
Flipper says, 'a 10'
Rufus says, 'Thanks. Go ahead and try it!'
Flipper says, 'ok'

Rufus looks at Flipper. He sees:

An 8 foot long bottle nosed dolphin with a mischievous grin. He sees
you looking at him and splashes you with his powerful tail. You are
thoroughly drenched!!! Flipper winks at you and then dries you off
with a mighty blast of air from his blowhole.
He is awake and looks alert.
Flipper is wearing a moose-crossing uniform.

Flipper types “dive” and describes his dive to Jack’s program. They see:

Flipper climbs up onto the diveing board and takes the form of a
tripl tail dance. Then, Flipper flips off the board and :erupts
from the water and does a tail dance 3 times!

Rufus says, 'WOW!! A 25'

MUDs are more than chat rooms. The metaphor of being at a pool gives
Rufus and Hermes/Flipper a context for creative play. The pool is a project
completed by another child, Jack. Many children have told Jack how much
they like his pool, and this provides him with positive reinforcement. The
MOOSE programs that make up Jack’s pool are available for the other
children to use as coding examples. Furthermore, the simple knowledge that
a peer made something like the pool can help inspire other children to
attempt significant projects of their own.

25

1.3.4 Objects
In addition to people and places, MUDs are filled with objects. On MOOSE
Crossing, the most popular kind of object are pets. It’s possible to make pets
follow you through the virtual world. Most members have at least one pet
following them, and some have several. For example, Cindy (girl, age 10) was
initially followed by quite a noisy menagerie. Here are the messages
generated by her arrival in a room:

Hoover waddles in, following after you.
Kanga arrives, following after you.
Sandy arrives, following after you.
Peggy arrives, following after you.
Sandy sniffs Peggy curiously.
Peggy says, 'HiKanga'
Peggy says, 'HiSandy'
Peggy says, 'GreetingsHoover'

Cindy would later leave some of her pets in her home, but for a month after
she made them she had them all follow her. MOOSE (and the MOO software
on which it is based) are “object-oriented” (see Chapter 3). Hoover is a
penguin. Cindy made this by making an object which inherits from generic
penguin, a program that Rachael wrote. It immediately had all the abilities
Rachael designed for it, including reacting differently to six kinds of food and
automatically keeping track of how hungry it is based on how long it’s been
since it last ate. Later, Cindy would add six new programs to Hoover, making
it possible for her to kiss it, hug it, dress it up, make it greet people, and make
it eat additional kinds of food. Examining any object gives you a list of
commands that work with that object, so you don’t need to guess. One of the
scripts Rachael wrote on generic penguin lets you feed it shrimp. Here’s an
example:

--> feed Hoover shrimp
You can't feed Hoover shrimp today because Hoover is on a diet.

--> diet Hoover
Hoover is no longer on a diet!!!

--> feed Hoover shrimp
You feed Hoover a ton of shrimp!
Hoover gobbles the shrimp down in seconds.

Here is what five of the programs Cindy added to Hoover do:

--> hug Hoover
Hoover snuggles into your arms

--> kiss Hoover
Hoover kisses your nose tenderly

--> feed Hoover green eggs

26

Hoover jumps a few feet in the air flapping his wings franticly, then
he calms down by bowing politely to you

--> undress Hoover
Hoover blushes bright red.

--> hi Hoover
Hoover bows shyly, and then tries to hide in Cindy's pants

Kanga is a kangaroo. Cindy started making Kanga by doing a tutorial which
helps you to make a dog and changing it to be more kangaroo-like. She then
added several new abilities not in the tutorial, including making it ticklish,
and making it eat daisies. Peggy is a pet pig that Cindy bought at Byron’s Pet
Shop. When you buy a pig, Byron’s storekeeper will make you an object
which inherits from his generic greeting creature object. Greeting creatures
say hello to every object which comes into the room. As Cindy wanders
around the world, Peggy says hello to Cindy’s other pets as they arrive in the
room, following Cindy! After she bought Peggy, Cindy added five new
programs to her. She decided that Peggy wasn’t really a pig but a piggy bank,
and wrote a program to let you feed Peggy pennies. Cindy made Sandy by
making an object which inherits from generic smart dog, a program that I
wrote. She then added seven new programs to Sandy to make it do other
dog-like things. The programs on the parent object make Sandy sniff new
things that come into the room. Sandy sniffs Peggy in the transcript above
because Peggy arrived in the room after Sandy did.

Objects can serve a variety of functions. They can perform useful functions
like the research directory on MediaMOO, or the object transfer station on
many MOOs and on MOOSE Crossing which lets you change who owns an
object. They can also be conversation starters. In real life, one doesn’t
normally talk to strangers on the street. However, there is an unwritten rule
in many cultures that it’s acceptable to begin talking to a stranger who has a
dog. Admiring the dog and asking questions about it opens the door to
conversation on other topics. The same happens in the virtual world with
virtual dogs, and other kinds of objects.

Making objects gives individuals opportunities for creative expression. The
ways in which making things together helps to strengthen a community are
discussed in detail in Chapter 6, “Constructionist Culture.” Finally, objects
can be as much an expression of self as personas. Arjun Appadurai writes
about how much you can tell about a family by the objects in their home
(Appadurai 1986). The same is true in the virtual world. You can tell a lot
about a person by the things they chose to buy in the real world, and even
more by the things they chose to make in the virtual world. Creating objects
provides opportunities for self expression, creative play, and learning
through design.

27

1.4 Prior Work: MediaMOO
MOOSE Crossing is the second virtual community I have designed/founded.
The first, MediaMOO, is a MUD designed to be a professional community for
media researchers. MediaMOO opened to the public in January 1993, and as
of October 1996 had 1000 members from 35 countries. From the start,
MediaMOO was intended as a kind of rehearsal for MOOSE Crossing. It was
my first experience applying constructionist ideas to the design of a virtual
community. Throughout this thesis, I will occasionally refer to MediaMOO
and design principles learned through the MediaMOO project. I will very
briefly introduce that project in this section.

Most MUDs are populated by random collections of people with little in
common. As a result, the conversation often sinks down to the least
common denominator of discourse. On MediaMOO, I decided to see what
would happen if I brought together a community of people with shared
interests—in this case, the design of new media technologies. To become a
member of MediaMOO, you must be doing some sort of “media research.” In
evaluating applications, I try to be loose on the definition of media and more
strict about the definition of research. Everyone on MediaMOO “wears” a
description of his or her research interests, and is identified by his or her real
name and email address. It’s rather like an endless reception for a conference
on media studies.

In the initial design of MediaMOO, I tried to maximize opportunities for
individuals to extend the virtual world. On most MUDs, you must ask to be
allowed to program new objects. On MediaMOO, everyone automatically has
that privilege. I constructed very little of the virtual world, but instead tried
to maximize opportunities for people to build their own spaces. The world
that has emerged reflects the rich diversity of its inhabitants. A more detailed
discussion of MediaMOO appears in “The MediaMOO Project:
Constructionism and Professional Community” (Bruckman and Resnick
1995).

1.5 The MOOSE Crossing Project
The MOOSE Crossing Project has three major components: the development
of new technologies, the use of that technology with children (including a
weekly after-school program at the Media Lab), and the analysis of the
children’s activities and learning.

• Tools
If kids are to work on significant projects in a MUD, they need access to
quality tools designed specifically for their needs. The MOOSE Crossing
project began with the realization that they would need both a new
programming language and a new client interface. Work on the design and

28

development of the MacMOOSE client began in September 1992. Work on
the MOOSE language began in September 1993. Previous MUD languages
were designed for adults; MOOSE is the first to be designed explicitly for
children. The client and language were first used by children in October 1995.
Chapter 3, “Designing Enabling Technologies: The MOOSE Language and the
MacMOOSE Client,” describes the design of these new technologies in detail.

How Kids Heard About MOOSE Crossing

School
38%

Popular Press/Net
21%

Research
Community
Affiliation

17%

Unknown/Other
12%

Friend
7%

The Computer
Clubhouse

5% School

Popular Press/Net

Research Community
Affiliation

Unknown/Other

Friend

The Computer Clubhouse

Figure 1.1: How Kids Heard About MOOSE Crossing

• Use By Kids
MOOSE Crossing is used by children from home, in after-school programs,
and as part of regular school activities. From October 1995 through February
1997, a group of approximately six children came to The Media Lab once per
week to participate in a regular MOOSE Crossing after-school program. The
main purpose of the program was to give me the opportunity to study a
group of children using MOOSE Crossing closely. Exact membership in the
group changed occasionally (particularly over the summer), but remained
largely the same over the course of the year. Each session lasted
approximately two hours. While we originally intended for MOOSE Crossing
to be used by kids nine years of age and older, several as young as seven have
participated successfully. As of March 1997, over 160 children had
participated. While home users form the largest group, the fastest-growing
group is children using MOOSE Crossing from in-school programs. Figure 1.1
shows how kids heard about MOOSE Crossing, and Figure 1.2 shows where

29

they connect to MOOSE Crossing from. This data is compiled from the
questionnaire participants complete on registering. Some children start off
participating from school or an after-school program and add additional
home access later. The data in Figure 1.2 represents their initial answer to the
question “From where do you plan to connect to MOOSE Crossing? (home,
school, community center, friend's house, or something else).”

The population is more gender-balanced than many other communities on
the Internet. Boys make up 56% of the population, and girls are 43%. See
Section 7.1.3 for more on gender issues.

Where Kids Connect to MOOSE Crossing

Home
45%

School
40%

After-School
Programs

15%

Home

School

After-School Programs

Figure 1.2: Where Kids Connect to MOOSE Crossing

• Analysis of Children’s Activities and Learning
The after-school program at the Media Lab gave me the opportunity to get to
know the children and follow their progress closely, using an ethnographic
methodology. After each session, I took detailed field notes. I also
interviewed them periodically on video, using a clinical interview style.

Everything typed on MOOSE Crossing is recorded, with written informed
consent from the parents and children. This has given me an opportunity to
study individual children’s learning experiences in detail. The total amount
of data recorded is staggering—over 700 Mb as of March, 1997. It’s impossible

30

for one person to review even a small fraction of it; however, it is possible to
study selected individuals, places, or objects in great detail.

Recording this data is somewhat of an invasion of the children’s privacy.
Privacy rights are an issue I’m concerned about (and volunteer some of my
spare time lobbying for), and this was not a decision I took lightly. However,
after giving the issue serious consideration, I decided that the benefits
outweighed the problems. MIT’s Committee on the Use of Humans as
Experimental Subjects (COUHES) subjected the plans for MOOSE Crossing to
careful review before approval. Every MOOSE Crossing member signs a
permission/code of conduct form on paper and mails or faxes it to MIT before
they are allowed to participate. Minors must also have their parents sign a
parental permission form. These forms explain what data is being recorded
and why. The formal nature of this process makes me feel more comfortable
that the consent being obtained is informed consent—members didn’t just
click “OK” to a screen of fine print, but signed a statement on paper that spells
things out. Children are unlikely to understand the significance of this fact,
but their parents are empowered to make this decision on their behalf. It’s
unclear to what extent the existence of log files has changed the social
atmosphere on MOOSE Crossing.

In writing about the children’s experiences, I chose to change their character
names and names of some of their objects and pets. Some people believe that
since MUD names are already pseudonyms, no further disguise is necessary. I
disagree. People invest a great deal in their virtual identities. Even if those
are not directly traceable to their real identities, the virtual persona itself
merits protection. Unfortunately, in a community as small as MOOSE
Crossing, it’s impossible to disguise individuals in such a way that insiders
won’t recognize them. Many researchers give their subjects added protection
by hiding the community name, but that was clearly not possible in this case.
As a result, since the subjects might be identified by some readers, I have
edited out unnecessary details in a few unusual places where I am concerned
those details might embarrass the child in question. For example,
information about a particular child’s difficulties getting along with his or her
parents or siblings might indirectly shed some light on that child’s learning
experiences; however, that information is not essential. The focus of this
work—on learning, construction activities, and community—has made it
possible to eliminate such details without damaging the intellectual integrity
of the thesis. A more sensitive topic (such as the work I did with Sherry
Turkle on conceptions of the self in MUDs) would be impossible to study in
this situation and still protect the subjects adequately.

1.6 Outline
This thesis is divided into seven chapters. It was designed to be readable in
any order; consequently, some basic facts are repeated in multiple places. This

31

first chapter serves as an introduction to the project and the motivations
behind it. Chapter 2, “The Day After Net Day: Educational Approaches to
Using the Net” reviews educational approaches to using the Internet.
Applications which focus on using the net to deliver, retrieve, or share
information are separated from those which see the network as a place to
create a “technological samba school.” Chapter 3, “Designing Enabling
Technologies: The MOOSE Language and the MacMOOSE Client,” introduces
the new technologies designed as part of this project, and examines the ideas
underlying their design. Chapter 4, “Collaborative Learning Strategies:
Storm’s Weekend with Rachael,” is a “thick description” (Geertz 1973) of a
weekend on which one twelve-year-old girl taught another twelve-year-old
girl how to program. It analyzes the learning strategies children typically use
on MOOSE Crossing. Chapter 5, “Community Support for Construction,”
examines in detail the ways that the community motivates and supports
individual children’s learning experiences. Chapter 6, “Constructionist
Culture,” examines the converse—the ways in which building things
together helps to create a particularly felicitous kind of community. Chapter 7
presents a number of open questions for further research, and then examines
what conclusions can be drawn from this work about construction,
community, computers, and learning. The Appendix lists all the programs
and descriptions of six randomly-selected children who participated in
MOOSE Crossing in a variety of settings.

32

33

2. The Day After Net Day: Approaches to Educational Use of the
Internet

2.1 The Hype and the Reality
On Saturday, March 9th, 1996, volunteers filled California schools to wire
them for Internet access. As many as 150 volunteers showed up at some
schools. It was a high-visibility event—even the president and vice president
of the United States joined in: “Donning electrician's gloves and hopping on
a ladder, President Clinton joined the cyberspace revolution Saturday as he
worked with Vice President Al Gore to install about 70 feet of pink, white and
blue conduit at a Contra Costa County high school,” wrote the San Jose
Mercury News (1996). The organizers of the event, dubbed “Net Day”,
reported that over 18,000 volunteers participated.

The day after Net Day, teachers were left with questions: now what? What
exactly are we supposed to do in our classrooms with this new technology?
Contrast the utopian hype surrounding Net Day to this letter to the editor
published in The Boston Globe a few months later:

“Massachusetts schools should consider themselves fortunate to be in
48th place (“A Net gain for schools,” editorial, May 28). Having just
spent more than two frustrating weeks trying to get on and use the Net,
I can assure teachers that it is one of the greatest wastes of time ever
foistered upon the public. Not only is it hard to find the place you’re
looking for, but when you finally get there the information you hoped
to find is not available or of limited value. The main purpose seems to
be to amuse browsers who have unlimited time with sluggishly
transmitted, cute pictures and endless alternatives to “click on.” The
only benefactors from wiring up the schools will be equipment sellers,
installers, and the inevitable service providers.” (Kleinschmidt 1996)

The positive and negative hype are equally comic. The letter’s author has
little idea how one might use the Internet in an educational setting.
However, in a sense, no one does—the possibilities are still being explored.
In the popular press and the popular imagination, The Net functions largely
as a symbol.1 In the positive hype: “The Net is the future. The Net is
progress. If your child is using The Net, then he or she is part of the future;
your child will be a success.” In the negative hype: “The Net is Technology.
Technology has cheated us before and is trying to cheat us again. Technology
will bring us no real benefits. The Net is not just a waste of time and
resources—it is diverting us from the core values that really matter.” In the
past, other technologies have played this symbolic role. In the 1980s,
computers in general tended to symbolize the future; in the mid-1990s, people

1See (Arnold 1995) for a discussion of ways in which the Logo programming language functions
as a symbol for a particular progressive educational tradition.

34

are more likely to use the Net as that symbol. The role of symbolizing the
future is constantly migrating to a newer technology. If The Net functions as
a symbol, Children function as an even more powerful symbol: “Children
are the future. Children are innocent, pure, and impressionable.” The
combination of these two symbols, Children using The Net, is a cultural
powder keg. When people debate the issue they are often really debating their
hopes and fears for the future—their personal future as well as the future of
our society.2 The reality, the real things people are doing in classrooms with
children and net connections, is much more pedestrian.

EDUCATIONAL APPROACHES TO USING THE NET

I. Distance Education
Tradition: Examples:
Instructionism The Open University

IBM in China
Diversity University

II. Information Retrieval
Tradition: Examples:
Exploratory Learning Net surfing

Research projects

III. Knowledge-Building Communities
Tradition: Examples:
Collaborative Learning Global Science

CSILE
Professional Communities
Computers & Writing

IV. Technological Samba School
Tradition: Examples:
Constructionism MicroMUSE

Pueblo
MOOSE Crossing

Table 2.1: Educational Approaches to Using the Net

One common mistake is to think of The Net as one thing. Students and
educators use computer networks in a wide variety of ways. Each approach is
rooted in different educational traditions. Broadly speaking, you can put

2I recently met with an educator from a third-world nation, and invited her to arrange for some
children from her country to join MOOSE Crossing. The coordinator of her visit sent me a very
nice thank-you note which commented that “She was especially interested in the “virtual
community” project, in which our schools can participate in the future.”

35

educational uses of the net in four categories: distance education, information
retrieval, knowledge-building communities, and technological samba schools
(See Table 2.1). In the rest of this chapter, I’ll discuss each approach in turn.
As we move from approach I to IV, the emphasis shifts from information to
ways of knowing, and there is an increasing emphasis on community. There
is also a shift from more curriculum-centered approaches to student-centered
approaches. The particular projects selected for discussion were chosen to
highlight different pedagogical approaches. The list is far from
comprehensive.

2.2 Distance Education
Long before computers were invented, people were learning from home via
correspondence courses. For the geographically isolated and for adult learners
juggling the demands of work and family, distance education has provided
otherwise impossible opportunities. Britain’s Open University currently
serves the needs of 200,000 students. Their web page
(http://www.open.ac.uk/) notes that “The oldest graduate so far was 93, while
the youngest student is a nine-year-old prodigy taking maths. There are
roughly equal numbers of men and women. About three-quarters of students
remain in full-time employment throughout their studies.”

The tradition of distance education is rooted in “instructionism.” An
instructionist approach to education focuses on the transmission of
information from teachers to students. Students are expected to master a
curriculum-specified set of facts, and be able to repeat those facts on
examination. Mastery of information is emphasized over ways of thinking
and knowing. Most commonly, distance education students receive a set of
materials to study, and then take tests to demonstrate their mastery of that
information.

Clearly missing from this model is classroom interaction. The Open
University has tried to counteract this problem by setting up local networks of
tutors and regional centers around the United Kingdom. They are currently
beginning a major initiative to use computer networks to provide access to
information and enhance interaction among students and teachers.

Many distance education projects are experimenting with video conferencing
techniques. An expert’s live presentation can be sent to thousands of
students. Students can ask questions from remote locations. Questions and
answers can be broadcast to all students participating. Proponents argue that
students who would normally have access to only inexperienced teachers
now are being taught by world-class experts. Underlying this argument I
believe is a fundamental misunderstanding of what it means to be a good
teacher, and a lack of respect for the teaching profession. Consider the
combinatorics of the situation: if one expert is lecturing to hundreds or

36

thousands of students, there will be time for only a tiny percentage of those
students to ask questions. The entire presentation is then equivalent to
students learning from watching a videotape. How would one compare
learning from videotapes of experts to learning from a good teacher? Ideally,
the teacher establishes a relationship with each student, getting to know him
or her individually. The social and psychological dimensions of those
relationships are as important as any role the teacher may play in supplying
information or assessing students’ performance. The teacher tailors the
learning experience to meet student’s needs, rather than being tied to a fixed
curriculum. The teacher’s role varies in different pedagogical traditions, but
across all of those traditions one thing is clear: good teaching is an art.

In early 1996 I met with a development team from IBM who were working on
just this sort of solution for China—piping video into classrooms across
computer networks. They argued that the quality of teaching in China is
generally horrible and the number of learners so immense that this sort of
network was an appropriate solution. This is not only a waste of scarce
financial resources, but also could be actively harmful to the educational
process if teachers perceive the lack of respect for their skills and their efforts
that motivated this system design. Instead of dismissing those teachers as
incompetent, why not invest resources in teacher training and professional
development? That would bring more benefit to students than talking-head
video presentations. (See Section 2.4.3 for more on supporting teachers.)

A somewhat better use of technology to support distance education involves
the use of mailing lists, real-time chat, and MUDs to foster interaction among
students and teachers on a reasonable scale. Since these technologies are
many-to-many instead of one-to-many, they afford more real interaction. For
students taking classes at The Open University, these technologies are
providing new opportunities for students to learn from one another.

At a MUD called Diversity University (telnet://erau.db.erau.edu:8888) ,
students sit at virtual desks in virtual classrooms. The designers have tried to
move the classroom environment into text-based virtual reality, complete
with programs to simulate white boards and white-board erasers. Since the
nonverbal cues that help people negotiate whose turn it is to talk are absent,
many classrooms include software to programmatically control turn-taking.
While this approach is certainly preferable to talking-heads videos, it is still
far from ideal.

Distance education often uncritically gives us a bandwidth-impoverished
literal-minded copy of the traditional classroom. In most of these projects,
the metaphor of having a virtual space is being taken too literally. Virtual
classrooms are not simply mediated forms of real classrooms. To treat them
as such is akin to early filmmaker who pointed cameras at theatre stages and
produced essentially filmed plays. Virtual spaces are a new medium whose

37

properties need to be explored and used to their best advantage. More
ambitiously, this new technology can be used not merely to reproduce
traditional education, but to help reform it. New educational technologies
can provide opportunities to introduce new educational ideas. Most distance
education projects simply translate an old medium (the classroom) into a
new one (virtual space) without reflecting on either what the new medium is
good for or how the old medium needs to be reformed.

2.3 Information Retrieval
When the general public think about children using the Internet in school,
they most commonly think, as did the author of the letter to The Boston
Globe (quoted in Section 2.1), that the children will be “surfing” the net for
information. From this perspective, teaching children about the Internet is
the modern equivalent of classes in library skills. Learning how to find
information online is a useful means to an end—not an end in itself.

Using the Internet as an electronic library has a number of pedagogical
benefits when used in combination with (not instead of) other information
sources. The volume of information available exceeds that possible within a
school library, and much of that information is more current than is possible
in printed books. It’s significant that on the Internet, all schools—rural and
urban, rich and poor—gain access to the same quantity and quality of
information (except where filters are imposed to protect the children from
controversial information.) However, it is not clear that it’s of central
importance for students to have access to the latest information; most school
libraries are more than adequate for students’ needs. On the other hand, the
idea that they have access to the latest information has the potential to get
kids more excited about what they are researching. Students often feel
condescended to by schools and school text books. By giving them access to
“real” information sources used by adults, they can be made to feel that they
are being taken seriously, and they may consequently take the educational
process more seriously themselves.

Many express concern that much of the information available online is not
accurate. While this is a problem, it also has a hidden benefit. Children are
taught not to believe everything they hear, but they are not urged strongly
enough not to believe everything they read. The network brings issues of
point of view and reliability into high relief. It’s likely that children raised
using electronic information sources will learn to be more critical consumers
of all information.

At its best, information retrieval activities are a form of exploratory learning:
children research a topic they care about in depth. They evaluate the
information they discover critically. The research culminates in a report or
other project. At its worst, information retrieval can become a kind of trivial

38

pursuit game. In a classroom I once visited, students were challenged to find
the names and dates of the largest volcanic eruptions in history. This wasn’t
presented as part of a larger curriculum unit on volcanoes—the information
was not situated in any meaningful context. It was merely an academic
scavenger hunt. Thoughtful uses of electronic information retrieval in the
classroom have more to do with traditional research projects than with “net
surfing.”

2.3.1 Children Accessing Controversial Information
A complicated and troubling issue raised by this technology concerns
children’s potential access to controversial information online. A
tremendous volume of obscene, racist, and violent information is available
online. While such information generally appears only when one actively
looks for it, it is possible to stumble on it accidentally, as one of my students
did several months ago. One of MOOSE Crossing’s first sample programs was
an elephant that tells elephant jokes. A twelve-year-old boy using MOOSE
Crossing at The Media Lab wanted to make a lawyer who tells lawyers jokes.
He asked one of the adults present if it was OK for him to open up a web
browser to search for lawyer jokes. I was working with children on the other
side of the room, and heard about this a few minutes later. Something
troubled me about it, but I wasn’t immediately sure what. I was surrounded
by kids demanding my attention, and didn’t stop to give the matter my full
attention right away. Ten minutes later when things had quieted down, it
occurred to me: the last time I saw a joke collection posted to the web, many
of the jokes were dirty ones. Looking over the student’s shoulder, my fears
were proved correct—the joke collection he was reading was largely obscene.
I had a talk with him about the responsibilities that come with the privilege
of net access, and the reasons why many people don’t want their children to
see such material. Whether any real harm was done depends on your
perspective.

I’ve told this story to a number of adults who have chuckled and laughed it
off—there’s no real harm in a dirty joke or two, is there? There are two
problems with this argument. First, not all parents agree. Some would find
the fact that their child had been exposed to a dirty joke to be a very serious
matter. Second, the level of obscenity in some materials available on the net
exceeds what you might guess—the lawyer joke collection in question
included anal sex jokes. While I believe our culture would benefit from
more open discussion of human sexuality, the fact remains that such subjects
should be broached at an appropriate time and in an appropriate context. A
student actively seeking such information should be able to find it, but he or
she shouldn’t stumble across it while looking for lawyer jokes.

There are a wide variety of strongly-held opinions on this issue. In March of
1995, Michele Evard and I founded an email discussion list on Children
Accessing Controversial Information (caci). We led a round-table discussion

39

on the topic at the April 1995 meeting of The American Educational Research
Association (AERA). On the caci list, the topic was sufficiently controversial
to generate a high volume of messages, and a high level of emotional
tension. Many participants presented their views with absolute certainty,
refusing to acknowledge the merit of other people’s points of view. On one
side, some people argued that freedom of speech and the freedom to read are
absolute, and any restrictions are a violation of basic human rights. On the
other side, some people declared that children finding inappropriate
information online would be nothing less than tragic, and must be prevented
at all costs. After several months, we found a volunteer to take over the list
management, and I unsubscribed from the list. The repetitive nature of the
conversation and its self-righteous tone were more than I could stomach.
Many people feel strongly about this issue.

In March of 1996, I organized a session at MIT’s Communications Forum
entitled “Protecting Children/Protecting Intellectual Freedom Online.”
Judith Krug, Director of the Office for Intellectual Freedom at The American
Library Association, and Bill Duvall, President of SurfWatch Software, spoke.
Krug spoke eloquently about the importance of intellectual freedom.
However, she failed adequately to acknowledge that libraries do make
editorial decisions in what books they chose to buy. Duvall presented his
company’s SurfWatch software, which gives parents the option to filter out
controversial information. SurfWatch uses a combination of keyword
filtering and ratings by human reviewers to filter out sexually explicit
content. It does not filter violent or racist content, and parents can in no way
tune the software to match their values. While Duvall made a good case for
the value of empowering parents to make choices for their children, he failed
to address the issue of the competing rights of children, parents, school
systems, and the broader society. For example, should teenagers be able to
access information about gay teen support groups if their parents and school
system don’t want them to? Does a local school district have the right to ban
access to information about evolution if the broader society believes it to be
an important scientific fact? None of these issues are new; the Internet
simply gives them a new immediacy.

SurfWatch is only one of a growing number of products designed to make net
access more appropriate for kids. There’s also Cyber Patrol, Net Nanny,
SafeSurf, and others. Perhaps the most intriguing is the Platform for Internet
Content Selection (PICS), a research project aiming to design a platform to
support not only multiple ratings of content but multiple ratings systems
(Resnick and Miller 1996). While PICS has promise, all attempts at
technological solutions to fundamentally social problems have limitations.
The most useful analogy I’ve come across is that the Internet is a city. You
don’t let a very young children go into the city alone, but you might let them
play alone in the yard. (In this scenario, MOOSE Crossing is like a loosely
supervised playground.) As children grow older, you need to educate them

40

on how to be street smart. Eventually, you need to trust them to venture off
on their own and use good judgment. The Internet brings some of the
complexities of the real world onto your desktop. Parents need to stay
involved to help children learn to negotiate those complexities.

2.4 Knowledge-Building Communities
Distance education focuses primarily on information delivery. Information
retrieval is in a sense the opposite process. Knowledge-building communities
focus on information sharing. Distance education is probably most closely
allied with the behaviorism of B.F. Skinner (Skinner 1968) and information
retrieval at its best is allied with the exploratory learning of John Dewey
(Dewey 1938), knowledge-building communities are more closely linked to
the work of Lev Vygotsky (Vygotsky 1978). Vygotsky emphasized the social,
collaborative nature of learning.

2.4.1 Global Science
The most common kind of knowledge-building community is what I have
dubbed “global science” (See Table 2.2). In the TERC/National Geographic
Acid Rain Project (now part of the Global Lab Project), children around the
world record data about acid rain in their area. By sharing the data, they are
able to gain an understanding of this global phenomenon. Similarly, in The
Journey North, children from Mexico to Canada collaborate to track animal
migration patterns. In the Kids as Global Scientists project, children
collaborate to study weather patterns (Songer 1996). The Jason Project has a
slightly different emphasis. In the Jason Project, marine biologists from
Woods Hole Oceanographic Institute explore undersea phenomena with a
small remote-controlled submarine. Children can see video output by the
sub, and take turns controlling it remotely. The goal is for the children to
develop a sense of having participated in a “real” scientific investigation.
These are just a few of the many “global science” projects on the Internet.

As part of the Kids as Global Scientists Project, Songer compared learning
outcomes for a class of students discussing weather data with other schools
over the Internet, and a control group doing research in their school library.
While the quality of scientific data collected was comparable between the two
groups, “Internet responses focused on a mixture of scientific and personal
information, such as personal anecdotes or familiar occurrences in local
weather patterns.” The Internet students had become more personally
involved with the project. Teachers observed that their Internet students had
increased motivation to learn about the weather (Songer 1996).

41

“GLOBAL SCIENCE” PROJECTS

• TERC/National Geographic Acid Rain Project (Global Lab)
http://hub.terc.edu/terc/gl/global-lab.html

• The Jason Project
http://www.jasonproject.org/

• The Journey North
http://www.ties.k12.mn.us/~jnorth/index.html

• Kids as Global Scientists
http://www-kgs.colorado.edu/

• The Noon Observation Project
http://www.ed.uiuc.edu/courses/satex/sp96/noon-project/index.html

Table 2.2: “Global Science” Projects

In The Noon Observation Project, students repeat an experiment first
performed by Erasthones in Ancient Greece: measure the length of a shadow
at noon at several distant locations, and you can estimate the circumference
of the earth. The study organizers write:

In order to learn about the role that the network played in this project,
let us consider whether such a project could have been done without
an electronic network. In terms of conducting a project which provides
a practical context for mathematics skills, the class could have gone out
and used their meter stick shadows and the shadow of the school's
flagpole to determine the height of the flagpole, as mathematics
teachers have done for generations. However, the network seemed to
provide a highly motivating context for learning, both for the students
and for the teachers involved. More specifically, it provided support in
the following ways: 1) as a source of ideas, 2) as a supplier of tools, 3) as
a source of diverse data, and 4) as a diverse audience (Levin, Rogers et
al. 1989).

Perhaps the most important of these criteria is the notion of audience. In The
Instructional Design Software Project, Idit Harel had fourth grade students
write software to teach third graders about fractions (Harel 1991). Harel notes
that the educational benefit goes entirely to the fourth graders—the third
graders learn little if anything from the experience. However, the notion of
having an audience restructures the fourth graders’ relationship to the design
process. Students become more excited about the project and take pride in the
quality of their work, because they are designing for an audience they care

42

about. The same phenomenon can be observed in global science research
projects: the idea of sharing their data with an audience of their peers is
motivating, and encourages students to do quality research. Given the often
limited nature of the interaction among students in these projects, it is often
the idea of having an audience that is beneficial, more than the actual
interaction with that audience that takes place.

2.4.2 CSILE
In a knowledge-building community, ideally students should critically debate
issues that arise. In practice in most of the global science projects, such debate
rarely occurs. When kids pose questions of students at other locations, those
questions often go unanswered (Songer 1996). Many projects don’t even
allow kids to discuss issues that arise with one another. Instead, each class
sends data in to a central authority, and the central authority does all the
work of aggregating, evaluating, and presenting the data. Their conclusions
are sent back to each classroom. In many ways, the organizers are engaged in
a more powerful learning experience than the students. Children are serving
more as technicians than scientists.

Compared to most projects of this kind, more reflection and critical debate
about issues has been achieved in the CSILE (Computer-Supported
Intentional Learning Environment) project. CSILE is a networked bulletin
board system which structures discussions into notes and comments on those
notes. Typically, a class will jointly investigate a topic. Rather than have each
student complete the same assignment, students take responsibility for
different aspects of the over-arching topic. The goal is to reproduce the
character of scientific inquiry in a community of scientists. The designers of
CSILE write:

Can a classroom function as a knowledge-building community, similar
to the knowledge-building communities that set the pace for their
fields? In an earlier era, it would have been possible to dismiss this
idea as romantic. Researchers are discovering or creating new
knowledge; students are learning only what is already known. By now,
however, it is generally recognized that students construct their
knowledge. This is as true as if they were learning from books and
lectures as it is if they were acquiring knowledge through inquiry. A
further implication is that creating new knowledge and learning
existing knowledge are not very different as far as psychological
processes are concerned. There is no patent reason that schooling can
not have the dynamic character of scientific knowledge building.
(Scardamalia and Bereiter 1994)

CSILE is most commonly used on a local-area network, but it can be used
across the Internet. CSILE or a tool like it might help organizers of global

43

science projects to foster more reflection and critical debate among
participants.

2.4.3 Professional Communities
While CSILE strives to give children in the classroom an activity like those of
a community of adult researchers, much is being done with network
technology to support actual adult research communities. This has long been
the activity of a myriad of professional societies like the Association for
Computing Machinery (ACM). Such societies were early adopters of email
and bulletin board technologies. A great deal can happen between annual
conferences. Computer networks can accelerate the pace of debate of issues,
and offer individuals ongoing support in their endeavors.

PROFESSIONAL COMMUNITIES

• AstroVR
For: Astrophysicists
Address: http://astrovr.ipac.caltech.edu:8888/

• ATHEMOO
For: Theatre professionals
Address: telnet://moo.hawaii.edu:9999

• BioMOO
For: Biologists
Address: http://bioinfo.weizmann.ac.il/BioMOO

telnet://bioinformatics.weizmann.ac.il:8888

• MediaMOO
For: Media researchers
Address: http://www.media.mit.edu/~asb/MediaMOO/

telnet://mediamoo.media.mit.edu:8888

• Tapped In
For: Teachers
Address: http://www.tappedin.sri.com/

• The Tuesday Café
For: Writing teachers
Address: http://www.cs.bsu.edu/homepages/siering/netoric.html

telnet://mediamoo.media.mit.edu:8888

Table 2.3: Professional Communities Situated in MUDs

44

A number of communities are now supplementing face to face meetings and
mailing lists with online communities in MUDs. The first two communities
to use MUDs for this more “serious” purpose were AstroVR (for
astrophysicists) (Van Buren, Curtis et al. 1994) and my own MediaMOO (for
media researchers) (Bruckman and Resnick 1995).3 Compared to mailing
lists, a MUD facilitates more casual collaboration. I am unlikely to send email
to a colleague I’ve never met saying “I hear you do work in education. I’d like
to hear more about it,” but I might say exactly that if I bumped into them in a
public space online. MediaMOO functions rather like an endless conference
reception for a conference on media studies.

There are a growing number of such communities. ATHEMOO is a
community for theatre professionals; BioMOO is for biologists (Glusman,
Mercer et al. 1996). Of particular interest are online communities of teachers.
A group of writing teachers meet every Tuesday night on MediaMOO in the
Tuesday Café (Fanderclai 1996), a place they built for themselves. Organizers
Tari Fanderclai and Greg Siering choose a topic each week, and 15 to 60
teachers generally attend. Past topics have included the portfolio approach to
writing instruction, how to equip a writing lab, and “students and the
underside of the net.” Most writing teachers are under-paid, over-worked,
and geographically isolated. The Tuesday Café helps them to take the process
of reflecting on their practice from an annual to a weekly event. Online
meetings complement face to face meetings and ongoing mailing list
discussions. Tari Fanderclai writes:

As with asynchronous forums, I am connected to people who share my
interests, but MUDs provide something more. For example, the
combination of real-time interaction and the permanent rooms,
characters, and objects contribute to a sense of being in a shared space
with friends and colleagues. The custom of using one's first name or a
fantasy name for one's MUD persona puts the inhabitants of a MUD on
a more equal footing than generally exists in a forum where names are
accompanied by titles and affiliations. The novelty and playfulness
inherent in the environment blur the distinctions between work and
play, encouraging a freedom that is often more productive and more
enjoyable than the more formal exchange of other forums. It is perhaps
something like running into your colleagues in the hallway or sitting
with them in a cafe; away from the formal meeting rooms and offices
and lecture halls, you're free to relax and joke and exchange half-
finished theories, building freely on each other's ideas until something
new is born. Like the informal settings and interactions of those real-
life hallways and coffee shops, MUDs provide a sense of belonging to a

3AstroVR began development first, and was the inspiration for MediaMOO; MediaMOO
actually opened to the public first, because less specialized software development was
required.

45

community and encourage collaboration among participants, closing
geographical distances among potential colleagues and collaborators
who might otherwise never even meet. (Fanderclai 1996)

The Tuesday Cafe has been meeting since June 1993. Researchers at SRI are
currently developing an online community for teachers called Tapped In
(Schlager and Schank 1996a). While researchers at IBM are trying to use
computer networks to replace teachers or work around them (see Section 2.2),
researchers at SRI are using networks to support them, helping them to
become better teachers. Organizers Mark Schlager and Patricia Schank write:

Researchers, policy-makers, and educators view teacher professional
development as a critical component of educational reform. One
approach that embodies this kind of experience is the specially designed
professional development institute that brings educators together
around a theme or set of topics to acquire new skills and knowledge in
a collaborative venue. Teachers engage in meaningful discussion with
peers over several days or weeks, while interacting with a rich
collection of resources. However, it is difficult to (a) scale special
institutes to accommodate the large education community and (b)
maintain the level of discourse and support established at the institute.
Back in the classroom, teachers are once again isolated from their
professional community.

Our goal is to build on the strengths of these successful same-time,
same-place professional development models by employing multi-user
virtual environment (MUVE) technology to sustain and enrich the
professional discourse, while extending access to greater numbers of
educators. In service of this goal, we are developing a MUVE-based
Teacher Professional Development Institute (TAPPED IN). The
mission of TAPPED IN is to promote and support K-12 education
reform through the establishment of a community of education
professionals that is not exclusionary by virtue of geography, discipline,
or technology requirements. Following exemplary teacher
enhancement institutes, TAPPED IN will offer both formal events (e.g.,
inservice workshops, presentations) and informal ongoing activities
(e.g., teacher collaboratives, case study discussion groups,
apprenticeships) that teachers can access during free periods or after
school. TAPPED IN will also offer services such as library facilities,
bulletin boards, and e-mail. Finally, TAPPED IN is a research project
intended to investigate the ways in which text-based, immersive
environments initiate and sustain the growth of professional
communities.

Online professional communities are exemplary knowledge-building
communities. One important difference between professional communities

46

and knowledge-building communities organized as school activities for
children is that the adults have their own goals. Too often, children have
educational goals imposed upon them. It would be beneficial to work
towards helping students to identify their own learning objectives.
Knowledge-building communities for children can learn a great deal from
professional communities for adults.

2.4.4 Real-Time Writing
One of the earliest uses of a text-based chat system as an educational tool was
with deaf students. At Gallaudet University in 1985, Trent Batson and Steve
Lombardo taught a class entirely on the computer. They called this
experiment “English Normal-Form Instruction”. For young deaf children,
English “is an experience largely limited to the classroom and lacking real-life
connections”(Batson 1993). There is no mutual reinforcement between the
written and the spoken word, as there is for hearing children. Using a real-
time chat system in the classroom, Batson and colleagues found that they
could make writing come alive:

With a computer network and software that allows for interactive
writing, deaf students can use written English not simply to complete
grammar exercises or to produce compositions to be evaluated, but also
to spontaneously communicate ideas that are meaningful to them with
a community of other writers who are interested not in evaluating, but
rather in understanding what they are saying. Written English can be
used to joke and play with language, to discuss literature or serious
social issues, to brainstorm ideas or collaboratively produce a draft for a
paper, and to critique writing in progress. In short, written English can
be used in many ways that oral English is used by hearing people.
(Batson 1993)

The results of this experiment were so successful that writing teachers
realized it would be beneficial for hearing students as well. Chat systems are
particularly useful for helping novice writers to understand the notion of
audience. Writing online, it becomes quite clear that you are writing for
someone and need to tailor your writing to that audience. Advocates of this
approach to writing instruction re-appropriated the acronym ENFI to mean
“Electronic Networks for Interaction” (Bruce, Peyton et al. 1993).

A large community of teachers and researchers is continuing to explore the
educational use of chat systems and MUDs for writing classes. A group of
researchers at The University of Texas at Austin began developing their own
software, and soon spun off a company, The Daedalus Group, to continue its
development. Their product, Daedalus Interchange, is in use in a large
number of schools. The computers and writing community enthusiastically
uses the Internet both as an educational environment for their students, and
to help themselves reflect on their practice as teachers.

47

No one would ever think to teach writing by lecturing to students—writing
teachers have students write. While in other fields educators are struggling
to increase the emphasis on learning by doing and learning through design,
in writing instruction these principles have long been absolutely accepted.
However, that does not mean that all pedagogical questions are answered. If
learning should be self-motivated and self-directed, what do you do with
students who don’t want to learn? Does feedback from peers help students to
become better writers, or do egos just get in the way? What power
relationships exist in the classroom and how do those affect the learning
process? Should we encourage students to find their own expressive style
(because that is more personally meaningfully), or to conform to society’s
standards (because that is more economically empowering in the realities of
the job market)? Who decides what constitutes “good writing”? The
computers and writing community is ahead of most others communities of
teachers and researchers in their exploration of many critical questions.

2.5 Technological Samba Schools
The approaches discussed so far have been focused to varying degrees on
information—delivering it, retrieving it, and sharing it. This chapter is
organized roughly in order of decreasing emphasis on information and
increasing emphasis on community and the social context of learning. The
last category of projects I call “technological samba schools” (see Chapter 1), a
term introduced by Seymour Papert in his 1980 book Mindstorms (Papert
1980). In Papert’s vision of a technological samba school, learning is:

• self-motivated,
• richly connected to popular culture,
• focused on personally meaningful projects,
• community based,
• an activity for people of all ages to engage in together,
• life long—experts as well as novices see themselves as learners, and
• situated in a supportive community.

Projects like The Computer Clubhouse at The Computer Museum in Boston
seek to create samba-school-like communities. Kids can drop by The
Computer Clubhouse after school to work with a variety of educational
technologies. Mitchel Resnick and Natalie Rusk contrast The Computer
Clubhouse to other projects providing community access to computers:

“The Computer Clubhouse (organized by The Computer Museum in
collaboration with the MIT Media Laboratory) grows out of this
tradition, but with important differences. At many other centers, the
main goal is to teach youth basic computer techniques (such as
keyboard and mouse skills) and basic computer applications (such as

48

word processing). The Clubhouse views the computer with a different
mindset. The point is not to provide a few classes to teach a few skills;
the goal is for participants to learn to express themselves fluently with
new technology, becoming motivated and confident learners in the
process. At the Clubhouse, young people become designers and
creators—not just consumers—of computer-based products.
Participants use leading-edge software to create their own artwork,
animations, simulations, multimedia presentations, virtual worlds,
musical creations, Web sites, and robotic constructions.” (Resnick and
Rusk 1996)

Real samba schools and The Computer Clubhouse are physical places. People
gather there both to work on their projects and to socialize with one another.
The architectural space serves as a community center for the members,
providing a context for both organized activity and more casual interaction.

However, not all children live near a place like The Computer Clubhouse.
Even for those who live near by, not all parents are willing to take the time to
bring their children there. Only a few institutions (typically community
centers and housing projects) have the resources to bring kids to The
Clubhouse after school on buses. As a result, most of the members are high-
school-age children who can get there via public transportation. Logistical
issues have unfortunately made the clubhouse less accessible to younger
children.4

The development of the technology of “virtual spaces” has the potential to
make the idea of a technological samba school more feasible. While virtual
interaction can never replace face to face interaction, network technology can
be used to create communities in which people have meaningful inter-
relationships, and many of the benefits of samba schools become possible.
Like physical spaces, virtual spaces can provide a context for interaction
among groups of people. While children don’t need to travel to get to a
virtual space, they do need access to a computer with a net connection. One
factor limiting participation is unfortunately replaced by another.

It’s worth noting that physical and virtual clubhouses are not mutually
exclusive approaches. Many kids at The Computer Clubhouse participate in
MOOSE Crossing. This gives them an opportunity to interact with other
children not from their immediate geographic area. Interaction among
members in the room is complementary to interaction with children at
remote locations (see Chapter 5).

4This was the main reason that I chose to run a MOOSE Crossing after-school program at The
Media Lab rather than at The Computer Clubhouse—I wanted to work with elementary and
middle-school-aged children, rather than high-school students.

49

Calling a networked communications technology a “place” is a metaphor that
helps to give participants shared expectations for how to interact with that
technology, and with one another, mediated by that technology. When most
people approach a computer running a piece of software, their expectations
are shaped by the genre of software they are about to use. Is it a drill and
practice program? Is it a spreadsheet? Is it a game? Calling a software system
a “place” gives users a radically different set of expectations. Places have
strong cultural associations. People are familiar with a wide variety of types
of places, and have a sense of what to do there. Instead of asking “What do I
do with this software?”, people ask themselves, “What do I do in this place?”
The second question has a very different set of answers than the first.
Metaphorically calling an electronic communications medium a place lets
people use their knowledge of places to help understand that
communications medium. A spatial metaphor helps to create a context for
the mix of playing, socializing, and learning desirable in a technological
samba school.

MUDs are particularly well suited to creating technological samba schools
because of their spatial metaphor, and the ways they can facilitate expressive
use of words and programs. The virtual world itself is created by the
members. The activity of the community becomes creating the community
itself.

However, not all MUDs share qualities with samba schools. Most are violent
adventure games that share few of these qualities. Even “educational” MUDs
usually don’t fit into this paradigm. There has been an explosion in the
number of educational MUDs5, and they represent a wide variety of
pedagogical traditions. Many educational MUDs have virtual classrooms
with virtual desks and virtual whiteboards where students politely raise their
virtual hands to ask questions during virtual lectures. This approach is
closest to distance education (discussed in Section 2.2). Other educational
MUDs are experimenting with creating virtual science simulations. Such
simulations could be used in a variety of ways which match with different
pedagogical traditions; however, the development of this technology is in
such an early state that it’s not clear if any pedagogical goals are being met at
all. More research is needed to evaluate its potential.

Unfortunately, MUDs are currently being used in some projects that would be
better off without them. An old sophomoric joke is to take the fortune from
a fortune cookie and add the words “in bed” after it. Some researchers today
seem to be taking their research proposals and adding the words “in a MUD”

5There are many lists of educational MUDs on the net, but none of them is comprehensive or
entirely up to date. The list I have found most useful is maintained by Daniel K. Schneider
<Daniel.Schneider@tecfa.unige.ch> at:
http://tecfa.unige.ch/edu-comp/WWW-VL/eduVR-page.html

50

after them. This uncritical enthusiasm is unfortunate. MUDs and other
forms of virtual reality technology have educational potential when used in
the context of a solid pedagogical approach, and when used to take advantage
of the affordances of the particular technology being used. For example,
current MUDs afford the expressive use of words and computer programs.
This makes them well suited to language-oriented applications such as deaf
education, writing instruction, foreign language classes, and English as a
Second Language (ESL) (Bruce, Peyton et al. 1993). They are also well suited to
educational projects specifically about programming and other aspects of
computer science. There is not yet suitable support for science simulations in
MUDs in either the technology or the pedagogy—the technological
infrastructure needed is not yet developed, and there are many unanswered
pedagogical questions about the value of learning through simulation versus
through “real” experimentation.6 Technology can be a catalyst for meeting
educational goals if the goals are put first in the design process, and
technology is used appropriately to help meet those goals. All too often, the
design process proceeds in the other direction, starting with what the
technology can do and searching for an application.

TECHNOLOGICAL SAMBA SCHOOLS

• The Computer Clubhouse7

http://www.tcm.org/resources/

• MicroMUSE
http:/ /www.musenet.org/

• MOOSE Crossing
http://www.media.mit.edu/~asb/moose-crossing/

• Pueblo (formerly MariMUSE)
telnet://pueblo.pc.maricopa.edu:7777

Table 2.4: “Technological Samba Schools”

Two MUD projects that stand out as samba-school-like are MicroMUSE and
Pueblo (formerly MariMUSE). In both of these communities (as in MOOSE
Crossing), children are encouraged to learn in a constructionist fashion—
through working on self-selected, personally meaningful projects. This

6This question is currently being addressed by Mitchel Resnick, Robert Berg, Michael Eisenberg,
and Sherry Turkle in their NSF project “Beyond Black Boxes: Bringing Transparency and
Aesthetics Back to Scientific Instruments” (Resnick, Berg et al. 1997).
7Unlike other projects highlighted in this chapter, the Computer Clubhouse is not an Internet-
based activity.

51

generally consists of extending the virtual world by making new places and
objects.

MicroMUSE, the oldest and largest MUD for kids, has been open since 1990
and as of January 1997 had 800 members, of whom approximately 50% were
children (Kort 1997). MicroMUSE was originally founded by then college
student Stan Lim (Brown 1992; Kort 1997). Researcher Barry Kort stumbled
on the community early in its development, and helped to shape its
educational mission. MicroMUSE is also called “Cyberion City,” and is
modeled as a city of the future. Navigation around the world is done in
radial coordinates. The virtual world contains a number of science
simulations, and scientific themes are emphasized.

MariMUSE opened originally as a summer camp activity for children
organized by Phoenix College researchers Billie Hughes and Jim Walters.
They chose to work with students from Longview Elementary, a school
whose population is 34% Hispanic and 21% Native American. A significant
portion of Longview students have limited English proficiency. Over the
summer of 1993, Hughes and Walters brought children from Longview to
Phoenix College for two summer sessions, each three-weeks long. Children
used MariMUSE for three hours each day. The MUSE activity was particularly
successful with the “at risk” students participating, several of whom appeared
to develop a greater confidence in their abilities and interest in learning that
carried over into the following school year (Hughes and Walters 1995;
Hughes 1996; Hughes and Walters 1997).

Results from this initial summer program were sufficiently encouraging that
Hughes and Walters arranged for net access to be installed at the Longview
school, and the students continued to participate over the school year. The
camp program was repeated the following summer, and the activity was
increasingly integrated with the curriculum over the next school year
(Hughes and Walters 1997). Around January 1995, Phoenix College received
an ARPA grant jointly with researchers at Xerox PARC, including Danny
Bobrow, Vicki O’Day, and Vijay Saraswat. The virtual world was moved
from the MUSE software to MOO, and renamed Pueblo. As of January 1997,
1700 people total had participated in Pueblo at one time or another. This
number includes occasional visitors, and people who have ceased their
participation. Roughly 475 children were active members as of that date
(O’Day 1997). Throughout its existence, Pueblo’s designers have continued to
cultivate an open, student-centered learning environment (O’Day, Bobrow et
al. 1996).

Both MicroMUSE and MariMUSE/Pueblo see learning through science
simulation as part of their mission, as well as learning through writing and
programming the virtual world. For the reasons described above, I find the
latter approach more promising. Both the MUSE and MOO software are

52

unfortunately difficult to use, and this has limited what children have been
able to accomplish technically. Language design issues are discussed in detail
in Chapter 3. MOOSE Crossing differs from these projects in the new
technology developed for the children, and in the explicit application of the
samba-school metaphor to guide its design process. The rest of this thesis
discusses MOOSE Crossing as a learning environment in detail.

53

3. Designing Enabling Technologies: The MOOSE Language and
the MacMOOSE Client
3.1 The Need for a New Language
In March of 1994, I had the opportunity to visit the MariMUSE project in
Phoenix, Arizona. The previous summer, Billie Hughes and Jim Walters of
Phoenix College had led a summer program where children from Longview
Elementary School used a MUSE intensively, three hours a day for two three-
week sessions. Seven months later, the children were still excited about their
projects, and regretted not having as much time to use the MUSE as they had
in the summer. They had done some impressive creative writing and
building of rooms. One fifth-grade girl built a palatial mansion with flowers
in each room. In real life, she lives in a homeless shelter. A Native-
American boy whom teachers had considered at risk of dropping out of
school built an airplane hangar. To get more realistic detail, he had read
every book about planes in his school library, and asked the librarian to order
more (Walters and Hughes 1994).

The children had clearly had powerful learning experiences. But something
was missing. The planes didn’t fly. The flowers couldn’t be sniffed. None of
the objects had any behaviors. None of the children I met had done any
programming. One girl had made a horse with a “ride” program, but it didn’t
work. I sat down to look at it with her–why don’t we try to fix it, I asked? She
replied that an adult had written the program for her, and she had no idea
how it was supposed to work.

It’s not a surprise that the children were having difficulties. The MUSE
language is awkward at best. Suppose that you have created an object called
Rover and you would like it to wag its tail when you pet it. In MUSE, you
would write:

@va Rover=$PET ROVER:@pemit You pet Rover.; @emit Rover wags his
tail.

The name of the object can not be abstracted, but is treated as a fixed string. If
you would like to be able to type “pet dog” in addition to “pet Rover,” you
would need to add a second command:

@vb Rover=$PET DOG:@pemit You pet Rover.; @emit Rover wags his tail.

In MUSE, each object has twenty-six lettered registers, va through vz, and a
set of special-purpose, functional registers. Not only must all programs be
stored on these registers, but also all data.

Now suppose you decide you want Rover to be female instead of male. To
change the “his” to “her” you could retype the two lines above, or use the
@edit command:

54

@edit Rover/va=his,her
@edit Rover/vb=his,her

The syntax is obscure, and these substitutions are prone to error. In a more
complex text, it’s easy to pick too short of a target string to substitute and end
up changing the wrong word (for example, changing “this” to “ther” when
you meant to change “his” to “her” later on in the line.) The interface to
working with the language is as much a barrier as the language itself.

Some of the children participating in MicroMUSE1 and MariMUSE have
indeed written programs. Here’s a sample program written by an eleven-
year-old girl on MariMUSE using the character name “Ginji” (Walters and
Hughes 1994):

tardis You see a unusual looking stalagmite. Type 'enter tardis to be
able to use it! Owner: Ginji Credits: 1 Type: Thing Flags: haven
enter_ok visible quiet

Attribute definitions: scan return #13711.return:@fo #13711=@tel
#13035;@remit here=You see the Tardis disappear!

Va:$tower:@fo #13711={@tel #1722;@wait 15=@tr me/return}
Idesc:You are inside of the tardis.
Pennies:1 #13711.scan:$-scan:@pemit [v(n)]=> Scanning Location

[loc(me)];@pemit [v(n)]=>REPORT:;@pemit [v(n)]=[string(-
,77)];look;@pemit [v(n)]=[string(-,77)]

Listen:*
Vb:$stable:@fo #13711={@tel #12375;@wait 15=@tr me/return}
Vc:$recycle:@fo #13711={@tel#13073;wait 15=@tr me/return}
Lock:Ginji(#11059Pvn)
Contents: Avalon(#12Pevc)
Home:Gingi's Mystery Cave(#13035RHvJ)
Location: Gingi's Mystery Cave(#13035RHvJ)

Given this cryptic and obscure syntax, it’s not a surprise that very few of the
participants wrote programs. Good software can serve as a scaffolding to
support children’s learning experiences (Pea 1993; Guzdial 1994). Poorly-
designed software acts more like a road block.

In early 1995, Phoenix College and Xerox PARC jointly received a grant from
the Department of Defense Advanced Research Projects Agency (DARPA).
The MariMUSE project was renamed Pueblo, and the software was changed
from MUSE to MOO (Curtis 1993). MOO is significantly more user-friendly
than MUSE, and by far the best of the many currently available MUD
languages—users who are not trained programmers have been able to

1MicroMUSE is the oldest and largest MUD for kids. It was founded by Stan Lim in 1990, and
leadership of the project was soon taken over by Barry Kort (Brown 1992). Its official charter
states that “MicroMUSE is chartered as an educational Multi-User Simulation Environment
(MUSE) and Virtual Community with preference toward educational content of a scientific and
cultural nature” (ftp://ftp.musenet.org/micromuse/Mission.Statement).

55

achieve more in MOO than in any other MUD language. A script to pet
Rover in MOO looks like this:

@verb Rover:pet this none none
@program Rover:pet
player:tell(“You pet Rover.”);
this.location:announce_all(“Rover wags his tail.”);
.

In MUSE, to be able to “pet dog” as well as “pet Rover,” we needed to
duplicate the program. In MOO, we can simply add “dog” as an alias for
Rover. The word “this” in the verb declaration is an abstraction that the
parser will match to any valid name for the object.

MOO, unlike MUSE, is a full programming language in which it’s possible to
undertake large, complex projects. Its object-oriented nature means children
can quickly create something satisfying by making a new object that inherits
from an existing parent object, and then customize it and add new
functionality. You can create a dog by making something that inherits from
generic dog, and then program it to do new tricks. Billie Hughes highlights
this as the main benefit she has observed in moving from MUSE to MOO:

Our children do not do lots and lots of programming though many do
create simple verbs. We actually found teaching verbs to be much
easier than we anticipated. One 6th grader took a "generic pet" and
modified the code to create a generic horse. She then set this fertile
and others could adopt horses.

What we have found particularly exciting about Pueblo is the
inheritance/parenting/child features of an object oriented language.
Hobbes [Kim Bobrow, a researcher working on the project] was able to
program cats, dogs, and cars that were especially popular. Kids also
loved food and clothing items. MOO let them easily create these type
of objects and change the messages on the object to personalize them
(Hughes 1996).

While MOO is a significant improvement over MUSE and other MUD
languages, it is still too complicated for most children. Its syntax resembles a
cross between C and Pascal, and any deviation from that rigidly prescribed
syntax triggers an often cryptic error message. Difficult concepts are required
to write even the simplest programs. Something more user-friendly is
needed if children are to master it.

The MOOSE language was designed to be forgiving. For example, it’s possible
to forget the quotes in programs. This only causes problems if the unquoted
strings contain words used as operators in MOOSE (like “and” and “or”). In

56

that case, MOOSE is able to detect the problem and warn the user. Table 3.1
presents the same program in MUSE, MOO, and MOOSE.

MUSE
@va Rover=$PET ROVER:@pemit You pet Rover.; @emit Rover wags his

tail.
@vb Rover=$PET DOG:@pemit You pet Rover.; @emit Rover wags his tail.

M O O
@verb Rover:pet this none none
@program Rover:pet
player:tell("You pet Rover.");
this.location:announce_all("Rover wags his tail.");
.

MOOSE
on2 pet this
 tell player "You pet Rover."
 emote "wags his tail."
end

Table 3.1: Petting Rover in Three Languages

Jack (boy, age 12) is the only child to date to have significant MOO experience
before joining MOOSE Crossing. A transcript of a conversation in which I
asked him to compare the two appears in Table 3.2. (Jack was aware that he
was talking to the designer of MOOSE Crossing, and his comments must be
seen in that light.)

3.2 The Design of the MOOSE Language
Work on the MOOSE Crossing project began in September of 1992. It was
referred to as “The MUD for kids I’m working on,” until I came up with
name MOOSE in June 1993. The client implementation was begun in 1992,
and the server/language in November 1993. Children first used MOOSE in
October 1995, as part of the Media Lab’s 10th birthday celebration.

The core of the MOOSE language was designed in a series of weekly meetings
between myself and my advisor, Professor Mitchel Resnick. MIT
undergraduates Albert Lin, Trevor Stricker, and Austina Vainius helped
design many of the finer details in innumerable impromptu discussions at
my white board. Pavel Curtis, Randy Farmer, and Brian Silverman

2With the Epistemology and Learning Group’s strong roots in the Logo community, it was
tempting to start programs “to tickle” rather than “on tickle”. However, in general, in MUDs
an object holds scripts for things that can be done to it. A bear’s tickle script enables people to
tickle the bear, not the bear to do the tickling! This is better conveyed by “on” rather than
Logo’s traditional “to”.

57

contributed design ideas on visits to the lab, and via email. Jon Callas and
Dean Tribble also contributed ideas via email.

Amy says 'so I wanted to ask you... now that you've been here a
while, what do you think of coding in MOOSE versus MOO?'

Jack says, 'moose is sooooo much simpler!'
Jack says, 'easier and a lot more fun'
Amy says 'in what ways is it simpler?'
Jack says, 'well, instead of this.location.announce_all it is just

'announce''
Amy nods
Jack says, 'and i can make my own scripts, not just copy lines of a

help file and changing them'
Amy says, 'cool!'
Amy says, 'did you notice the difference in how property references

work?'
Jack says, 'yes, I also like how the edit script buttons and help

buttons are seperate, easy windows'
Amy nods and listens
Amy says, 'anything you don't like?'
Jack says, 'I don't like when i crash every time i get red letters in

programing a script.'
Amy laughs. "Yeah, that was awful! But you know we fixed it,

right?"
Amy says, 'the new version of MacMOOSE doesn't do that'
Jack says, 'wow! I will have to convert!'
Amy says, 'definitely!'
Amy says, 'anything else you don't like?'
Amy says, 'or that you would change?'
Jack says, 'say where do i find the new version? hmm... somthig else

i dont like...'
Jack says, 'i can't think of anything else!'
Amy says, 'the new version is on my web page where you got the first

version'
Amy smiles
Amy says, 'http://asb.www.media.mit.edu/people/asb/'
Amy says, 'Does anything other than the software seem different to

you?'
Jack says, 'hmm, i have been to many many muds, and moos, the only

one that is close to comparing is mny old moo, du. But this is
diffrent then that because of the @ commands...'

Jack says, 'and the fact that is is for kids'
Jack says, 'is is = it is'
Amy nods
Amy says, ‘do the people seem any different?’
Jack says, 'more friendly, i seem to interact with them better...'

Table 3.2: Jack’s Opinion of MOOSE versus MOO

MOOSE is built on top of MOO, and many aspects of its design are reacting to
MOO, modifying it based on experience with the design of Logo and StarLogo
in particular. Several principles emerged in the process of designing the
language (See Table 3.3). I’ll discuss each in turn.

58

Design Principles:
• Have a gently-sloping learning curve.
• Prefer intuitive simplicity over formal elegance.
• Be forgiving.
• Leverage natural-language knowledge.
• Avoid non-alphanumeric characters wherever possible.
• Make essential information visible and easily changeable.
• It’s OK to have limited functionality.
• Hide nasty things under the bed.

Table 3.3: Design Principles for the MOOSE Language

Parts of this chapter critique the design of MOO in detail. It should be noted
that MOO is a production-quality, full programming language. MOOSE is
quirky and incomplete. It continues to be extended and modified based on
feedback from children. MOOSE is also roughly an order of magnitude
slower than MOO. My goal in this critique is to bring forward design issues of
broader interest—not to be critical of MOO.

3.2.1 A Gently-Sloping Learning Curve
For a programming language to be usable by young children, simple things
need to be simple. In the earliest design meetings about the MOOSE
language, we focused on how to make the learning curve as gentle as possible.
Our first design decision, and one from which many other design decisions
followed, was to make the programming language and the command line
language as similar as possible. That way, kids can try a command out and
put it in their program if it works. In MOO, the command line and
programming languages are quite different. For example, in both MOO and
MOOSE, to take an action (like smile or wink), you use “emote”. If I type
“emote laughs” everyone in the room sees “Amy laughs”. Emote is typically
one of the first commands that people on MUDs learn. In MOOSE, you can
use that same command-line command in your program. Objects as well as
people can emote. For example, Chester does this on his “computer” object.
Chester is seven years old, and one of the youngest children to use MOOSE
Crossing to date. When you type “eat computer” it tells everyone in the
room “computer gobbels up a disk happoly.” Here is the program:

on eat this
 emote " gobbels up a disk happoly."
end

In MOO, this same program would be:

59

this.location:announce_all(this.name + “ gobbels up a disk
happoly.”);

In MOOSE, children can learn commands to use in conversation and then
use those same commands in their programs. In MOO, an entirely new set of
commands with different syntax needs to be learned for even simple
programs.

Making the programming and command line languages the same helps more
advanced MOOSE programmers as well as novices. For example, a child
learning to use lists can try out list manipulation commands at the command
line first seeing exactly how they work before trying to make them function in
the context of a longer program.

The benefits of giving programmers immediate feedback can be traced back to
the first interactive programming language, JOSS (Baker 1981). JOSS is cited
as an influence by the developers of most early languages targeted at non-
experts, including Logo (Feurzeig 1996), Smalltalk (Kay 1996), and BASIC
(Kurtz 1981). There is no concept of a “command line language” distinct from
a “programming language” in most interactive languages. The distinction
was added in some MUD languages like MOO and LPC (the C-like language in
which LPMUDs are constructed) to make a distinction between
metaphorically acting in the virtual world and programming it.3 This allows
taking actions to be more natural-language-like, while programming looks
more like typical programming languages. However, it adds a significant
hurdle for people trying to learn to program, essentially removing the
benefits of having an interactive language.

The similarity between the command line and the programming language is
just one example of the many ways we tried to make the slope of the learning
curve gentle. This principle was central throughout the process of language
design.

3.2.2 Intuitive Simplicity Versus Formal Elegance
The second and perhaps most important design decision was to favor
intuitive simplicity over formal elegance. In “Boxer: A Reconstructable
Computational Medium,” Andy diSessa comments that to create a popular
medium, “a computer scientist’s or a mathematician’s measures of simplicity
are simply not an issue. A better criterion is accessibility to a seven-year-old
child” (diSessa and Abelson 1986).

3In the MUSE language, the command line and programming languages are identical. However,
the integration of support for their distinct requirements is awkward. For example, to give
something to someone in MUSE, you type “give person=object.” In MOO or MOOSE, you “give
object to person.” More sophisticated parsing in MOOSE makes a smoother integration of
command-line and programming language requirements possible. However, there is a trade-off:
MOOSE’s pattern-matching algorithm makes it substantially slower than MUSE.

60

There are compelling arguments in favor of paying attention to formal
elegance. The idea is that through mastering some perhaps initially
problematic construct, students will gain access to a way of thinking that will
deepen their understanding in the long run. However, the problem arises:
what happens if children never master the construct? Furthermore, does that
transfer to broader concepts really occur, and are the broader concepts people
are striving for really the right ones to be concerned about? What is this
“formal elegance”? I agree with diSessa that the notion of elegance is a
byproduct of an adult aesthetic, and largely irrelevant to children’s needs.

The design of a language is primarily about tradeoffs. Given a choice between
elegance and intuitiveness, we resolved to lean as far as possible towards
intuitiveness. If you can have both, that’s preferable; however, sometimes it’s
necessary to chose. Consider the following difference between Logo and
StarLogo. Table 3.4 shows how you define a variable foo, set its value to 3,
and retrieve the value of that variable in Logo, StarLogo, and MOOSE.

Language Set Variable Access Value
Logo make "foo 3 :foo

StarLogo set foo 3 foo

MOOSE set foo to 3 foo

Table 3.4: Variables in Three Languages

In Logo, the quote before the variable definition makes it clear that foo is a
symbol, to which we are assigning a value. The colon indicates that we are
accessing the value of the variable and not merely referring to the symbol.
The semantics are very clear, and highlight some underlying computer-
science concepts. However, in years of working with children with Logo,
Mitchel Resnick has found that the quote and colon are some of the most
common causes of difficulty and error for children. It’s not clear whether the
broader concepts about symbols and quoting are commonly learned, but it is
clear that these syntactic requirements slow down children’s progress on their
Logo projects (Resnick 1993).

In the StarLogo implementation , these concepts are a bit blurred. The
technical explanation is that “set” is a special form that doesn’t require
quoting of its first argument. On declaring a new variable, an accessor
function by the same name is automatically created which returns the value
of that variable. This technical explanation is almost certainly lost on
children using the language—they don’t think about things like what a
symbol is because there is no need to. There is less special syntax to learn and
fewer things that can easily be gotten wrong (Resnick 1997).

61

The MOOSE version is almost identical to the StarLogo version. The added
preposition “to” is consistent with MOOSE’s natural-language-like style. This
has the advantage that it draws on children’s existing natural-language
knowledge. It has the disadvantage that it may mislead them that more
English-like commands work than actually do.

Which of these styles is preferable? In theory, you can make a case for any of
them. However, working with children in practice, it seems clear that the
Logo style is idealistically naive. The StarLogo and MOOSE approaches let
children accomplish more. The children are better able to express their ideas,
and therefore create more complex final products.

A cynic might ask, “If we’re going to make things as simple as possible for the
children, how about giving them an expert system that would create the
entire project for them? Isn’t the real educational value in doing the hard
work of understanding some not immediately intuitive concepts?” To this I
would reply, the educational benefit is not in the sophistication of the
product; it is in the ability to express and refine a complex idea. If the child
gets stalled early on by syntactic difficulties, the entire learning experience can
be stalled. If the child is able to express ideas fluently, the child’s learning
experience will progress as the complexity of his or her project progresses.

These same issues emerged in the design of Microworlds Logo. In 1991, Logo
Computer Systems International designed a new version of the Logo
programming language called Microworlds Logo, and members of the Media
Lab’s Epistemology and Learning Group met several times to critique its
evolving design. A heated debate ensued at MIT and in the broader
community about the inclusion of paint tools. When most people think of
children programming in Logo, they think of children learning geometry
through drawing simple shapes. To make a square of size 100, you’d need to
type: “repeat 4 [fd 100 rt 90]”. The child’s desire to make a picture provides a
context that gives certain geometrical concepts new relevance. In
Microworlds Logo, the child can simply select a paint tool from the menubar
to draw a square or rectangle. Purists argued that this was robbing Logo of
powerful potential for learning. If Logo were to be transformed into a simple
paint program that would indeed be the case. Paint programs generally afford
artistic learning experiences but not mathematical ones.4 However,
Microworlds is not merely a paint program—it is still the Logo programming
language, and compared to other versions of Logo adds a series of features
(buttons, fields, multiple turtles, multiple changing turtle shapes, etc.) that
afford whole new categories of projects: simple animation and video games.

4Noteable exceptions are Mike Eisenberg’s SchemePaint system (Eisenberg 1995) and David
Shaffer’s work with Escher’s World (Shaffer 1996).

62

Paula Hooper worked with children at Paige Academy in Roxbury,
Massachusetts for six years. For the first two years, her students used
LogoWriter, a traditional version of Logo that works on Apple IIgs
computers. The school then got Macintosh computers. For just a few weeks,
the computers weren’t equipped with Logo, but did have copies of Kidpix, a
drawing program made by Broderbund Software. The students became very
involved with making pictures in Kidpix. Soon after, the school received
copies of Microworlds Logo. At first, Hooper had difficulty getting the
children to stop drawing pictures in Kidpix and start working with
Microworlds. However, she reports that once they realized what they could
accomplish with Microworlds Logo, the children chose it over the paint
program. Hooper worked with the same children using Microworlds for the
following four years. The Paige Academy students are allowed to work on
projects of their own choosing. Most use Microworlds to tell animated
stories, and make their own video games. They have become enthusiastically
involved in making much more complex projects than they were ever able to
make in LogoWriter. This is of course partly because they are now older;
however, Hooper also believes the affordances of the tool made much more
exciting projects possible for them. They are learning less about geometry, but
more about computational ideas (like procedural abstraction), and most
importantly more about the process of designing and following through on a
large, complex project. In LogoWriter, Hooper notes that even the simplest
project was a substantial undertaking. The formalistic aesthetic that children
should be forced to make squares out of combinations of ninety-degree turns
is misguided. While some simple things (like making circles and squares) are
done automatically for you in Microworlds, this makes more complex
projects possible. The richest learning occurs through the process of
designing a complex project that the student finds personally compelling
(Hooper 1997a; Hooper 1997b).

An example of a trade off between formal elegance and intuitive simplicity in
MOOSE is the question of quoting strings. In a MUD, it’s natural not to quote
most commands at the command line. You want to type:

say Hi there! How is your project coming?

Not:

say “Hi there! How is your project coming?”

However, we wanted to permit a more complicated syntax at the command
line than is normally allowed in MUDs:

say “Today’s secret word is ” + my secret_word

63

You wouldn’t normally use property references like that in conversation, but
you might want to use them in programs. Therefore, you should be able to
try them out at the command line.

Prohibiting unquoted strings at the command line would enforce a neater
style, and help children to understand the notion of quoting. If we made that
decision, the concepts would be clear: words always go in quotes; commands
and variables don’t. That would be the most elegant solution. But frankly,
it’s a hassle—no one really has spontaneous text-based conversations that
way. And do you really want to start giving kids error messages every time
they forget a quote?

The opposite extreme, never requiring quotes, causes implementation
problems. In particular, we chose to make certain English words behave as
operators in MOOSE, for example: is, are, and , or. How could you tell
whether someone wanted to test equivalence or just use the word “is”?

We arrived at a complex compromise. At the command line, commands can
be in one of two styles:

say In style one, the entire string is unquoted. Since the strings
around the operators are not quoted, the parser concludes that
this must be an unquoted string, and leaves it alone.

say “In style two, the strings are quoted, and ” + my adverb + “
combined together.”

In the first example at the command line, if you forget a plus or a quote, it is
no longer a well-formed compound expression, and the system will treat the
entire expression as an unquoted string.

In programs, you can get away with having unquoted strings, if they contain
no infix operators. If they do, you will get a warning message when you
compile them. An example appears in Figure 3.1. Feedback warning you
about the problem appears in red in the feedback pane of the script editor
window, immediately under your code. The system’s ability to warn the user
of potential problems helps avoid the problem of misunderstandings
common to “do what I mean” (DWIM) systems.

The details of this solution may sound complicated, but to the user it
amounts quite simply to: It’s better to use quotes, but you can often get away
without them.

In use to date with children, on the whole it is the younger children (nine
years old and younger) who tend not to use quotes in programs. The decision
to allow sloppy quoting has made MOOSE accessible to a wider range of ages
and ability levels. The fact that the older children (ages ten to thirteen) tend

64

to quote their strings supports the fact that this sloppiness has led to no
fundamental conceptual confusion.

Figure 3.1: Unquoted Strings in a MOOSE Program

After reading a draft of this chapter, Danny Bobrow suggested that it would be
desirable to have the system volunteer to correct the program. Instead of
simply allowing quoted strings, the client could prompt the user asking
whether they should be quoted. This might have significant pedagogical
advantages. Making this approach successful would require the suggestions
to have a high level of accuracy, and never to be repeated if rejected.
Otherwise, the system’s active interventions could be annoying. Bobrow’s
proposal merits further exploration in future systems.

3.2.3 Be Forgiving
MOOSE’s tolerance of unquoted strings illustrates another important design
principle: be forgiving. It’s very often possible to anticipate certain common
user errors and adopt a “do what they meant, not what they said” attitude.
Being forgiving about quoting has made MOOSE accessible to younger
children than would otherwise have been possible. In work with kids using
MOOSE to date, we’ve found that they often begin by not quoting strings, but
learn to do so as time goes on. Allowing unquoted strings in programs helps
them complete their initial projects more easily. Success in those initial
projects helps to deepen their long-term involvement.

65

The disadvantage of this approach is that it sometimes makes it difficult to
give the programmer helpful error messages. For example, consider this
program:

set result to 3
say resilt

This MOOSE program will say the word “resilt” (note the typo) instead of
saying 3, the value of the variable “result”. In a language that doesn’t allow
unquoted strings, the second line could generate an error message because
“resilt” is undefined. MOOSE assumes “resilt” is an unquoted string.
However, MOOSE is able to give somewhat better feedback to this error:

set result to 3
say “The answer is ” + resilt

Compiling this program gives this feedback:

LOOK OUT!: Trying to apply operator '+' to unquoted string 'resilt'?
LOOK OUT!: In line: <3> say "The answer is " + resilt
LOOK OUT!: Strings in scripts should be quoted.
 : For example, use: "hi there" NOT: hi there
Script 'typo_example' programmed.
Done: 1 script compiled.

An unquoted string on its own is undetectable; however, applying an
operator to an unquoted string generates a warning message. The error
message is not ideal, but at least it alerts the user to the correct location of the
problem. The “do what they meant” design philosophy allows us to give
good feedback most but not all of the time.

3.2.4 Leveraging Natural-Language Knowledge
One potentially dangerous decision we made was to leverage off of children’s
natural language knowledge. For example, in MOO, property references are
of the form <object reference>.<property name> . MOOSE property
references use an English-like possessive notation. The possessive notation is
natural and children pick it up without having it explained to them. Their
natural language knowledge makes the use of property references easy.

66

MOO: <object reference>.<property name>
Examples: #99.age

#99.owner.name

MOOSE: <my/object’s/objects’> <property name>
Examples: my name

Ello’s name
Ello’s owner’s description
Snuggles’ description

Table 3.5: Property References in MOO and MOOSE

The first language to use English-like syntax in order to be more accessible to
non-professionals was COBOL. Jean Sammet, one of the designers of COBOL,
writes:

Although from the very beginning COBOL was concerned with
“business data processing,” there was never any real definition of that
phrase. It was certainly intended (and expected) that the language
could be used by novice programmers and read by management. We
felt the readability by management could and would be achieved
because of the intended use of English, which was a fundamental
conclusion from the May 1959 Pentagon meeting. Surprisingly,
although we wanted the language to be easy to use, particularly for
nonprofessional programmers, we did not really give much thought to
ensuring that the language would be easy to learn; most of our
concentration was on making it “easy to read” although we never
provided any criteria or tests for readability. (Sammet 1981)

In the design of MOOSE, we put as much emphasis on “learnability” and
“writeability” as in “readability.”

More than twenty-five years after the design of COBOL, the designers of
Hypertalk had similar goals and strategies. When asked about the language
ancestors of Hypertalk, designer Bill Atkinson replied “The first one is
English. I really tried to make it English-like” (Goodman 1988). Ted Kaehler,
another member of the Hypertalk design team, comments that “One principle
was ‘reads as English, but does not write as English.’ Like an ordinary
programming language, it depends on exactly the right syntax and terms”
(Kaehler 1996).

In designing MOOSE’s natural-language-like syntax, we drew most heavily on
MOO’s command-line language (Curtis 1993), but also borrowed directly from
Hypertalk. For example, MOOSE borrows Hyper Talk’s use of the variable “it”
to refer to the last value returned.

67

The risk of making a computer language like a natural language is that people
will assume more natural language constructs work than really do. On the
whole, this has not proved to be a problem. MOOSE commands have a
consistent syntax: each command begins with a verb. The arguments a
command takes are readily viewable with system commands like “examine,”
“which,” and “show.”

The slippery slope of natural language has proved to be a problem in only one
area: conditionals. While the syntax of most commands roughly follows a
simple “verb direct-object preposition indirect-object” pattern, the syntax of
the Boolean clauses of if, elseif, and while statements is much more
complicated. Most of the conditionals the kids have written so far have been
simple enough to pose few problems. But consider these lines (from a script
by me, the “teach” script on Generic Teachable Object):

if prop member_of my teach_locked and player is not my owner and not
player's admin

 tell player "Permission denied."
 return
endif

This does indeed have a specific syntax: clauses are separated by the
conjunctions “and” and “or”; individual clauses are usually of the form
<argument> <operator> <argument>, or simply <argument>. However, this
syntax is more complex than other MOOSE constructs; consequently, it’s
easier to start assuming arbitrary English statements will work.

The most common mistake we observed was for kids to put a “not” in the
wrong place. For example, they might write “A is not B”. This leads to some
potential confusion as to whether the negative applies to the element B or to
the clause. To clear this up, I made the compiler always assume a negative
applies to the clause—they presumably meant “not (A is B)”. Negating an
individual element is an advanced concept that I saw no advantage in
introducing. (It’s still possible to do so—you just need to use parentheses: “A
is (not B)”.) The second most common mistake was to add an extra “is.” For
example, they might write “item is member of list” instead of “item member
of list.” The words “is” and “member” are separate operators, and their
composition is nonsensical—the programmer clearly meant just to use the
“member” operator. The easy fix for this is simply to eliminate any instances
of “is” before another operator. This was easy to do in the compiler. Another
simple fix was to allow certain operators like “member_of” be written as
either one or two words. These technical improvements have greatly
reduced the number of errors kids encounter. However, it still remains
somewhat difficult to debug bad conditional expressions. This is an area in
which the language could be improved.

68

Over all, the similarity of MOOSE to natural language has proved to be a good
design decision. Kids often look at other kids’ programs and understand
them without having them explained. They are immediately readable. One
of the most common learning techniques I’ve observed kids using is to start
with a simple variation on another child’s program. Later they progress to
making increasingly original creations. This immediate understanding of
programs is a result of the language’s natural-language-like structure.

3.2.5 Avoid Non-Alphanumeric Characters
One of the easiest design decisions we made was to avoid non-alphanumeric
characters wherever possible. Kids aren’t familiar with them, and identifying
them and typing them pose problems. In particular, many commands in
MOO are preceded by the character @. The logic behind the @ command in
MOO is this: commands to the programming environment use @s;
commands that simulate taking actions in the virtual world do not. In
practice this rapidly breaks down. Many commands are user-defined, and not
every programmer understands or respects the convention. Furthermore,
whether a command is equivalent to taking action in the virtual world is not
always clear. For example, if you’re reading a political ballot on LambdaMOO
but the ballot object is not in the room but is defined system-wide, are you
reading it or @reading it? What about if you’re reading your MOO mail? The
former is “read” and the latter is “@read”. It’s hard to keep them straight.
MUSE also uses @s, but with a different rationale. In MUSE, commands that
have a side effect to change something in the database are preceded by an @.
This also is somewhat ambiguous. For example, walking around the virtual
world does not require an @, yet that does change something in the
database—your location. Teleporting on the other hand does require an @ in
MUSE. The very fact that the convention for when to use an @ varies
between languages also significantly contributes to the confusion. People
frequently use multiple environments, and may not realize that the
convention differs. We resolved this in MOOSE by eliminating @s
altogether.

One common problem for novice programmers is the tendency to confuse
using an equals sign for assignment and for equivalence. In MOOSE we
avoided this problem by using “set” for assignment (i.e. “set my age to 30”),
and English words for equivalence: is, are, isn’t, and aren’t. Other operators
are also converted to words. MOO’s operator “&&” becomes “and”; “||”
becomes “or”.

In addition to being unfamiliar and hard to type, non-alphanumeric
characters look “high tech.” Much of MOOSE is learned by looking at sample
programs. Letters are familiar to children, and less threatening. Programs
filled with special characters may tend to scare off new users by making
coding look hard.

69

In a visit to a classroom of “Title I” students (students who are more than two
years behind in their reading level) using MOOSE Crossing, I noticed that
those students had particular difficulty typing unfamiliar characters.
Characters that require the use of the shift key appeared to be particularly
problematic. While I eliminated most special characters from MOOSE, a few
are still used occasionally, particularly underscores. Observing the Title I
students, it was clear that this was a mistake. They will be removed in the
future. While they appeared to be struggling with simple reading and
writing, the special characters seemed to be an even bigger hurdle.

English words have every-day-use meanings that often make it easier for
them to understand and remember the computer meanings of those words.
Special characters usually don’t have those ordinary meaning, so their
computer meanings are more easily confusable. This became abundantly
clear with one special character we did include in MOOSE, single-quote (').
The two most commonly used commands in MUDs are “say” and “emote.”
They are used so often that it’s common in most MUDs to allow them to be
abbreviated as double-quote (") and colon (:) respectively. In MOOSE, we
wanted to avoid confusion between the abbreviation for say and quoted
strings, so we made the abbreviation be single-quote ('). One common point
of confusion for people new to MUDs is the distinction between saying
something and doing it. Contrast the following three commands:

A.
--> say down
You say 'down'

B.
--> 'down
You say, 'down'

C.
--> down
You climb down the rope to the platform.

Saying the word "down" is not the same thing as trying to actually go down,
changing your location in the virtual world. It's easy to see the different
between A and C above. It's harder to see the difference between B and C.
Here's an edited excerpt from a confusing afternoon when a class of twenty
students connected to MOOSE Crossing for the first time. Experienced users
Miranda (girl, age 10-11) , Rufus (boy, age 12), and Newton (teacher, male, age
41) came by to help the new users. Austina and I were also there. Not long
after all twenty students connected for the first time, this conversation
ensued:

Amy says, 'wow, quite a crowd!'
jj says, 'Who is Pumpernickle''
cj says, 'cj here'

70

Bill says, 'pumpernickel''
Miranda says, 'A dog'
Tim says, 'hi Tag'
Amy [to jj]: Pumpernickel is my dog. Try this: pet pump
Newton floats above the crowd, nervous and shy.
Rufus says, 'You guys can have dogs too.'
jj says, 'Can we pet him/her''
Miranda says, ''Yeah.'
Rufus says, 'It's up to Amy...'
Amy says, 'you can tickle her too'
Bill says, 'BeeBee''
jj says, 'pet Beebee''
Tag says, 'pet beebee'
isaac says, 'hi pet beebee''
Tim says, 'pet BeeBee''
Amy [to jj]: don't say it, do it. Don't put the ' in front
Bill says, 'pet BeeBee'''

BeeBee is their teacher’s virtual pet dog. Presumably, the students’ teacher is
suggesting they pet BeeBee. This doesn’t succeed for two reasons. First, they
are saying the words instead of taking the action by accidentally prefacing
their commands with a single quote. Second, BeeBee isn’t in the same room
in the virtual world as the students.

Rufus says, 'If anyone wants to see something cool, type 'enter
Sparky'.'

jj says, 'pet BeeBee''
[Rufus types: enter Sparky
[From Sparky III] Duggan wags his tail at Rufus.
Bill says, 'Sparky''
isaac says, 'sparky''
Miranda pets Pumpernickel.
Pumpernickel wags her tail and licks Miranda's hand.
Jermaine says, 'Hi Lara''
Tim says, 'enter Sparkey'
Amy says, 'don't put a 'say' or a quote in front of the word pet'
Alana sniffs Rufus curiously.
cj says, 'Bill what class are you in''
jj says, 'enter Sparky''
Miranda pets Pumpernickel.
Pumpernickel wags her tail and licks Miranda's hand.
Lara says, 'pet beebee'
Rufus says, 'type 'enter Sparky''
Miranda says, 'This is too confusing!'
Bill says, 'enter Sparky''
jj says, 'enter Sparky''
isaac says, 'sparky''
Austina goes home.
Alana follows after Austina.
Amy [to Bill]: don't put the ' or say in front of it. Type it just

like this: enter sparky
Rufus says, 'No! Type it on the keyboard!'
isaac says, 'look''
jj says, 'look''
Tag says, 'look''
Lara says, 'look''
Tim says, 'By austina''

71

Rufus says, 'Thank you Amy!'
Jermaine says, 'look''
[At this point, Bill gets it right and enters Sparky]
[From Sparky III] Duggan sniffs Bill curiously.
Bill You climb onto the main deck. 5

A number of things contributed to making this encounter confusing. The
sheer number of students was a significant factor. Their teacher had only
tried MOOSE Crossing a couple times herself. In fact, she was giving the class
incorrect instructions out loud, telling them to type commands both starting
with and ending with single quotes. (This led to the extra single quote at the
end of most things the new members said.) She told them to do this for all
commands, not just things they wanted to say. Once this misconception was
created, it was hard to correct, particularly since single quotes are used to
delimit ordinary conversation. When you give someone instructions on
what to do, single quotes wrap what you are saying. It therefore is difficult to
talk about when to use single quotes. The confusion persisted for some of the
students even when they returned for a second session the following week.
Perhaps the most important contributor to the confusion was the design
decision to allow the use of single-quote as a shortcut for the “say” command.
The teacher was giving the students explicit wrong directions; however, the
teacher herself might not have been confused if the command had been
clearer. Furthermore, even if the teacher had given them incorrect
instructions, the students would have been more likely to figure out what
was wrong if they had been using the English word “say” instead of an
ambiguous punctuation mark. All the students were using single quote, not
“say,” in this conversation. It's easy to understand how they came to type
these incorrect commands:

‘pet BeeBee’
‘look’
‘enter Sparky’

It’s harder to imagine them making the equivalent mistakes if they knew
only the “say” form:

say pet BeeBee
say look
say enter Sparky

New MOOSE Crossing members usually learn to use “say” first, and only
learn the single quote shortcut later. This significantly reduces the potential
for confusion. This level of confusion is not typical. However, it still
reinforces the broader point: non-alphanumeric characters are best avoided if
possible.

5Several lines were edited out of this transcript for clarity and conciseness.

72

3.2.6 Make Essential Info Visible and Easily Changeable
In some programming languages, for example C and MOO, information
about a function is stored separately from the code for the function itself.
This separation is confusing. While trying to fix a problem, users often find
that the information needed to fix the problem is not in front of them.
Remembering to check the information about the function (or property) as
well as its contents is a debugging strategy that most new programmers are
slow to master. It’s advantageous to keep essential information with the code
itself.

In particular, both MOO verbs and MOOSE scripts have arguments. In MOO,
these must be declared when the verb is declared:

--> @verb me:jump this on any
Verb added (8).

--> @verb me:jump this none this
Warning: Verb `jump' already defined on that object.
Verb added (9).

--> @verbs me
;verbs(#75) => {"enlist", "random_player", "hack", "words", "jump",

"jump"}

MOO argument specifications must be three items long (direct object,
preposition, indirect object), and the preposition choices are drawn from a
fixed set of alternatives (Curtis 1993). The special argument specifier “this
none this” is defined as meaning that the verb is not intended to be called
from the command line, but only from other verbs. Working with multiple
verbs of the same name is extremely difficult, because the interface has few
affordances for indicating which verb of a given name you mean. Listing the
code for a verb, you do not see its arguments. To see its arguments, you must
use a special command like “@show” or “@display”. To change the
arguments, you must use another special function: “@args”; you can’t use the
same mechanisms you use to change the code.

In MOOSE, argument specifications can be of any length, and any word may
be used as a constant. A script’s argument declaration is simply the first line
of the program. It’s clearly visible as you edit the program, and can be
changed by the same mechanism you use to edit the program. Multiple
scripts with the same name can simply be placed one after the other in the
script body, with no confusion between them. For example, here’s the “feed”
script on Generic Penguin by Rachael (girl, age 12-14):

73

on feed this
 tell context "You feed " + my name + " fish."
 announce_all_but context context's name + " feeds " + my name + "."
 set my ishungry to 1
 emote "glups the fish down hungrily."
 set my last_feed_time to time
end

on feed this string
 tell context "You feed " + my name + " a " + string + "."
 announce_all_but context context's name + " feeds " + my name + " a

" + string + "."
 set my ishungry to 1
 announce_all my name + " glups the " + string + " down hungrily."
 set my last_feed_time to time
end

on feed this herring
 tell context "You feed " + my name + " pickled herring."
 announce_all_but context context's name + " feeds " + my name + "

pickled herring."
 emote "puckers up and spits the herring out."
 emote "blahs!"
end

on feed this shrimp
 if my diet is 1
 tell context "You can't feed " + my name + " shrimp today because

" + my name + " is on a diet."
 announce_all_but context context's name + " tries to feed shrimp

to " + my name + " but " + my name " is on a strict diet!"
 else
 set my ishungry to 1
 tell context "You feed " + my name + " a ton of shrimp!"
 announce_all_but context context's name + " feeds " + my name + "

a load of shrimp."
 emote "gobbles the shrimp down in seconds."
 set my last_feed_time to time
 endif
end

74

on feed this eggs on toast
 set my ishungry to 1
 tell context "You feed " + my name + " a soft boiled egg on toast."
 announce_all_but context context's name + " feeds " + my name + " a

soft boiled egg on buttered toast."
 emote "polietly picks up the toast with " + my name + "'s left

flipper and nibbles the end like so."
 announce_all_but context "After chewing, " + my name + " thanks " +

context's name + "."
 tell context my name + " says, 'Thank you ever so much in offering

me this delightful meal. I would be ever so obliged if you would
be so kind as to give me a cup of tea to wash it down.'"

 set my last_feed_time to time
 set my askfortea to 1
 fork 10
 if my askfortea is 1
 tell context my name + " says, 'Thanks alot!'. (You didn't give

" + my name + " any tea!)"
 set my askfortea to 0
 endif
 endfork
end

on feed this tea
 if my askfortea is 1
 tell context "You give " + my name + " a cup of tea."
 set my askfortea to 0
 announce_all_but context context's name + " gives " + my name + "

a cup of tea."
 emote " picks up the cup from the saucer, and takes a sip."
 tell context my name + " says, 'Thank you ever so much for the

tea. I feel honored that you decided to honor my request for
tea.'"

 else
 tell context "You give " + my name + " a cup of tea."
 announce_all_but context context's name + " gives " + my name + "

a cup of tea."
 emote "slurps up the tea."
 emote "nods in thanks."
 endif
end

Andy diSessa argues that programming languages should be “tuned toward
small tasks—the ability to implement simple ideas easily is much more
important than the ability to do complex tasks efficiently”(diSessa and
Abelson 1986). The ability to have lots of short scripts of the same name helps
break tasks into parts more clearly.

3.2.7 It’s OK to have Limited Functionality
In our first serious discussion of the design of MOOSE, Pavel Curtis looked at
me squarely and said: “If you can do everything in MOOSE that you can in
MOO, I’ll be disappointed in you.” The designers of Logo pride themselves
on the fact that Logo is a full programming language that you could use for
professional software design if you wanted. The ideal is that a tool should

75

have no initial barrier and no ceiling—no limits on what a kid can achieve.
While this is an inspiring vision, the truth is that few kids actually reach
those higher levels. If advanced functionality comes at no cost, it’s certainly
desirable. However, in the design of MOOSE when we encountered a trade-
off between supporting advanced features and making common features
simple, we always tried to give priority to simplicity. MOOSE is tuned to
make the set of things that are natural to do in a MUD—like bears that you
can tickle—as easy as possible.

3.2.8 Hide Nasty Things Under the Bed
Perhaps one of the most-discussed issues in programming language design is
how much detail to hide from the user. Maximum efficiency dictates that the
user take direct control of as many functions as possible. For example, C
requires users to allocate and deallocate memory manually. Usability usually
dictates that the system do as much as possible of the unpleasant and error-
prone parts of the task. For example, Lisp and MOO do automatic garbage
collection. It should come as no surprise that for MOOSE, we chose the
second approach, hiding difficult concepts where possible. In particular, we
succeeded in hiding issues of permissions, atomicity and multitasking.

Permissions
Security for multi-user environments are an important topic of current
computer science research. Over time, through intensive use and frequent
attacks, the LambdaMOO server and LambdaCore6 database have been made
robustly secure. The permissions system that has evolved, however, is the
most difficult part of MOO to master.

One particularly thorny issue concerns ownership of properties. Objects have
owners, and individual properties also have owners. Properties have
permission bits r (readable), w (writeable, which is almost never used), and c
(change owner on inheritance). Suppose that Ginny owns Generic Dog, and
Amy has a child of Generic Dog named Pumpernickel. Generic Dog has a
bark_msg property. Now suppose Generic Dog has a “guard” script that
changes the dog’s bark_msg from a polite yip to a deep growl. If the bark_msg
property is set +c (i.e. with the c bit set), then Amy will own Pumpernickel’s
bark_msg property, and can change it directly. However, the “guard” script
runs with Ginny’s permissions, so now it can’t change the dog’s bark_msg. If
the property is !c (i.e. with the c bit unset), then the “guard” script can change
the dog’s bark, but Amy can’t. The solution is to make it !c, and have Ginny
write a change_bark accessor script allowing dog owners to change their dogs’

6To start a MOO, you need both the server and an initial database. It’s possible to start with a
minimal database that adds little or no functionality. However, most MOOs use a database
extracted from LambdaMOO (the first and still most popular MOO) called LambdaCore.
Among the features included in LambdaCore is the line editor discussed here.

76

barks. If you’re confused, that’s the point—permissions are difficult to
understand.

In MOOSE, I found a way around this problem. I added a trust_parents
property to all objects. If an object trusts its parents, then any code on an
object’s parents may modify any of its properties. All MOOSE properties are
+c—if you own the object, you own the property. The concept of the c bit is
eliminated. Generic_Dog’s growl script can modify Pumpernickel’s bark_msg
because Pumpernickel trusts her parents. (This does not mean that other
code by Ginny can modify anything about Pumpernickel—just code on the
parent object.) This involves assuming some trust between the owner of a
generic and the owner of the child objects. However, that trust already exists.
The generic owner can already add any property or script he or she likes to the
parent, which will be inherited by all child objects. The generic owner would
also be able to modify properties in the common MOO solution to this
problem described above. MOOSE lets you do the things that it seems natural
to do—have both Generic Dog and Pumpernickel’s owner be able to modify
Pumpernickel’s bark_msg. It’s not necessary for the kids to think about
property permissions at all.

The w (writeable) bit is not supported either. There is no good reason in
MOOSE or MOO to make anything world-writeable. The r (readable) bit for
properties is a more difficult issue. It’s beneficial to the community if scripts
and properties can be used as examples by others in the community. On the
other hand, making things unreadable is useful for applications like secret
passwords, which children often are interested in writing. I was initially
hesitant to introduce the notion of a property permission at all. However,
after some discussion between Austina Vainius and myself and the
independent suggestion of the same idea by Pavel Curtis, we finally
compromised on adding the notion of a “hidden” property. We called them
“hidden” rather than “secret” to make them sound less exciting. It’s desirable
to minimize their use, so that people can learn from one another’s projects as
much as possible.

Atomicity and Multitasking
In any time-sharing computing system, you need a system for deciding how
to share processor time. MOO uses single-threaded, non-preemptive
multitasking. Each task has a limit on the number of ticks and seconds it can
use. If it runs out, the task stops with an out-of-ticks or out-of-seconds error.
Before a task runs out of time, the programmer can voluntarily give up
control using the “suspend” command. When the task returns to the top of
the queue, it has refreshed tick and seconds counts (half as many as it
originally started with).

I wasn’t particularly in the mood to teach children about tick limits and
suspending. Furthermore, MOOSE adds sufficient overhead to the server

77

that even simple tasks often must suspend at least once before completing. I
decided to make MOOSE automatically suspend when needed.

This model has drawbacks. If you are petting a dog, you can no longer assume
that a dog that was in the room at line 1 is still there at line 10! There is no
way to guarantee that any task completes atomically. In practice, this has not
yet caused significant problems. A few kids have noticed that messages
generated by objects entering a room sometimes arrive in an odd order. For
example, my dog Pumpernickel wags her tail when she enters a room
containing someone who has pet her in the past. The message that she wags
her tail often precedes the message notifying you that she has arrived in the
room. Each command in an individual program is guaranteed to be executed
in the correct order; however, the arrival message and the tail wagging are
generated by different programs on different objects. The order of turn-taking
between programs running on different objects is not guaranteed. While this
simple example can be passed off as an oddity, the problems are likely to
become more severe as the system grows in complexity.

As Mitchel Resnick’s research on StarLogo has shown, most people are not
generally comfortable thinking about complex, parallel systems. StarLogo
seeks to make that complexity understandable and interesting in itself
(Resnick 1994). I chose not to make understanding these issues a pedagogical
goal for MOOSE. Instead, I decided to hide them from the user as much as
possible. This works for limited applications, and has helped make the
system accessible to novice programmers. However, this simplistic solution
has limits. More research is needed to devise a gracefully scaleable solution to
meet the needs of both novices and experts, and to enable the construction of
more complex systems.

3.2.9 A Design Philosophy
There are few “right” answers in programming language design—primarily,
there are trade-offs. Furthermore, it’s not particularly meaningful to talk
about one language being “better” than another. However, it is meaningful
to talk about the advantages of a language for a particular group of people
with a particular set of goals. And languages do have affordances—things
they make easy to express, and things they make hard to express. Larry Wall,
inventor of the Perl language, compares different programming languages to
different styles of music—C is reductive and rigid like the Modernism of John
Cage; “C++ is like movie music, of titanic proportions, yet still culturally
derivative”(Wall 1996). Wall argues that programmers are like artists, and
different languages are like different types of materials—they are expressive
in different ways, and suited to people with different goals and personalities.

 Our goal in designing the MOOSE language was to give children a new
expressive medium. Towards this end, we tried to make it as easy as possible
for children to write the sort of programs one tends to want to write in a

78

MUD. Our general approach was deliberately a bit mischievous, exploring a
design aesthetic that is counter-intuitive for most computer scientists: put
simplicity and immediate intuitiveness first, and ignore as much as possible
many of the concerns that adult computer scientists tend to value. We tried
to ground the design in experience working with real children with Logo, and
revised the design based on feedback from initial users. Detailed analysis of
what children have been able to accomplish with MOOSE forms the subject of
much of the rest of this thesis.

3.3 The Need for a New Programming Environment
While existing MUD languages present a barrier to children learning to
program, available programming environments are an even bigger problem.
In MUSE, every command is one-line long, so no editor is necessary.
Programming in MOO requires the use of an editor. The “@program”
command used to enter programs is built into the server software. To modify
your program using just that command, you would need to type the entire
thing again. A very nice Emacs-based editor, mud.el, is available. Mud.el
gives you an excellent interface to edit both MOO verbs and properties.
However, not everyone has access to Emacs, and it’s certainly not appropriate
for children. An alternative, currently used by the Pueblo project, is the
LambdaCore line editor.

Here is the help for editor commands:

Verb Editor
Commands:

say <text> w*hat
emote <text> e*dit <obj>:<verb>
lis*t [<range>] [nonum] com*pile [as <obj>:<verb>]
ins*ert [<ins>] ["<text>] abort
n*ext,p*rev [n] ["<text>] q*uit,done,pause
enter
del*ete [<range>]
f*ind /<str>[/[c][<range>]]
s*ubst /<str1>/<str2>[/[g][c][<range>]]
m*ove,c*opy [<range>] to <ins>
join*l [<range>]
fill [<range>] [@<col>]

---- Do `help <cmdname>' for help with a given command. ----

<ins> ::= $ (the end) | [^]n (above line n) | _n (below line n) |
.(current)

<range> ::= <lin> | <lin>-<lin> | from <lin> | to <lin> | from <lin>
to <lin>

<lin> ::= n | [n]$ (n from the end) | [n]_ (n before .) | [n]^ (n
after .)

`help insert' and `help ranges' describe these in detail

79

Here’s how the program to pet Rover (discussed in Section 3.1) would be
created and entered using the LambdaCore line editor:

>@verb rover:pet this none none
Verb added (0).
>@edit rover:pet
Verb Editor
Do a 'look' to get the list of commands, or 'help' for assistance.

Now editing #2156:pet.
>enter
[Type lines of input; use `.' to end or `@abort' to abort the

command.]
>player:tell("You pet Rover.");
>this.location:announce_all("Rover wags his tail.");
>.
Lines 1-2 added.
>compile
#2156:pet successfully compiled.
>q
Amy's Office
Amy's office is a jumble of books and papers.

Being able to break code up into multiple lines instead of cramming lines
together as they are in MUSE is a significant improvement, but it comes at the
price of adding this elaborate editor. To change “his” to “her” in MOO
without a client, we would need to do this:

>@edit rover:pet
Verb Editor

Do a 'look' to get the list of commands, or 'help' for assistance.

Now editing #2156:pet.
>list
 1: player:tell("You pet Rover.");
__2_ this.location:announce_all("Rover wags his tail.");
^^^^
>s / his/ her/2 7

__2_ this.location:announce_all("Rover wags her tail.");
>compile
#2156:pet successfully compiled.
>q
Amy's Office
Amy's office is a jumble of books and papers.

Perhaps the worst feature of the editor is that it actually moves you to a
separate room to do your coding. The rationale for this design decision was to
allow reuse of the “say” command for inserting text, and give you access to a
simple set of editing commands. Moving you to a separate room was the

7Note the spaces before “his” and “her.” The first time I typed this while writing this
chapter, I actually forgot the space and ended up changing “this” to “ther.” Even for an
experienced user, this kind of editing is frustrating.

80

simplest way of achieving a form of modal interface (Curtis 1996). The
downside of this design decision is clear. One of the great strengths of MUDs
is their collaborative nature. Using the LambdaCore line editor, you are sent
off to a room all alone whenever you try to work! (The collaborative nature
of learning in MUDs will be discussed in more detail in Chapters 4 and 5.)

3.4 The Design of the MacMOOSE Client
There were few if any research issues involved in designing the MacMOOSE
client program—just attention to detail, interface design work, and an
iterative design process incorporating feedback from children. While I
implemented the MOOSE language, code for the MacMOOSE client was
written by several MIT undergraduates, participating in the project through
MIT’s Undergraduate Research Opportunities Program (UROP). The interface
design was done by myself and the students jointly. The students who
worked on the project are listed in Table 3.6.

Greg Hudson September 1992—May 1993
Adam Skwersky June 1993—May 1994
Steven Tamm February 1994—May 1995, and

September 1995—May 1996
Jon Heiner February 1995—May 1996
Drew Samnick January 1996—May 1997
Steven Shapiro (Java version) September 1996—present

Table 3.6: The MacMOOSE Development Team

MacMOOSE allows you to:
• Edit properties and code, and send MOOmail in Macintosh (WYSIWYG)

style,
• Open an “object browser” to see all the scripts, verbs, and properties on an

object, and
• View help in a separate window.

The application was designed to make it as easy as possible to learn to
program, and to do creative writing. Features that were suggested by users or
members of the development team that were excluded as not contributing to
this goal include for example: automatic mapping, a separate window
displaying who is currently connected, and a separate window showing what
you are holding. Suggested features that were not implemented due to lack of
time but which would advance the project’s primary goals include: flashing
matching parentheses, automatically coloring keywords in code, search and
replace, support for alternate character sets (for students using MacMOOSE in
language classes), and hypertext help (allowing you to double-click on a word
in order to get help on that topic). Much of the time spent in design meetings

81

was devoted to fighting “featuritis,” in order both to keep the interface easy to
use and to keep the development time manageable.

We chose to develop MacMOOSE in Symantec C, because that was the best
available development platform in September 1992. Between MacMOOSE
version 1.0b1 and version 2.0a1 we moved to Symantec C++, which enabled
more code reuse and better design of class abstractions. There was no
adequate platform-independent development environment available at the
time the project was started. A significant disadvantage of using the
MacMOOSE client program is that it requires a Macintosh with a direct
Internet connection. Had Java existed when we began its development, we
would have written it in Java to reach a broader variety of platforms. A Java
version of MacMOOSE is currently under development. While Java runs on
multiple platforms, those platforms all require direct Internet connections as
well. The LambdaCore line editor will run on anything—even a dumb
terminal connecting over a phone line. The greater functionality of
MacMOOSE is achieved at the cost of platform dependence.

3.4.1 A Tour of MacMOOSE
Connecting to MacMOOSE, you first select a server from a list (Figure 3.2).
You can have multiple connections open at once. Each connection is
identified by a number, and you can switch between them using command
keys. Windows associated with a particular connection are grouped together
on the windows menu. (These features are more necessary for adult MOO
programmers than for children using MOOSE. As well as supporting
children programming on MOOSE Crossing, MacMOOSE also works as a
general-purpose MOO client. As of June 1996, more than 950 people had
registered copies.)

82

Figure 3.2: The MacMOOSE Server List

A password dialog lets you enter your password privately (Figure 3.3). With
most other MUD clients, your password echoes in clear text. We worried this
might lead to some children pulling pranks after they had seen each other’s
passwords.

Once connected, your main connection window is divided into two panes:
input and output (Figure 3.4). In a raw telnet connection, incoming text can
make it difficult to read the line you’re in the middle of typing. The most
common reason people use MUD clients is to solve this interface problem.

83

Figure 3.3: The MacMOOSE Password Dialog

Figure 3.4: The MacMOOSE Main Connection Window

What is more unusual about MacMOOSE compared to other MUD clients is
its emphasis on supporting programming. Consider the program we
discussed before: petting Rover. Here’s how you would write the same
program using the MacMOOSE client program. First, you’d click on the
pencil icon (or select “Edit...” from the MOOSE menu) to indicate that you
want to edit something.

Next, you’d enter the name of the object and the script you want to edit in the
dialog box that appears (Figure 3.5).

84

Figure 3.5: The MacMOOSE Edit Code Dialog Box

MacMOOSE asks if you want to add that script. Instead of having to
remember a special command to declare a new script, the client does it for
you. When you click OK, you get an editor, in which you can simply type
your program (Figure 3.6).

In the script editor, you can change text in Macintosh WYSIWYG (What You
See Is What You Get) style. If you wanted to change “his” to “her,” you’d just
click after “his,” hit delete twice, and then type “er.” Children are able to
figure this out with little or no help. In version 1.0a1, feedback from
compiling a script or verb appeared in the main window. This was awkward
because you are not looking at the main window when you compile code. In
version 1.0b1, we added a feedback area at the bottom of the editor windows,
so your feedback is closely associated with your code. Screen real estate
proved to be tight—you need adequate space to see the feedback but also
adequate space left to edit code. The MOOSE compiler runs on a remote
machine; the client runs on a local machine. We tried to minimize that gap
by integrating compiler feedback with the client interface.

85

Figure 3.6: The MacMOOSE Script Editor

Unfortunately, we found that children often did not look at the feedback.
Version 2.0 made positive feedback green and negative feedback red (Figure
3.7). Your most recent feedback is colored; feedback from previous compiles is
turned black. While the children still may not always read the feedback, they
know that red means something is wrong, and they notice the red text
appearing. Additionally, the MOOSE icon8 at the top of the window is turned
red while the transaction is in progress and green again when it has
completed. This gives users a good indication of when their compile is done.
(Compiling a short script is immediate, but long ones can take several
seconds.)

To edit an object, you can open up a browser on that object (Figure 3.8).

8The moose icon was designed by Michael Maier for MacMOOSE.

86

Figure 3.7: Feedback for a Compile Error

The central pop-up menu lets you climb the inheritance hierarchy to edit the
object’s parents. All of the object’s scripts are shown on the left, and
properties on the right. Double-clicking on a script or property opens an
editor for that script or property. You may notice that fewer scripts are listed
than properties. Script and property inheritance are handled slightly
differently. If a parent object has a property, all of its children can have their
own values for that property. If a parent object has a script, all of its child
objects may use that script as it exists on the parent, but they can’t have their
own version of the script. For this reason, the only scripts listed are those
declared on that object; properties listed include those declared on that object
and on all of its parents. Adam Skwersky and I struggled with this interface
design issue for over a month. The final solution significantly helps users
work with these subtle differences in inheritance easily.

87

Figure 3.8: The MacMOOSE Object Browser

If you need help, you can get that help in a separate window (Figure 3.9).
Multiple help messages can go in the same ‘help browser’. This prevents help
messages from scrolling away as you try to do what they recommend.

Finally, we added an interface to allow users to send MOOmail (mail internal
to the virtual world) with WYSIWYG editing (Figure 3.10). The interface
allows for sending mail, but not more advanced features like replying to a
message including part of the previous message in the body.9

9The MacMOOSE documentation quips “no, we are not writing MOOdora.”

88

Figure 3.9: The MacMOOSE Help Browser

3.4.2 Equal Access for Few Versus Unequal Access for Many
MacMOOSE has proved to make learning to program significantly easier for
children (and adults). While it is possible to access MOOSE Crossing without
MacMOOSE, those doing so are at a significant disadvantage. Not wanting to
create a class of haves and have-nots, I chose to restrict access to MOOSE
Crossing to those who have access to Macintoshes on the Internet and can use
MacMOOSE. This has unfortunately significantly limited the number of kids
who have been able to use MOOSE Crossing. The number of children with
access to Macintoshes is a small proportion of the total. Giving all
participants equal access has made access available to a much more restricted
group of children. That group is unfortunately disproportionately wealthy.
We have been actively working with organizations such as CTCNet and
PluggedIn who provide computing facilities to less advantaged children to try
to broaden the demographic of children who have access to MOOSE Crossing.
We hope to begin work on a Java version of MacMOOSE in the near future,
which should make MOOSE Crossing accessible to a larger number of
children.

89

Figure 3.10: The MacMOOSE Mail Interface

3.5 Designing Empowering Technologies
Technology increasingly surrounds our everyday lives—the World Wide
Web was only invented in the early 1990s, but by 1995 there were already
URLs on bus ads. To what extent will the general public have meaningful
control over those technologies? The answer is not clear. I believe that if you
give people quality tools and social support for the use of those tools, they
will surprise you with their intelligence and creativity. Part of taking users
seriously involves including them in all stages of the design process:
grounding design decisions in observations of real users rather than the
formal concerns of professionals, and revising designs based on feedback
from initial users. Users rise (or fall) to designers’ expectations. We began the
design of the MOOSE language and the MacMOOSE client with the
assumption that kids are capable of great things. Our design agenda was also a
political agenda—technology can and should empower people. I believe
designing for nonprofessional users is a central issue for the future of
computer science.

90

91

4. Collaborative Learning Strategies: Storm’s Weekend with
Rachael
4.1 Storm’s Weekend with Rachael
One Friday afternoon in April of 1996, I accepted the MOOSE Crossing
application of a new member, a twelve-year-old girl who chose the character
name Storm, and then I left town for the weekend. I usually log on
periodically over weekends, but this particular weekend I went to Maine and
was offline. When I returned on Sunday, I was surprised to learn that Storm
now knew the basics of how to program. She had had limited previous
experience—she had once tried Logo in school. Over the weekend, she made
Jasper (a frog you can hug), Callie (a cat who purrs when you tickle her and
responds wryly when you address her as “cat” rather than by name), and a
catnip mouse for Callie. She also built and described three homes, and
collaborated with Rachael (girl, age 13) on an extension to Rachael’s castle,
complete with a dead princess on the floor who had died for love. Storm and
Rachael spent most of the weekend together, talking and helping one another
with their projects.

I've told this story many times, and people often shake their heads with
disbelief, grinning. But what is there about the story that is so remarkable?
It’s certainly not how we stereotypically imagine two children spending a
holiday weekend. It’s hard for many people to imagine any “real people”
having meaningful control over computational media, much less girls.
What was it that interested them so completely that they would spend most
of the weekend absorbed in it? What were they doing and how did they learn
to do it?

Another set of questions concerns the nature of the collaboration. What
prompted Rachael to spend an entire weekend helping a stranger? This is
quite different from a group of students being assigned in school to do a group
project. Rachael chose to help Storm for an extended period of time simply
because she enjoyed doing so. What began at the start of the weekend as an
expert assisting a novice quickly became a joint effort in which what is
achieved is greater than what either participant could have accomplished
individually. Their collaboration was the beginning of a friendship.

In this chapter, I describe in detail what took place over that weekend.
Everything typed on MOOSE Crossing is recorded, with written informed
consent from both parents and children. Over that weekend alone, 3.7 Mb of
data was recorded of their experiences. This data includes everything each
girl typed and saw on the screen—everything they did, and everything they
said to one another online. By examining what took place in extended detail,
I am attempting to present what Clifford Geertz calls a “thick description”
(Geertz 1973). Methodologically, studying this online medium has interesting
advantages: we have a complete record of the interaction between these two

92

girls. They could communicate only through the computer, and every
keystroke was recorded.

Seven months after this weekend took place, I sent Storm and Rachael copies
of an earlier version of this chapter to read and comment on. Social science
has in recent years increasingly rethought the issue of ethnographic authority.
Henry Jenkins writes that “The newer ethnography offers accounts in which
participation is as important as observation, the boundary between
ethnographer and community dissolves, and community members may
actively challenge the account offered of their experience” (Jenkins 1992). I
chose to give the girls an opportunity to respond to my account of their
experiences. After they had each read the chapter, I invited them to come to
the Media Lab to discuss it with me, and to meet one another for the first
time. It was fortunate that Rachael lives in the greater Boston area, and
Storm lives an approximately ninety-minute drive away. (I’m grateful to
Storm’s parents for taking the time to make the trip.) I interviewed them
both individually and together about their experiences that weekend and on
MOOSE Crossing in general, and recorded those interviews on audio tape.
Over all, they enthusiastically concurred with my account. As I had hoped,
the interviews helped me to clarify what they each were thinking and feeling
over the course of the weekend. As an added bonus, it also gave me an
opportunity to ask the girls in what ways meeting face to face was different
from meeting online.

There are four primary goals to this analysis:

• to give the reader a more concrete feel for what participating in
MOOSE Crossing is like,

• to explore what children find compelling about this environment,
• to explore the learning strategies children typically use on MOOSE

Crossing, and
• to explore a style of collaboration that often occurs there.

In my first outline for this thesis, there was a chapter called “Learning
Strategies” followed by a chapter entitled “Collaboration and Learning from
Peers.” As soon as I sat down actually to write, it became clear that these were
one chapter. My error was telling—we tend to think of learning first, and
collaborative learning as a special sub-topic. In fact, all learning takes place in
a social context. As a result, almost all learning has collaborative aspects.
Even when people undertake learning experiences alone, they are still in
some way responding to a broader social context—to the expectations of
others, and the way we define our sense of self through our accomplishments
and in relationship to others. MOOSE Crossing was designed to support the
sort of self-directed, peer-supported, collaborative learning that took place for
Storm and Rachael over this weekend.

93

4.2 Friday: Diving In
Rachael, who at this time had just turned 13 the previous week, is one of
MOOSE Crossing’s most dedicated and accomplished regulars. She was the
first home-schooled student to join. Being home-schooled gives her greater
time to devote to MOOSE Crossing, and also greater need for social contact.1
An hour and a half after I accepted Storm’s application, Rachael checks the list
of all members, notices that there is a new member who hadn’t logged on yet,
and sends her this mail:

Message 1 on Storm:
From: Rachael
To: Storm
Subject: hi

Dear Storm,
Hi! My name is Rachael. Who are you? I am thirteen years old and I am
female. I have been on moose crossing scince january and whould love
to be your friend. The best times to go on moose crossing are on
mondays and fridays afterschool.

Rachael

At a little before 5 PM, Storm connects for the first time. Her connection
message tells her she had mail, so she checks “help mail” and figures out how
to read her message from Rachael. She told me in a later interview that she
learned how to use the online help system and a few other basic commands
from the introductory message mailed to all new members with their
passwords. She learned about the mail system because she wanted to read her
mail from Rachael—interactions with other children were an integral part of
her explorations with the system from the very first command typed.

A moment later, Rachael notices that Storm has connected, and pages her
“May I join you?” (“Paging” is a way of communicating with someone who
is not in the same room in the virtual world.) Rachael waits impatiently for
Storm to respond, repeatedly checking 'who' (a command that tells you who
is logged on, how long they’ve been connected, and how long they’ve been
idle). She also repeatedly checks Storm’s last commands. It’s possible to see
all the commands someone has typed recently. We added this feature to
MOOSE Crossing to make it easier to help others figure out what they’re
doing wrong when things aren’t working right. When you look at someone’s
last commands, the system tells the person that you have looked. Thirty
seconds later, Storm pages Rachael “Yes” and Rachael joins her, moving to be
in the same room as Storm in the virtual world:

1Over time, MOOSE Crossing has become particularly popular with home-schoolers. The
open-ended, self-directed educational philosophy behind MOOSE Crossing is consistent with
the educational philosophy of most of the home-schooling movement. Additionally, it
provides much-needed social contact with peers.

94

Rally says, 'Greetings Clover'
Rally arrives, following Rachael. 2

Rachael says, 'hi'
Storm says, 'hello, all'
Rachael smiles.
Rachael says, 'Rally and Clover are my pets.'
Storm smile
Rachael says, 'how old are you?'

[Here Rachael looks at Storm; her description is still blank.]

Storm says, '12'
Rachael nods.
Rachael says, 'Are you at the media lab or somewhere else?'
Storm says, 'this is the first time I've been here!:)'
Rachael says, 'I mean in real life where are you? I'm at my house.'
Storm says, 'same here'
Storm says, ' anyone here like star trek?'
Rachael says, 'Many people go to the media lab, in MIT, to do moose

crossing. I was just wondering if you where. Yes, I do.'
Storm says, 'i'm a trekker, heart and soul!:)'
Rachael giggles.
Rachael says, 'austina/kristina 3 likes it too.'
Storm says, 'whoohoo!'

The expression “whoohoo!” has become popular over the last few years, and
is taken from the television show The Simpsons. Homer Simpson says it
when he's happy. Popular culture, particularly science fiction television,
immediately gives these two girls something to talk about. Their mutual
interest also identifies them to each other as being part of an unusual sub-
group of teenagers: girls who like science fiction. While many cultural critics
scorn popular culture as a negative influence on children (Postman 1985), in
the right environment it can be a rich source of raw materials for personal
expression (Jenkins 1992).

Rachael says, 'which generation do you like best?'
Rachael says, 'I like the TNG'
Storm says, 'trekkers will take over the world! I like the next

generation
Rachael smiles. "Mabye so!"
Rachael says, 'same here, the next generation. Isn't a shame that it

stopped?'
Storm says, 'oh, man yes! bummer!\'
Rachael says, 'Whould you like any help?'
Rachael says, 'I hear that the next TNG (next generation) movie is

about the borg.'

2For technical reasons, events on MOOSE Crossing sometimes happen in an unusual order—
Rachael’s pet Rally says hello before he is announced as arriving in the room.
3The characters Austina and Kristina are played by the same person, MIT undergraduate
Austina Vainius, an undergraduate research assistant working on the MOOSE Crossing project.

95

Rachael guesses that Storm doesn’t understand that the abbreviation “TNG”
stands for “The Next Generation,” and here finds a way to let her know
without making a big deal out of it.

Storm says, 'oops, didn't mean the \. no, i'm figuring this out!
thanks!'

Storm says, 'well, the movie is about the two generations meeting.
You should see it!'

Rachael says, 'that's fine. Just askin'. But if you want any don't be
afraid to ask.'

Storm hasn't yet had time to explore or get confused about anything yet—
Rachael contacted her within moments of her arrival. Rachael's immediate
offer of help is a bit premature. While Storm does not immediately avail
herself of that help, she now knows that help is available when she needs it.

Rachael and Storm’s conversations about help with MOOSE Crossing and
Star Trek become interwoven. This is typical of MUD exchanges. In face-to-
face discourse, turn-taking conventions help to keep a conversation focused.
In MUDs, while one person is responding to a previous point, another may
introduce a new one. Typing in parallel often leads to many-threaded
conversations (Cherny 1995).

Rachael says, 'Oh, I saw it. I meant the one they are making now.'
Storm says, 'anyone like monty python?'
Rachael says, 'Yes, but I never get a chance to see it.'
Rachael says, 'Have you heard of Babylon Five?'

Rachael explained earlier that Rally and Clover are her pets; however, from
her use of “anyone,” it's not clear if Storm yet understands that it's only really
Rachael there. At this point, Storm looks at Rachael. She sees:

A girl with brown hair and green eyes. On her head is a sliver
headband with silver strands. At the end of each strand is a silver
ball. Around her neck is a silver chain.
She is awake and looks alert.
Carrying:
Franky Rachael's Bean
Rachael is wearing a tye die shirt and overalls.
Rachael smiles.

Rachael had written a special script (called a “look_self” script) which is run
every time someone looks at her. She is now notified “Storm just looked at
you.” The program also causes her automatically to smile.

Rachael next looks at herself, to see what Storm has seen. Storm tries to look
at Franky and Rachael's bean, not realizing she can't see objects that someone
else is holding. Rachael audits Storm (a command which shows you all the
objects a person owns), and sees that she still owns nothing.

96

Rachael says, 'Do you like the way I look?'
Storm says, ' you look bea-u-ti-ful!'
Rachael says, 'thanks.'
Rachael says, 'Well, have you heard of babylon five?'
Rachael says, 'It is another science fiction TV show.'
Rachael hugs Rally.
Rally squeals happily.

Rachael here gets a bit fidgety, typing “who” a couple times and hugging her
pig Rally. Storm is busy describing herself. Rachael guesses as much, and
looks at Storm immediately after the description is finished. She sees “you
see a tall, black haired, white - skinned girl, wearing all black. she is wearing
lots of silver jewelry.”

Storm says, 'never seen it'
Rachael says, 'Most people haven't. You look nice!'
[Storm here looks at Rally, and sees "A small pink piggy."]
Storm says, 'why thank you!'

Storm gets immediate positive feedback. The feedback has value on several
levels. First, it's a compliment to her technical ability—she was able to figure
out how to describe herself. Second, it's a compliment to her writing ability.
Third, being told you look nice is a generally a mark of social acceptance.
Finally, given the predominance of issues of appearance in the culture of
teenage girls, being told that your virtual self looks nice potentially has deep
resonances.

Storm says, 'monty python is very funny'
Rachael says, 'You can changer your gender by typing "gender me as

<gender>"'
Rachael says, 'the <>s are where you fill in the blank.'

The MOOSE Crossing documentation is written in this style, with angle
brackets indicating that you should fill in the blanks. A classic slapstick
routine has a bailiff trying to swear in a witness by saying “Repeat after me. I,
state your name.” The witness replies literally, “I, state your name.” Giving
someone directions including some things to duplicate literally and others to
interpret is awkward, and is a common source of confusion for new users on
MOOSE Crossing. Rachael here is anticipating the problem, giving Storm
useful information not just about one command but about how to read the
documentation in general.

Rachael says, 'Yes, monty python is.'
Storm says, ' i know. I'll love doing that! what planet are you

from?'
Rachael says, 'Depends.'
Storm says, 'i'm from zork'
Rachael says, 'Of what universe you are referring to-this one, star

trek...my own..'
Rachael says, 'the game?'
Storm says, 'i'm referring to a computer game.'

97

Storm says, 'yes. it's fun'
Rachael says, 'I thought so. I've played it.'
Rachael says, 'But I never passed it.'
Rachael says, 'Have you played MYST?'
Storm says, 'what one?'
Rachael says, 'Zapies...I made it up myself when I was in 1st grade.'
Storm says, 'no. my mom beat myst.'
Rachael says, 'I haven't yet. It's kinda hard.'
Rachael says, 'Do you live in the Boston area?'

Storm here attempted a bit of fantasy role playing. Rachael asked for a
clarification—what is the reference frame of the conversation? They moved
back to talking about real life.

Storm says, 'could you show me around?'
Rachael says, 'certainly!@'
Rachael says, 'anywhere in particular?'
Rachael says, 'or just everywhere?'
Storm says, 'everywhere! please'
Rachael says, 'well, let's go up!'

When Rachael first offered help, Storm wasn’t yet ready to take advantage of
it. Now that Storm has tried out a few basic commands and gotten to know
Rachael a little bit, she’s comfortable asking for help. Rachael leads Storm up
to the clouds, where Rachael demonstrates how you can jump and roll
around on one of the clouds. While Rachael is jumping around, Storm sets
her gender to royal4, making use of Rachael’s earlier offered information.

Rachael is clearly delighted to meet Storm. She uses this command:

--> tell Rally to emote hugs Storm.

This causes her pig to hug Storm. Storm hugs the pig back. The pig allows
Rachael to express affection indirectly.

Rachael next leads Storm to Home in the Clouds, a room that lets you build
your own home by simply typing “build.” Storm builds a home there.

Many kids on MOOSE Crossing make use of a special character class that lets
them switch between multiple identities. One of Rachael’s alter-egos is called
QueenAnne. Rachael morphs into QueenAnne and invites Storm to see her
castle. Storm types “queenanne” to get to her room without being prompted,
and Rachael follows. Storm bows to QueenAnne. QueenAnne changes back
into Rachael, and leads Storm to Palladia, part of her mythical kingdom
where you can build your own home. Rachael next explains how you can
build a home in certain places (not realizing Storm has already done so at
Home in the Clouds). Storm builds another home at Palladia. Rachael offers

4Changing your gender changes your pronouns. Having the gender “royal” means you are by
default referred to by “the royal we.”

98

to show Storm her “normal” home, but Storm replies she'd like to do the
tutorial. Rachael goes home. Storm types “tutorial” and then starts looking
at the dog tutorials, a three-part sequence that teaches the basics of MOOSE
programming by helping you to make your own pet dog. Rachael pages good
bye:

Rachael pages you.
She pages, 'I'm disconnecting now. I hope you come again. Mondays are

the best days.'

Storm doesn’t reply. Rachael disconnects for about a minute, and then logs
back on. Storm wanders into Rachael's room and looks at her pet penguin
and cat. Rachael is there and says hi. Storm says hi back and goes out a
different way than she came in. Rachael follows her. Catching up to her, she
says “I can stay somewhat longer.” Storm leaves again, and Rachael hesitates
and then followed her again, this time to the recycling center. Rachael uses
the 'announce' command to print to the room “THE BLUE BIN EATS THE
TRASH” followed by “CRUNCH” several times. (Printing unattributed
messages like this to everyone in the room is technically against the MOOSE
Crossing code of conduct. Members generally remind one another of the code
of conduct when it gets out of hand, but tolerate it in moderation if the
content stays friendly.) Storm says “I'm getting out of here.” She told me
during a later interview that she didn’t realize Rachael had generated those
messages. They walk to town together. At MOOSE Crossing, Storm says “hi!
where to.” Rachael replies “You choose, I'll follow.” They arrive on Main
Street:

Main Street
You're on the edge of Our Town. Looks like there's space to build

some shops here!
Obvious exits: ..west.........MOOSE Crossing

..north........North Main Street

..east.........Town Hall
Storm is here.
Rachael has arrived.
Rally says, 'Hello Clover'
Rally arrives, following Rachael.
Clover arrives, following Rachael.
Rachael says, 'I suggest n'
[Rachael is suggesting they continue their explorations by going north. “n” is usually
allowed as an abbreviation for north.]
Storm says, 'how do you make animals?'
Rachael says, 'Well, it depends if you want a new type of animal or

one that already exists.'
Storm says, 'new type'

Here Rachael checks the command “parents Rally” and gets this response
output:

Rally(#381) generic_greeting_creature(#402) Generic Teachable
Object (#225) Generic Puppet(#223) Generic Following

99

Object(#342) Generic Gendered Object(#77) generic thing(#5)
Root Class(#1)

Storm says, 'i'd like an animal to follow me around'
Rachael says, 'type "create #223 named <name>".'

Storm does, and chooses the name Jasper. Rachael looks at Storm and sees
she's now holding a creature. She tries to look at it, but Storm is holding it.
She asks Storm to drop it. Storm describes it as “a frog” and drops it for
Rachael to see.

Rachael says, 'neat idea! I wish I thought of a frog!'
Rachael says, 'to make it follow you type "set Jasper's following to

me'

Rachael responds immediately with positive reinforcement, and additional
technical advice. Storm improves Jasper's description to “frog with orange
skin, a black stripe and a sense of humor.”

Storm says, 'Jasper likes Star Trek too'
Rachael smiles.
Storm says, 'how do you make him say things'
Rachael says, 'okay..now go somewhere, and it will follow you.'
Rachael says, 'it depends.'
Storm says, 'ok...'
Rachael says, 'There are two ways. One, you could make a script, so

that if you type something it will do something in return, like
huging Rally..'

Rachael hugs Rally.
Rally squeals happily.
Storm says, 'how'
Rachael says, 'if you go to the pencil, it will make a thing appear.

Fill in the blanks.'
[The pencil icon on MacMOOSE lets you edit an object, script, or property. See Figures 3.4-
3.6]
Rachael says, 'then, when you have a script ready to fill out, you

type "on <script's name> this.'
Rachael says, 'let me give you an example..'

Rachael lists out a script of hers, and says it out loud:

Rachael says, 'here:on hug this tell context "You hug " + my name
+ "." announce_all_but context context's name + " hugs " + my
name + "." emote "squeals happily." end'

Rachael says, 'where the big blanks are, is where the returns are.'

Rachael waits a minute, repeatedly checking to see if the script is there yet.

Storm says, 'what do you put on the pencil blanks'
Rachael says, 'here, fill in the object as Rally, then fill in the

script as "hug".'
Rachael says, 'then you'll see what a normal script might look like.'

100

Storm first opens an editor on Rally:hug, and then on Jasper:hug. One of the
most common learning strategies for kids on MOOSE Crossing is using other
kids’ programs as examples. In this respect, MOOSE Crossing shares a
powerful learning feature with the World Wide Web. On the web, you can
view the HTML code for any object. You don’t need to go to a special library
of examples—everything is an example. In the course of your normal use of
the web you encounter objects that you can later go back to and use as models.
Similarly, every object on MOOSE Crossing is an example. While the MOO
language allows some programs to be unreadable to others, I deliberately
chose not to support this feature. All programs can be viewed by everyone
and learned from. Children often start with very simple variations on others’
programs, and gradually progress to more original creations. This powerful
learning strategy is often prohibited in schools, where it is declared to be
“cheating.”

It’s worth noting that on MOOSE (unlike the web), you are likely to know or
have the opportunity to meet the creator of each item in the world of
examples. Storm is not learning from a randomly selected example; she’s
learning from an example created by her new friend, Rachael. The social and
intellectual relationships are mutually supportive.

Rachael says, 'do you understand...or should I try explaining some
more?'

Storm says, 'wait a sec..'
Rachael says, 'okay..i'll be right back..'

Rachael wanders around a bit and comes back to see how Storm is doing.
Storm asks how she's supposed to save her work—whether she's supposed to
click “Change” or “Revert”. Rachael tells her to use 'Change'. (Based on
feedback from users, we've since changed “Change” to “Save”.)

Storm says, 'what do you do after clicking change?'
Rachael says, 'nothing...it should work..'

Rachael here lists out Storm's script and sees this:

on hug this
tell context "You hug" + "my name+ + "."
announce_all_but context context's name + "hugs" + my name + my name

+ "." emote "grins widly and jumps with joy." end'

Storm says, ' it says I'm missing "end"'
Rachael says, 'hi..sorry...my computer crashed.' 5

Rachael says, 'you always need to put end at the end.'

5The version of MacMOOSE Rachael was using was still somewhat unstable. The application
did not become reliable until summer 1996. Rachael knows that she may not have heard
everything Storm said, since Storm may have continued typing while Rachael was
disconnected.

101

Storm examines Rally, checks 'parents Rally' and 'parents Jasper' and tries to
chparent Jasper to #402, generic greeting creature, a program written by an
eleven-year-old boy which serves as the parent object for Rachael’s pig. She
told me during a later interview that she learned this from the tutorial she
read earlier. She gets the syntax slightly wrong (forgetting the word “to”) and
the chparent doesn't work.

Rachael says, 'sorry it crashed again.'
Rachael says, 'it needs to have end on the last line.'

Storm reads 'help chparent'.

Rachael says, 'like this 1: on hug this 2: tell context "You hug" +
"my name+ + "." 3: announce_all_but context context's name +
"hugs" + my name + "." emote "grins widely and jumps with
joy." end

Rachael says, 'I mean..'
Rachael says, 'you need to have end on a line below the others..'

This is somewhat confusing advice. Rachael here checks Storm's last
commands. The ability to check someone else’s last commands was designed
for exactly what Rachael is doing: helping someone figure out what they're
doing wrong.

Storm now moves the 'end' to a separate line of her program, and also
correctly chparents Jasper to generic_greeting_creature.

Rachael says, 'I'm sorry..but I need to go...any questions...?'
Storm says, ' nope! Thanks a lot, Rachael! Bye, Rally, Clover!'
Rachael says, 'bye...see you again soon okay! Can you come by

monday?'
Rachael says, 'Or this weekend?'
Storm says, 'probably!'
Rachael says, 'By the way, this monday most people won't be

here...sorry. (because of vacation)'
Rachael says, 'bye!'
Storm says, 'i'll be there, though!'
Rachael says, 'okay..see you then!'

Rachael now goes home, and Storm tries to hug Jasper. She gets this error:

OOPS!: Can't find an object named "my name+ + "
 : Called from Jasper (#913):hug
 : Line: <2> tell context "You hug" + "my name+ + "."

She gets rid of the stray quote before the “my” in line 2, and next gets an error
message from the missing return in line 3. She changes it a few times, and
finally gets it to compile, but now gets a run-time error. Next she simplifies
the script, eliminating the last few lines:

102

on hug this
 tell context "You hug" + my name + "."
 announce_all_but context context's name + "hugs" + my name + "."

This gives her a “missing end” error. She now changes it to:

on hug this
 tell context "You hug" + my name + "."
 announce_all_but context context's name + "hugs" + my name + "."
 emote "grins widely and jumps with joy."
end

This compiles, and she tries it out:

--> hug Jasper
You hugJasper.
Jasper grins widely and jumps with joy.

She edits the program to add in the missing space after the word “hug.” Next
she looks at herself, adds a few adjectives to her description, and changes her
gender from royal to female. She looks at Jasper and hugs him one more
time, goes home, and then disconnects for the day.

4.3 Saturday: Independent Progress
On Saturday, Rachael is on a few times during the day; no one else is around.

Storm logs on in the late afternoon, sees that no one else is on, and wanders
around a bit. Next she creates a new creature and calls it Callie. She sets
Callie's gender to female and Jasper's to male. She describes Callie as “You
see a large, furry cat, with big orange eyes and a royal air around her.” (She
uses the client to edit Callie's description property this time, instead of using
the “describe” command as she had previously.) She adds this script to Callie:

on tickle this
 emote purrs
end

That works, so now she adds this one:

on utter "cat"
 say "I am not a mere cat! I am deeply offended!"
 emote "looks indignant and raises her nose haughtily."
end

on utter "Callie"
 say "It is a beautiful name, is it not? Just like me."
 emote "purrs and sits down in a regal pose."
end

103

MOOSE’s pattern-matching parser makes it easy to have multiple scripts with
the same name. These new scripts both work as well. When you type “utter
cat,” everyone in the room sees:

Callie says, "I am not a mere cat! I am deeply offended!"
Callie looks indignant and raises her nose haughtily.

She looks back at Jasper's hug script again, and next changes Callie's utter
scripts to be:

on utter "cat"
 tell context "Callie says, 'I am not a mere cat! I am deeply

offended!'"
 announce_all_but context context's name
 emote "looks indignant and raises her nose haughtily."
end

on utter "Callie"
 tell context "It is a beautiful name, is it not? Just like me."
 announce_all_but context context's name
 emote "purrs and sits down in a regal pose."
end

In her first version, she was able to put the now familiar “say” and “emote”
commands—commands she uses all the time to communicate with
Rachael—into her program. Her second version makes her program more
like the other program she has seen before. However, she doesn’t understand
what these commands really do. In this version, when you run the “utter
Callie” script:

--> utter Callie
[The context (the person typing the command) sees:] It is a beautiful

name, is it not? Just like me.
[Everyone else but the context sees:] Callie
[Everyone sees:] Callie purrs and sits down in a regal pose.

Next she changes the “utter cat” script:

on utter "cat"
 tell context "Callie says, 'I am not a mere cat! I am deeply

offended!'"
 announce_all_but context context's name + "looks indignant and

raises her nose haughtily."
end

Now the output is:

--> utter cat
[Context sees:] Callie says, 'I am not a mere cat! I am deeply

offended!'
[Everyone else sees:] Callielooks indignant and raises her nose

haughtily.

104

In her first version, the words “Callie says” were generated automatically by
the say command. When she switched to “tell” instead of “say,” those were
missing. She now has manually added them back in. Storm tests this
version and observes that she doesn’t see Callie look indignant any more, so
she puts it back to an 'emote' and makes a similar change to the “utter Callie”
script:

on utter "Callie"
 tell context "Callie says 'It is a beautiful name, is it not? Just

like me.'"
 emote "She purrs and sits down in a regal, but dainty, pose."
end

This doesn't do quite what she wanted:

--> utter Callie
[The context sees:] Callie says 'It is a beautiful name, is it not?

Just like me.'
[Everyone sees:] From Storm: 6 Callie She purrs and sits down in a

regal, but dainty, pose.

Next she changes “tell context” in the second script to “tell Callie”. When she
tries it, that line simply doesn't appear to Storm. She puts it back to “context”.
In the emote, she changes the “She” to “Callie”, so now she gets a line
beginning with “Callie Callie”. Next she changes the start of the line to
“emote say.” This prints out “Callie say Callie”. Next she simply scrunches it
into one long “tell context” command:

on utter "cat"
 tell context "Callie says, 'I am not a mere cat! I am deeply

offended!' Callie looks indignant and raises her nose haughtily at
you, with a sniff of disgust."

end

on utter "Callie"
 tell context "She says 'It is a beautiful name, is it not? Just

like me.' She sits in a regal pose, with an air of such splendor
that makes you feel unworthy of her presence."

end

Now only the person typing the command sees Callie’s response. Storm may
not understand that other people won’t see it. In fact, her original version
was probably closer to what she wanted. She has spent 29 minutes
experimenting.

Satisfied, she wanders around the world a bit. She chparents Callie to be
a greeting creature, as she had done with Jasper. She logs off for the day.

6Storm is holding Callie. The system prefaces the output with the words “From Storm” to
identify its source.

105

4.4 Sunday: More Mutual Reinforcement
On Sunday, Storm connects again in the morning. Her character wakes up in
her home, which she notices she hasn't yet described. She describes it as:

You are in a black room, with silver stars all over the ceiling. In
one corner, you see a little pond with a fountain and lots of lily
pads. In another, there is a large, comfy black chair with long,
black cat fur all over

She modifies this a few times, settling on:

You are in a black room, with silver stars all over the ceiling. In
one corner, you see a little pond with a fountain and lots of lily
pads. In another, there is a large, comfy black chair with long,
black cat fur all over it. There are two open windows, and s light
breeze gently flaps the black lace curtains. Silver bells tinkle
merrily.

Next she reads the dog tutorial parts 1 and 2, and makes herself a child
of generic dog named Toby. She adds an “on tickle this” script to Toby which
just “emote laughs”. She next changes it to this:

on tickle this
 say "That is beneath my dignity."
 emote looks at you with scorn and contempt.
end

She looks at the pet script on Toby's parent generic dog, and then uses
that as a model to improve her tickle script:

on tickle this
 tell context "You tickle " + my name + "."
 announce_all_but context context's name + " tickles " + my name +

"."
 say "That is beneath my dignity."
 emote looks at you with scorn and contempt.
end

The previous day, she struggled to use another object’s program as a model.
This time, she is successful. This program will tell the context “You tickle
Toby” and tell everyone else that “<context’s name> tickles Toby.” The
previous day’s experimentation has paid off. It’s worth noting also that her
program is not an exact copy of what the tutorial or existing dogs do—she has
customized it, making her dog react with a different personality.

She next tries a couple simple string constructions out at the command line,
as suggested by one of the system tutorials (the second part of the dog
tutorial):

106

--> "You pet " + my name + "."
=> "You pet Storm."

--> my name
 => "Storm"

She next reads help on the dig command, and digs a new room called Cat's
Corner, and describes it:

You are in a smaller black room, and cat pictures are all over the
place! Toys and a food dish decorate the floor. A well used
scratching post is in one corner. A big, black sofa with red cushions
is on your right. Lots of cat fur is shed all over the place. There
is a window by the sofa, where bird song is drifting in.

Unfortunately, she realizes that she accidentally put that description on her
original room instead of the new one. With a bit of struggling, she manages
to switch the descriptions. She told me during a later interview that she did
this by reusing different describe commands from her input buffer to switch
them.

Next she digs Jasper's Pond off of Callie's Corner. She is careful this time to
make sure she is describing the right room. She describes it as:

Water splashes into the large pond in the center of this room!
Several frogscroak amid the weeds and stones. You can see some
minnows swim racefully in the water. Lily pads are abundant here.

Storm wanders around the world a bit and then makes a new object
inheriting from generic ticklish object. She told me later that she believes she
saw the object number on her visit to the library. She immediately recycles
the new object without trying it out. She walks back to the library, looks at
the parents of one of the library's objects, goes home, and makes herself
another object: catnip mouse, with parent generic thing. She describes it as “
A catnip mouse that seems loved well. Made of red felt and a yarn tail.”

At this point, Rachael connects and pages her 'HI!!!' They have both been
online several hours since they last met, but not at the same time. Rachael
audits Storm and examines some of her creations remotely. Storm is in the
process of adding a 'throw' script to her catnip mouse. She looks back at the
hug script on Jasper as an example. She hasn't responded to Rachael yet, who
pages a second time: 'May I join you, oh great power of wind?' Storm pages
back 'yes'.

Jasper says, 'Welcome Rachael'
Rachael beams in.
Jasper says, 'Welcome Clover'
Clover arrives, following Rachael.
Rachael says, 'hi!'

107

Jasper says, 'HiRally'
Rally arrives, following Rachael.
Storm says, 'Hi!'
Rachael says, 'What are you doing?'
StormhugsJasper.
Jasper grins widely and jumps with joy.
RachaelhugsJasper.
Jasper grins widely and jumps with joy.
Rachael smiles.
Storm says, 'Just experimenting'
Rachael says, 'ahh...I see you know about dig.'
Storm says, 'yup'
Rachael says, 'Well, you are learning fast!'
Storm says, 'What do you think of my rooms?'
Rachael says, 'They are very nice.'
Storm says, 'Thanks! Did you see Callie'
Storm says, 'she's my cat'
Rachael says, ' could you tell me what :-) means, or what ever that

thing like it means? I haven't figured it out, and everyone does
it!'

Rachael says, 'no I haven't. I'd love too.'
Storm says, 'look at it sideways! It's a smily face!'
Rachael says, 'Oh!'
Rachael grins!

On Rachael's arrival, Storm immediately shows off her new creation, Jasper's
hug script. Rachael acknowledges it by hugging it herself and then smiling.
Throughout the conversation, Rachael offers positive feedback. The
exchange is nicely two-way: Rachael has a question that Storm can help her
with.

Storm next invites Rachael to her other room, where she shows off her cat
Callie. Storm suggests that Rachael say “cat.” Rachael does, and nothing
happens. Storm tries to figure out what's wrong. Rachael looks at the code
on the cat and figures out that she needs to type “utter cat”, and does. She
laughs. This prints output to only her. Storm urges Rachael to try it, not
realizing she already has. Rachael explains she did try it—that's why she
laughed. They continue to play with Storm's cat, and then Rachael pets her
own cat Clover. Storm pets Clover as well and says she's pretty:

Storm says, 'Clover is pretty'
Rachael says, 'I think you are worthy of being a

Crowned_player_class'
Storm says, 'cool! like what?'
Rachael says, 'Well, you'll see.'
Rachael smiles mysteriously.
Storm says, ''wanna see my frog room'
Rachael says, 'sure!'

They continue talking, and showing off creations to one another. Rachael
explains how her special player class gives you clothes, and suggests Storm
use it. Storm explains that her creatures are named after friends of hers—her
real life friend Jasper likes frogs. Rachael invites Storm to her game room,

108

which boots you out (sending you back to your home) if you don't type the
right thing. She doesn't explain how it works to Storm, but suggests she look
at the code to figure it out. After getting booted, Storm just goes idle for a
while and doesn't answer Rachael's pages. Rachael goes to work on Clover's
enter script, and fixes it. Storm comes back and they talk about the game
room a bit. Rachael tells Storm how to use the “list” command to look at
code. (Storm looks for help on “list,” which unfortunately doesn’t yet exist.
We have added it since then.) Storm says she has to go, and they make plans
to meet the next day around 3 PM. They both log off.

Rachael comes back a few hours later, and examines some of Storm's things.
She makes a small change to one of her own programs, and logs off. Two
hours later, she logs on briefly again. Finding no one on, she disconnects.
She connects for half an hour again in the evening, and investigates what
some basic system objects do.

4.5 Monday: Camaraderie Combats Frustration
Monday (a school holiday), Rachael logs on and off quickly in the morning.
Storm connects a little after 1 PM. She starts to work on the dog tutorial, part
3. Rachael notices she's on and page 'Hi!' Storm pages back 'I'm working on
a tutorial. When I'm done, I'll page you again. Thanks!' Rachael pages back
'Okay. See you then!!' Storm works through the tutorial, and then recycles
the dog she's made. She goes back to working on the throw script on her
catnip mouse. She experiments with variations on using say and emote and
leaving them out entirely, with little luck.

Rachael works on improving some of her programs, and then snoops into
various system functions. She checks Amy's last commands (which relate to
the registration room) and then tries to figure out what the registration room
does. Finally, she gets curious about what Storm is doing and checks Storm's
last commands. Storm has been tossing her mouse over and over. Rachael
asks if she can come over, and Storm says 'sure'.

Rachael says, 'hi'
Storm says, 'Hi!'
Rachael says, 'Whatca doin'?'
Storm says, 'Being unsucessful with the dratted mouse!'
Rachael says, 'AIIIE! What seems to be the problem?'
[Rachael here checks 'scripts mouse' and tosses it.]
Rachael says, 'Hmm..what do you want it to do?
Storm says, 'well, the mouse should be thrown across the room but it

just won't GO!!!!'
Rachael says, 'okay this is the script:1: on throw this 2:

drop 3: " thrown across room. " 4: end'
Rachael says, 'well, first, " thrown across room. " dosen't do

anything. You need to announce it.'
Storm says, ' what the heck is that supposed to mean?'
Rachael says, 'Pardon?'

109

Rachael says, 'You need to make it say 'announce " is thrown across
the room."' '

Rachael says, 'I mean, 'announce my name + " is thrown across the
room."' '

Storm changes the script to this:

on toss this
 drop
 announce myname + 'is tossed across room.'
end

The old throw script is unchanged, which Rachael points out. Storm tells her
to try the toss script.

Rachael says, 'You made a tiny error. You said 'announce myname + 'is
tossed across room.'' when it should say 'announce my name + " is
tossed across the room."' '

[Storm adds in the space.]
Rachael says, 'When your done could you please drop your dog? I want

to test something with Clover.'

Rachael tries 'toss catnip' and 'catnip mouse is tossed across the room' is
printed to both of them.

Rachael says, 'okay, now it announces it.'
Rachael says, 'But you want it to go into the room right?'
Storm says, 'yeah'
Rachael says, 'well, I think that if you said 'this:moveto my owner's

location' it might work..'
Rachael says, 'instead of drop...let's try it.'
Storm says, 'well, let's lay off the mouse before i strangle

it!!!!!!!!!'

Storm tries to take Rachael's advice, but adds the new code to the first line
instead of putting it on its own line. Now you can't toss it at all. In my face-
to-face discussion with Storm and Rachael together, we were talking about
the benefits of working with someone else, and Storm noted particularly
appreciating Rachael’s support at this moment:

It was sort of handy when she came in. Like that catnip mouse, which I
finally threw away, cause I was just sick of it. And it wasn't working,
so.... It was nice to have somebody who I could just sort of rant and
rave all my woes about this mouse to. [Laughing.] We just started
saying “it's ok, it's ok, calm down, it's just a little object, it won't kill
you.”

Storm drops her smart dog as Rachael requested, and it reacts to Rachael's cat
as Rachael had hoped. Storm compliments Rachael on her cat. Storm
suggests they go to the game room, and Rachael agrees. This time Rachael
explains how it works right away. After jumping around in the game room

110

for a while, Storm suggests they explore. They go to Paradise Island together,
a room built by an eleven-year-old girl where you can swim, climb trees, and
build a summer home. Storm builds another home there. Rachael teaches
Storm about the 'audit' command. Rachael suggests Storm connect her
houses in different places together to make a loop. Storm asks how. Rachael
reads “help dig” and gives Storm a concrete example of a command. Storm
works on making the circle of exits, with help (and positive reinforcement)
from Rachael. Storm runs out of quota, and Rachael advises her to recycle
stuff or ask Amy for more quota. (Each member of MOOSE Crossing is given
a quota for the total number of objects he or she can build. This is necessary
to prevent the database from getting too big for the machine. Children who
ask for more quota are almost always granted more.)

Rachael has to leave. They plan to meet the next day at 10:30 AM. Rachael
logs off and Storm logs off. Rachael logs on again a few minutes later. I am
back from Maine, and talk to her a while later:

Rachael laughs. "Have you seen any of Storm's things
Amy says, 'she's made stuff already?'
Amy says, 'wow!'
Rachael says, 'Yes! Will almost full credit!'
Amy says, 'she's been busy!'
Rachael says, 'Yep! I've showen her somethings, but she's done some

on her own.'
Rachael says, 'It is. She is really nice.'
Rachael says, 'We spent almost 2 hours together today.'
Amy says, 'great!'

Rachael is logged on for several more hours that day. She programs Marj, a
robot that acts as a second self for her online.

4.6 Tuesday: Collaboration
Storm logs on early in the morning. She continues to work on the dog
tutorial, part 3. As part of her work on the tutorial, she has made a pet dog
named Tao and another pet called Melvin the Moose. She changes the parent
of her objects from generic dog to generic cliché-spouting object, a program I
wrote that inserts clichés into the conversation at random intervals, and to
which you can teach new clichés. She disconnects.

Rachael and Storm both connect promptly at 10:30, the time at which they
had agreed to meet. Rachael sends her new puppet, Marj, to talk to Storm.
Storm teaches Melvin a cliché. Rachael drops Clover. She's made some
coding improvements on Clover since they last talked. Each of them is
immediately showing off the new work they've done.

111

Storm must be a bit confused, because she pages Rachael asking if she would
like to join her. Rachael has Marj explain that she is already there. As
Rachael is talking, Melvin the Moose is generating errors.

Marj looks distasefully at Melvin. It is giving Rachael lots of
errors because she is talking through a puppet.

Marj says, 'I am not a MEAR puppet. I am a non - orgainic lifeform.'
Storm says, 'I am sorry about my moose. She is very...strange.'
[What Storm is saying isn't actually getting across to Rachael, because Rachael’s puppet
isn’t working correctly yet.]
Marj says, 'We non - orgainic lifeforms have feelings too!'
(from Rachael's room) Rachael grins broadly.
Storm says, 'And I know, o mighty one, that you are not a MERE

puppet!' [Rachael again doesn't hear this line.]

The conversation continues, with Rachael not hearing Storm's side. Rachael
wonders why Storm is being so quiet. Storm responds that she's not; Rachael
of course doesn't hear that either. Storm asks a question, and gets no answer.
She repeats it with increased urgency (i.e. six question marks). Finally,
Rachael checks Storm's last commands and realizes something is wrong. In
this instance, Storm has helped Rachael to detect a bug in Rachael’s program.
The exchange of technical help has already become very much two way.

Storm suggests they make a medieval room. Rachael likes the idea. Storm
asks where they should make it. Rachael suggests off of her castle. Rachael
makes the room. Storm asks if she can be the one to describe it, and Rachael
says yes. Joint ownership of objects is not currently supported. It would be a
desirable feature. In this case, Storm ends up building an additional room so
that she can be the one to describe it. Rachael sets up the exits to connect the
new room to her castle. Storm writes a first description, and Rachael offers
suggestions for additions. Storm starts with:

You are in a red room. Armor and wepons are all over, but they are
old and dull

She expands it to:

You are in a red room. Armor and weapons are all over, but they are
old and dull, so you can't use them. But the armor and weapons are
strikingly well made.

This conversation ensues:
Storm says, 'hi. Look here and tell me what you think...'
[Rachael isn't in the room at this moment, and doesn't hear this line.]
[Rachael arrives.]
Rachael says, 'hi'
Rachael says, 'hmm...'
Rachael says, 'Great!'
Rachael says, 'The only problem is the exits...look it says

passage...armory'
Rachael says, 'We can have amy help us fix that.'

112

Storm says, 'any other ideas for describing?'
Rachael says, 'wooden benches?'
Rachael says, 'blood stains?'
Rachael says, 'rusty weapons?'
Storm says, 'i like it! give me a second...'
Rachael says, 'a fire'
Rachael says, 'ok'
Rachael says, 'it is dim'
Rachael says, 'the only light is from the window and fire'
Rachael says, 'the fire is roaring'
Rachael says, 'in the center of the room.
Rachael says, 'We could rename the room to "hero's hall!"'
Rachael says, 'I mean Hero's Hall'
Storm says, 'try the description now...'

Rachael’s brainstorming inspires Storm to improve the description:

You are in a red room. Armor and weapons are all over, but they are
old and dull, so you can't use them. But the armor and weapons are
strikingly well made. Tapastries of unicorns and knights decorate the
walls. There is a lone window here, with red velvet curtains. You see
a blood stain, old and brown, streaked across the wall. The only
light comes from the fire, for in this room it is eternally night.
The fire is in the center of the room, and it is crackling wickedly.
You see a white flutter in a shadowed corner, and your heart stands
still. But it is only a piece of cloth...or so you think...

Rachael says, 'wow! It's great!'
Storm says, 'Thanks.'
Storm says, 'I love writing, you see...'
Rachael says, 'It's like a murder mysteroy'

We discussed the construction of the room in our face-to-face interview:

Amy: Which parts of that were whose idea? How did it start, and
whose idea was which part?

Rachael: I think it was her idea originally to build the room

Storm: Yeah, I wanted to build a room that we could both do stuff in.
And she suggested a castle. And castles and dungeons and dragons are
just stuff I've always liked. When I was like 2 I had a dream about
dragons that would take me places. So I always liked them and I
thought, that would be pretty cool if we did all this stuff. I wanted to
describe it cause I like to write. My original description was like one
sentence, which was boring.

Amy: And then what happened?

Storm: Then she [turning to Rachael] then you said all the suggestions,
you know, like blood stains and stuff like that. And I thought "Ah
yeah!" And I thought of a catalog that we get, it's called Design

113

Toscano. It's got gargoyles and tapestries, swords and that kind of stuff.
So I just added a whole bunch of stuff.

Rachael: And I think after I saw her description I thought we should
add some objects or something in the room or something to follow up
the description.

Storm: Like blood stains. And I thought "Ah ha! Yes, There we go!
Now I have some ideas"

Amy: Do you think either of you could have done as good a job on
your own?

Storm: No.

Rachael: No, I don't think so.

Amy: Is it fun working with someone else?

Rachael: It's much more fun than working by yourself. Cause if
there's nobody to see it, why even bother doing it?

This is a nice example of collaboration. The girls concur that the result is
better than if either girl had made it on her own. They are learning from each
other and inspiring each other to do better work. The result is a positive
experience with creative writing: constructive feedback, a feeling of success,
increased confidence, and increased interest in pursuing creative writing
further.

Rachael and Storm decide the room needs a dead body and note. Is it a
murder or a suicide? Who is dead and why? Their shared vision of what has
happened here evolves as they work together. This time Rachael writes, and
Storm offers detailed feedback. Rachael says she has to go. They agree to meet
Thursday at 5.

Rachael comes back half an hour later. She asks Storm if she's going to go the
Media Lab. Storm doesn't understand; Rachael explains that some times
people go to the Media Lab to do MOOSE Crossing. Storm says no, she's not
going. Storm shows Rachael her new Gargoyle. It has a couple of errors: it's
an adaptation of the smart dog tutorial, but it's missing some required
properties. Rachael explains that to Storm, and Storm fixes it.

Storm has made a ghost object. Its description reads:

The ghost of the murdered girl. She says "I will not harm you. I am
left here to mourn my loved one forever. Heaven would not take me

114

because of my suicide, but Hell could not take me because of my
goodness. So I must stay here, and mourn Patrick until the stars grow
cold and the Earth is no more."

Rachael suggests Storm might make the ghost say that whenever anyone
enters the room. She explains how to write an 'enter' script.

The previous day, I met and talked with Storm online. She showed me her
creations, and I complimented her on them and on her fast progress in
general. Storm mentions this encounter to Rachael. Despite the child-
centered nature of the environment, feedback from adults is still significant:

Storm says, 'oh, amy loved my work and gave me some more quota to
make stuff..'

Rachael says, 'That's great!'
Rachael says, 'she did the same to me, byron, zoro, and miranda.'
Storm says, 'I'm going to try to make that script... Why don't you

create a sword or something? Make it out of Generic Jewelry, if
there is such a thing...'

Rachael and Storm hang out together in the same room. Rachael works on
getting Marj to be able to page people; Storm writes the enter script Rachael
suggested. The girls’ online friendship continues to the time of this writing,
much in the same fashion.

4.7 Seven Months Later: Meeting Face to Face
The girls finally met face to face for the first time on the day that they both
came to the Media Lab to talk with me about this chapter. They hadn’t met
previously because they live more than a 90-minute drive apart, and because
the MOOSE Crossing code of conduct strongly discourages meeting other
members face to face for safety reasons. Storm said Rachael was much like
she had imagined. Rachael confessed that she hadn’t really given much
thought to what Storm was like in real life. Storm arrived at the Media Lab
first, and I interviewed her separately. I had interviewed Rachael on several
previous occasions. Next Rachael arrived, and I interviewed the two of them
together. I then gave them both an hour to talk without me present, and
went to chat with their parents. The girls immediately decided to log on to
MOOSE Crossing. Afterwards, I asked them to compare connecting together
versus connecting alone from home:

Amy: How is doing this sitting next to each other at two terminals
different from doing it from two towns a hundred miles away?

Storm: It can be a lot more funny, cause we can talk to each other.

Rachael: Yeah, like when they're at the Media Lab, at least in the
beginning especially, they'd be talking and they'd say like “that's not

115

funny.” And I'm like, what are they talking about? And then when I
went to the Media Lab,7 I realized they're joking around at the same
time. So we were just doing that to Zeus. I told him eventually what
was going on.

Amy: So it's more fun with someone in the same room?

Storm: It's a lot of fun that way.

Amy: Do you think it would be just as much fun if everyone was
always in the same room?

Rachael: Well, no.

Storm: That won't work if everyone was just in the same room.

Amy: Well, it could be. We could just have the people at the Media
Lab and that's it.

Rachael: It's fun to have people you've never seen before. And it's
fun, the aspect of it being global.

Rachael and Storm hit it off face to face. After leaving the Media Lab late that
Sunday afternoon, their families went out to dinner together. A few days
later, I asked them each via MOOmail (email internal to MOOSE Crossing)
how she thought meeting face to face would affect their online friendship.
Rachael responded “I'm not sure. I think that it might strengthen our
friendship...but I honestly don't know.” Storm said “I don’t think it really
changed our friendship much at all.” They hope to meet up face to face again,
but the driving distance between them may be an obstacle.

Rachael’s experience meeting Storm stands in contrast to her experience
meeting Miranda. Rachael describes herself as “unpopular” and says “I'm a
very intellectual person. I'm not very physical.” I would characterize Storm
as earthy. On meeting face to face, they appeared immediately comfortable
with one another. On the other hand, I would characterize Miranda as a
popular child. Miranda is smart, pretty, and adept and relaxed in her social
relations. Rachael and Miranda had developed a warm friendship online.
However, on meeting face to face, they seemed immediately uncomfortable
with one another. Online, they hadn’t been aware that one of them was a
popular sort of kid, and the other was unpopular. Rachael says that after
meeting Miranda face to face, she was initially much less comfortable with
her; however, over the months that followed, she slowly became more

7Rachael is referring to the children who come to the regular MOOSE Crossing after school
program at the Media Lab. She attended that program occasionally—three times in 1996.

116

comfortable again. Different factors are significant in determining social
success and social compatibility online versus face to face.

4.8 Conclusion: Integrating Technological and Social Contexts
Storm’s experiences that weekend are quite typical of the general patterns of
interaction on MOOSE Crossing. However, she was unusually lucky in one
key respect: she immediately met someone with whom she has significant
shared interests. The population of MOOSE Crossing is still smaller than is
desirable (primarily because not enough kids have Macintosh computers on
the Internet, and also as a result of the cumbersome nature of the registration
process). This makes it more difficult for individuals to meet people they
particularly like, because there are fewer people to chose from. Even within a
larger community, it may take time before a new member happens to meet
someone with shared interests. Storm was fortunate to meet Rachael right
away.

Over that weekend, Storm used a variety of learning strategies and sources of
support. In this transcript she makes use of:

• the introductory message sent to all new members with their
passwords,

• the online help system,
• online tutorials,
• unsolicited support from peers,
• solicited support from peers,
• trial and error, and
• using others’ projects as models.

Of particular interest is the inseparability of the social and intellectual activity
going on. It matters not just that a learner have access to adequate support.
One must also ask, support from whom or what? What is the relationship
between the learner and the person or program offering assistance? That
relationship is rarely if ever neutral. If a computer program attempts to affect
a disembodied, non-anthropomorphized tone, working with that program
will still evoke the learner’s basic feelings about computers and technology in
general. For many people, those feelings are not positive. For this reason, the
tutorials on MOOSE Crossing are written in a first-person, chatty style. The
dog tutorial begins, “Hi there! This is Amy and I thought I'd show you how I
made my dog, Pumpernickel.” (Storm noticed the tone of the tutorials, and
commented that it was just right—”It's not totally perky, but it's not like
[speaking in a monotone] ‘this is how you do it.’”) The informal, warm tone
is intended to put kids at ease.

While some attention to the “personality” of a computer program can help
make a more supportive learning environment, there is no substitute for

117

human contact. A human can, for example, tailor assistance to the particular
situation. Rachael was responding to Storm in a way computer programs can
not, at least yet. Newman et al (Newman, Griffin et al. 1989).comment that
“current computer systems are actually quite far from being able to perform
the feats of sensitive interpretation performed routinely by human
teachers”(Newman, Griffin et al. 1989). Research in artificial intelligence and
education aims to help tailor support to the user, often by attempting to
model what the user knows and anticipating typical mistakes. Unfortunately,
such systems are still largely unsuccessful, and it’s unclear how much
progress in this area is even possible. Unless the general project of creating an
artificial intelligence is successful, interacting with intelligent tutoring
systems will remain unsatisfying. A teacher’s relationship to a student is
fundamentally social in nature, and computers can not yet fill that role. It’s
not likely they will ever be able to do so.

Storm received help not from just anyone, but from a girl her own age who
also loves Star Trek and Monty Python. Similarly, she used as examples not
some official library of sample programs written by a disembodied authority
figure, but programs designed and actively used by her new friend, Rachael.
She also looked at additional projects that Rachael recommended, written by
Rachael’s other online friends. Her choice of examples to embrace is a
significant act that takes place in the context of a network of social relations.
A child who mimics another’s way of dressing or speaking is paying that child
a high compliment, and taking on that child as a role model. Similarly, using
someone’s project as an example to learn from is to some extent accepting the
project’s author as a role model. Making use of a sample program can be as
much a social as an intellectual act.

Social context is of central importance to any learning experience. One of the
strengths of networked learning environments is their ability to help
integrate a supportive social context with the computational context. The
Logo language traditionally arrives in a shrink-wrapped box, with little social
support for its use. Teacher workshops try to build networks of support for
the use of Logo as a learning tool; however, the workshops are usually too
short, and too few teachers can attend. Once a workshop is over, typically so
is the support. Additionally, the model most often used is one to many: a
workshop leader supports a group of teachers; each teacher supports many
kids. In a many-to-many model, kids support one another. MOOSE Crossing
attempts to deliver a rich computational artifact to kids, with a network of
many-to-many social support built in.

118

119

5. Community Support for Construction

“Another thing about moose-crossing is that I feel as if I can really help
someone. I like learning and doing stuff on my own, but the real reason I
come to moose-crossing is that I feel needed, and wanted. While
programing is a lot of fun, I don't think I'd do it, if there wasn't anyone
who would apprecitate it.”
— Rachael (girl, age 13)

5.1 Uzi’s Frustration
Uzi (boy, age 13) was excited about joining MOOSE Crossing, and his mother
was delighted. She wrote, “He is 13 and is doing a lot of MUD'ing lately. I'd
be thrilled to have that energy turned towards something more ‘scientific.’”
Approximately six percent of MOOSE Crossing members were already
members of other MUDs before joining. Before he even sent in his
permission forms, he was mailing me detailed questions from his mother’s
account:

Thank you for the help! By the way, this is Uzi speaking. How do I
program socials to do different tthings with different subjects? For
example, I type safe jed". I see " You drop a fifty ton safe on
jed", Jed sees " AAAAAAH! there is a safe falling on you!", and
everyone else in the room sees "SQUISH!".

He mailed in his permission forms, and first connected a few days later. No
other kids were online at the time. A veteran MUDder, he knew
immediately he wanted to describe himself and set his gender.
Unfortunately, a couple days earlier I had changed the syntax of the “gender”
command. (It was changed from “gender me is <gender>” to “gender me as
<gender>” to avoid confusion with use of “is” as an infix operator.) I
announced the change in the newspaper, but neglected to update the help
message for “gender.” Uzi tried several variations on the command to no
avail. He finally pounded out on his keyboard “kill self.” This, amusingly
enough, printed out some help on how correctly to kill a task (running
program). Uzi was used to MUDs where killing people and things was
normal; on MOOSE Crossing the command translates to an obscure and
rarely-used advanced technical command.

This was relatively early in the development of MOOSE Crossing, and the
population was still small. Most kids knew to come by on Monday
afternoons, when there were always lots of other kids around. On this Friday
afternoon, only Case, an MIT undergraduate working on the development of
the MacMOOSE client program, was logged on. Uzi couldn’t figure out how
to contact him. Uzi wandered around the virtual world a bit, and then gave

120

up. Three days later he connected again at 9:30 PM. This time, no one at all
was logged on—most MOOSE participants are younger than Uzi, and 9:30 PM
is quite late. He wandered around the virtual world for forty minutes, and
then gave up for good.

Uzi’s experience was fraught with problems. His past MUDding experience
worked against him—instead of consulting the list of basic MOOSE
commands sent to him with his password, he kept trying commands from
other MUDs that did not work. That gap was cultural as well as technical—he
spent a significant chunk of his time repeatedly trying to kill things. Most
kids intuitively understand from the code of conduct that killing is not
allowed. Uzi was so accustomed to killing things on MUDs that he failed to
make that inference. Most importantly, Uzi failed to meet anyone else
online.

MUDding alone is rather like bowling alone (Putnam 1995)—it misses the
point of the activity. Other children could have helped Uzi with his technical
difficulties, and shown him around the virtual world. He did wander by a
number of significant projects made by other children, but paid little attention
to them. Those projects would have been much more interesting if proudly
presented by their owners. His experience is in singular contrast to that of
Storm, who was practically overwhelmed by Rachael’s eagerness to help her.
In this chapter, I detail ways in which community supports construction
activities.

5.2 Pilot Study: Programming for Fun
In 1993-1994, I conducted an informal study of twelve adults who learned to
program for the first time on MUDs, just for fun. Eight learned on
MediaMOO. The twelve subjects programmed a variety of objects. Jim is a
43-year-old building contractor who lives in the Pacific Northwest of the
United States. He built a “77 Jeep Cherokee.” Susan is a thirty-eight year old
professor of agriculture from the South. She built a simulation to help her
students learn to perform certain laboratory procedures. Christopher is a 23-
year-old graduate student in comparative literature in South Africa. He
programmed a poetry generator. Neil is a 30-year-old graduate student in
American cultural studies in the Midwest. He built a “RetroFuturist
Aerodrome” complete with a biplane, a blimp, and a taxi stand for those who
want to catch a ride.1 I’ll describe Jim’s experiences in detail.

Jim has always lived in the Pacific Northwest of the United States. After he
graduated from high school, he was drafted into the army. By a stroke of luck,
he narrowly avoided being sent to Vietnam. After two years of military
service, he attended two years of junior college on the GI Bill. He took what

1Parts of this section appeared in (Bruckman 1994).

121

he describes as “just the fun classes” and never got a degree. In need of work,
he learned that a friend of a friend needed help building a house. After a
number of years, he built up enough expertise to start his own building
contracting business. Jim has little mathematical or scientific background,
and had never programmed before he encountered MediaMOO:

I work on a computer at home. I don’t have it in an office, at school,
or anything like that. We use a Macintosh. My wife was a graphics
designer and she needed a computer to stay in her field. I’m a building
contractor. She bought a Mac about four years ago and started doing
design on the computer, and I started using it for my business, just
playing with it, and really liked using it.

Asked why he decided to try programming, Jim describes a desire to
contribute to the community:

Since I started getting involved with this I became interested in
programming because I wanted to be able to manipulate this world in a
better way. And instead of just looking at things and creating things
that already existed, I wanted to try and put my hand to actually
creating something of my own.

Since the MOO language is object-oriented, it is easy to make useful objects
simply by making something which inherits from an existing parent object.
By “creating something that already existed,” Jim means making an object
which inherits its functionality from someone else’s object. You can make a
television set with one simple command, making something which has
generic television set as its parent. Making something which inherits from
an existing parent object is an easy first step towards programming. It is part
of what encourages people that they can and would like to make something
of their own.

The virtual world on MediaMOO is filled with interesting objects made by
members. These serve as models for new users. Every object in the system
functions as a possible model to learn from and be inspired by, just like every
page on the World Wide Web is a potential model for learning HTML. It’s
significant that each model is closely associated with its author, whom you
might happen to meet online. Examples to learn from are situated in a social
context.

Jim also describes the MOO environment as an interactive story to which he
wants to be able to contribute:

It’s like reading a story that I get to help write. And I wanted to get
more input into what was happening, beyond just chatting with people

122

and creating a box or whatever... I wanted to try and do something with
it.

The community of learners present on MediaMOO was one of his key
motivations for learning to program. He wanted to be able to contribute
something to that community. Objects are conversation pieces in MUDs.
When Neil flies by in his blimp, others stop to admire it and ask him how he
created it. That becomes the basis for striking up a conversation, rather like
dog owners in a park being able to strike up a conversation about dogs and
then segue to other topics. Making an interesting object confers status within
the community to the object’s designer. Jim wanted to build something of his
own rather than simply admiring everyone else’s work. Analyses of
individuals interacting with standalone computer systems such as those in
Sherry Turkle’s The Second Self often focus on the individual’s quest for
mastery (Turkle 1984). That quest takes on added dimensions when the
activity is strongly situated in a supportive community context. Other
residents of the virtual world form an appreciative audience for work. In
addition to wanting the personal satisfaction of having mastered the technical
environment, Jim also wanted to be able to use his new creation as a catalyst
for social interaction and conveyer of added social status. On a more altruistic
level, he said he wanted to contribute something to a society from which he
has benefited. People’s motivations for trying to program something in
MUDs are primarily social.

The first step in learning to program is perhaps the hardest. The initial
barrier is primarily emotional. Most adults who do not have formal technical
education suffer from some degree of technophobia. On MediaMOO, a user
named “cdr”2 made a set of clear, simple tutorials. Seven of the eight
MediaMOO programmers interviewed began by doing one of these tutorials.
Susan comments that for her, the tutorials’ primary function was to help her
overcome that initial emotional barrier: “I did cdr’s tutorials and I realized ‘I
can do this!’ But then I had to step back and figure out what it was that I had
done.”

Cdr began by programming a “television set” object. You can turn on your
television set and receive different “programs” on different channels. One of
the first shows he added to the television schedule was called “Coding with
cdr,” an instructional video teaching you how to program a box of donuts that
you can eat. The metaphor of an instructional video seems to put people at
ease. The success of these tutorials also depends on cdr’s friendly, warm
personality. His manner puts people at ease. The tutorials are not detached
technical instructions, but help from a caring, supportive person. Jim
enjoyed doing the tutorials:

2The character “cdr” is Dr. Kenneth G. Schweller, Professor of Computer Science and
Psychology at Buena Vista College in Storm Lake, Iowa.

123

I’m totally program-language illiterate. Well, I found cdr’s tapes. Cdr
was able to lay out exactly what was going on and lay it out step by
step—you watch his tape, and you do what he says. And it worked! I
was able to start to understand what the basics of it was all about. I
made his box of donuts, and then I made myself a car to drive around
in. And I added some events so I personalized it somewhat. I really
enjoyed that.

Jim was excited enough about his car to want to port it over to another MOO
where he has an account, PostModern Culture MOO (PMCMOO). He
discovered that one of the needed parent objects for the car, generic portable
room, did not exist on PMCMOO. In solving this technical problem, he relied
on the help of other members of the community:

I got excited about programming just by making cdr’s car and doing
those things, to where I went back to the other MOO where I had an
account and made myself a vehicle there from scratch. Cause they
didn’t have portable rooms there. I had help, of course. I got a couple
people who knew more than me to give me a hand when I got stuck.
Being in the MOO enables you to be... two people can work on the same
project at once. I could work on my verbs, and when I had a problem I
would call somebody over, and they could just list it out and they could
say “gee, you need to do this” or “you need to do that.” It was just like
having someone sitting behind me at my terminal critiquing what I
was doing.

Just as the community provided Jim’s initial motivation for learning to
program, it also provided support to help him through the process. In a
MUD, you are almost never alone. If you have a technical problem, there are
other people there to help you. Helping others is a central activity in MUD
culture; it is a basis on which strong friendships are formed. People often
speak warmly of those who helped them through technical difficulties.

Jim was inspired enough by his programming experiences to want to share
them with teachers at his children’s school:

I plan on bringing high school kids online. I’ll be working with a high
school this fall. We’re just getting the Internet connection. What I’m
trying to do is get the teachers interested. I mean they’re all interested
in Internet because of all the research and all the facts that can be
gleaned from there. But I also want to introduce them to the MOO just
because it gets people excited about programming.

“This has inspired me,” says Jim. He explains that he has just enrolled in a
programming course at his local university’s extension school.

124

For Jim, the online community provides:
• Role models,
• Situated, ubiquitous project models,
• Emotional support to overcome technophobia,
• Technical support, and
• An appreciative audience for his work

Each of these factors contributes to the individual’s motivation to learn and
ability to learn. In the rest of this chapter, I’ll discuss each of these factors, and
then conclude with a detailed analysis of an extended interaction among
three children.

5.3 “Did You Really Make This?”: The Importance of Role Models
Jim didn’t immediately see himself as the sort of person who could learn to
program a computer. He is, after all, “just a building contractor.” Many
assume that programming a computer is a difficult activity that should be
undertaken only by the technically-educated elite; it’s not the province of
mere building contractors—or humanities majors, or women. Technology
increasingly surrounds our everyday lives, but most people can’t imagine
themselves having meaningful control over it.

For girls and women, the problem is compounded: they may fear success with
computers as much as they fear failure. Sherry Turkle writes that “the
computer becomes a personal and cultural symbol of what a woman is not”
(Turkle 1986). People define their sense of self in part through their activities.
The cultural connotations of “computer programmer” do not conjure up Jane
Fonda or even Jane Pauley. Contrast the connotations of programmer and
figure skater. By becoming a successful figure skater, a woman comes closer
to an American cultural ideal of womanhood. By becoming a successful
computer programmer, a woman drifts farther from that ideal.

Positive role models can help to counter this problem, for men as well as
women. Jim found himself surrounded by peers who could program. He
decided to give it a try himself not only because he knew those friends could
help him, but because he could imagine himself being like them.

The first time Miranda (girl, age 10) tried MOOSE Crossing she stopped and
asked somewhat solemnly, “May I ask you something?” “Yes,” I replied. She
asked, “Did you really make this?” Her face glowed when I replied that I had.
In the weeks to follow, her mother tried to take her to a concert at MIT.
Miranda asked if I would be there. Her mother said she didn’t think so.
Miranda replied that then she didn’t want to go! I had clearly become a role
model for Miranda. Another eleven-year-old girl recently concluded a visit
to the Media Lab with the exact same question. Both girls probably already

125

knew or strongly suspected that I had designed and programmed MOOSE
Crossing, but the explicit confirmation was satisfying. If you have any doubts
about whether women can program computers, or whether it’s a proper thing
for a young woman to do, look around: there are women and girls all around
the virtual world of MOOSE Crossing. The person who designed the system
is a woman. These strong female role models encourage girls to become
involved.

It’s worth noting that MOOSE Crossing is a multi-age community. Role
models can be of any age, but are most commonly older. Younger children
are motivated to learn by their desire to be like the older children, and learn
by imitating them. Aaron Falbel eloquently describes an older student
teaching a younger one to read in his study of the Friskolen 70 school in
Denmark:

Maria (11) and Johanne (9) are using the wood-burning set in the
workshop to make Christmas presents for their friends and relatives.
Maria has just completed a small, wooden tic-tac-toe game for a cousin
of hers in Sweden. The X’s and O’s are made out of wooden pieces that
fit neatly into a finely crafted playing board. She is etching an
inscription to the recipient of the gift on the back of the playing board
when little Clara (6), who just started at the school at the beginning of
the month, wanders by and is drawn into the scene. She watches Maria
etch a floral design under her inscription and is fascinated by the
strangeness of this smoldering writing instrument. Maria notices the
presence of Clara and displays for her the finished product. Clara turns
over the board and feels the grooves of the inscription with her fingers.
Maria asks her, “Can you read?” Clara shyly shakes her head no.
Maria smiles and says “Come,” and she motions for Clara to come sit
on her lap. Then, very slowly and sweetly, Maria sounds out the words
as Clara guides her fingers over the dark-brown letters. Clara is totally
absorbed: her face conveys an expression of rapt concentration, her
mouth partly open, and her cheek leaning against Maria’s arm. The
entire episode lasts not much more than a minute. It is so effortless,
natural, and unself-conscious that to call it “peer tutoring” would be to
debase the beauty of the situation. (Falbel 1989)

At Friskolen 70, students of all ages learn together in one open classroom.
The age segregation typical in the school systems of most cultures is often
counterproductive.

On MOOSE Crossing, two thirteen-year-olds, Jack and Rachael, have become
particularly strong role models for younger children. They are both
accomplished programmers, and their imaginative creations are often
catalysts for social activities. In particular, Rachael has founded a sub-
community she calls “The Gathering” for medieval role playing. Other

126

children are often heard to comment that they wish they could type as fast as
Rachael, so they could keep up in the conversation. It’s evident that many of
them want to be like Rachael in a variety of ways. This benefits the younger
children, and also supplies Rachael with some strong positive reinforcement.
The community provides members with a ready supply of positive role
models.

5.4 Situated, Ubiquitous Project Models
Role models can be a key source of motivation for learning. Jim wanted to be
one of the people who has made something, like Neil and cdr. He wanted to
be like them, which inspired him to want to take on a new intellectual
challenge—and later to bring that same challenge to students at his children’s
school. Clara wanted to be like Maria, so she developed an interest in
learning to read. Jim and Clara both also took interest in the intriguing
artifacts they saw around them. The novelty of cdr’s “tapes” and Maria’s
wood carving contributed to their motivation to learn. It’s important to note
that these examples were not simply unattributed entries in a library. It
wasn’t just any old wood carving; it was Maria’s wood carving. The
relationship between Clara and Maria was part of what made Maria’s wood
carving a compelling model for Clara to learn from. On MOOSE Crossing,
Mouse (girl, age 8-9) wanted to create Charlie the wiggly caterpillar because
she wanted to make something just like her older sister Miranda’s wiggly
snake. The object was interesting in relationship to her admiration for its
owner. Role models and project models are tightly linked. People establish
their identity within the community (and their desirability as a role model) in
part through the objects they’ve created. Conversely, objects are considered
intriguing in part by virtue of who created them. Examples are situated in a
social context.

It’s important that these sample projects are not isolated off in a library—they
are ubiquitous. Most programming languages and scripting tools come with a
separate folder or directory of examples. To see the examples, you must
deliberately seek them out. On MOOSE Crossing, every object in the system
can function as an example. In this respect, MOOSE is rather like the World
Wide Web. You can usually view the HTML source for any document.
When you want to know how to do something yourself, you can remember
something you saw which uses that technique, and look at the HTML source
code. The benefit comes not from the large number of examples (though this
doesn’t hurt), but from the fact that as you are going about your daily business
using the Web or interacting on MOOSE Crossing, you are developing an
ever richer vocabulary of models you can refer back to.

The community of MOOSE Crossing is of course multiple orders of
magnitude smaller than that of the World Wide Web. It’s akin to comparing
the impact of new architectural forms in a small town and a big city. An

127

innovative creation in a small town will be noticed by a high percentage of
the population, and is likely to have a strong influence on the town in the
future. An innovative creation in a city might be seen by more people total,
but by a lower percentage of the population, and is likely to have a less
discernible impact on future designs in the area.

Since the set of examples to learn from is the set of all things everyone in the
community has ever made, those examples reflect the interests of the
community. That set of examples is not static; it grows and evolves as the
community grows. A single, centralized author of a set of examples could
never reflect the community’s interests and needs as well as the decentralized
process of using everyone’s creations as examples to learn from.

A particularly good example of sample projects that are ubiquitous and
strongly associated with their creators are people’s pets. On MOOSE Crossing,
it’s possible to make an object follow its owner around through the virtual
world. This seemingly minor feature has proven to be unexpectedly
important. Recall the conversation between Rachael and Storm referred to in
Chapter 4. Rachael (the experienced user) is showing Storm (the new user)
around the virtual world. As they are exploring, Rachael is being followed by
her pet pig Rally and her pet cat Clover. This conversation ensues:

Rachael has arrived.
Rally says, 'Hello Clover'
Rally arrives, following Rachael.
Clover arrives, following Rachael.
Rachael says, 'I suggest n'
[Rachael is suggesting they continue their explorations by going north. “n” is usually
allowed as an abbreviation for north.]
Storm says, 'how do you make animals?'
Rachael says, 'Well, it depends if you want a new type of animal or

one that already exists.'
Storm says, 'new type'
Storm says, 'i'd like an animal to follow me around'

Experienced users are almost all being followed by a pet (or several pets).
New members immediately encounter these pets, and usually decide they
want one too. Pets that follow their owners are a compelling example for this
particular community. The more broadly applicable design principle is the
value of sample projects that are constantly visible, immediately associated
with their creators. This relatively subtle design decision has catalyzed the
process of engaging new users in making things. Compelling sample projects
made by peers enhance motivation for learning to make things. Making
those sample projects more visible (people’s pets are everywhere all the time)
creates additional opportunities for this positive effect. A pet that follows you
around is also very prominently associated with you, which leverages on the
benefits of linking role models and project models.

128

5.5 Emotional and Technical Support
One school of research in technology and education aims to apply artificial
intelligence techniques to give the learner support. Typically the system
makes a model of what the learner understands, and tries to anticipate and
correct for common misconceptions. Existing systems have had limited
success in this modeling process. However, even if the modeling were much
more successful, they would still suffer from a deeper flaw: they fail to
account for the fundamentally social nature of learning. Asking for help,
receiving help, and giving help are all social acts which help to build
networks of relationships. Help is not merely information. Getting help
from the computer is not the same as getting it from a person. The
relationship between the tutor and the tutee is an essential component of the
process.

Peer tutoring provides a great deal of positive reinforcement for both the
tutor and the tutee. After Rachael (girl, age 13) helps Cindy (girl, age 11) to
finish her animal shed and posts an advertisement about it for her, they have
this conversation:

Cindy says, 'Thanks so much...what can I do to hellp you?
Cindy says, 'You help me too much...'
Rachael says, 'well...let me send it, and then we can talk!'
Cindy says, 'K. Thanks again'
Rachael says, 'oh, no I don't. It's all in the line of duty!'
Rachael says, 'I was and am helped...now I help others!'
Cindy grins
Cindy says, 'You certainly do'

It's true that Cindy needed technical assistance and received it, but this
unusually self-reflective snippet of conversation reveals some of the richness
of the social context in which giving and receiving help takes place.
Exchanging help is part of the social bond between Cindy and Rachael. Cindy
knows not only that she can get the answer if she has difficulty, but that she
can get the answer from a caring friend who enjoys helping her. The
emotional support Rachael provides is inseparable from the technical
support. Rachael has received positive reinforcement for both her generosity
and her technical skill. When explicitly asked what she wants in return, she
suggests that they just spend some time together. Cindy is more than happy
to do so. The girls talk for 40 minutes afterwards, until it's time to go have
dinner. They talk about their ideas for MOOSE Crossing projects, about
school, about their friends. They exchange secret nicknames that only their
closest friends use. Receiving help from someone you would tell your secret
nickname is clearly very different from receiving help from a computer
program or a schoolteacher.

129

Most of the time in most schools, adults teach and children learn. Learning
from peers is refreshing because it equalizes the power relationships. In fact,
sometimes those relationships are reversed—adults often learn from kids.
The first time Steven (man, age 26) connected to MOOSE Crossing, Pete (boy,
age 11) immediately teleported over to say hi and offer help:

Pete says, 'hi!'
Steven says, 'hi Pete'
Steven says, 'this is my first time here.'
Pete says, 'okay! want help'
Steven says, 'sure. sound great!'
Pete says, 'do you want to make something?'
Steven says, 'okay'
Pete says, 'wait a minute'
Pete drops MOOSE.
Steven says, 'alright'
 Pete says, 'type 'pet moose''
[Steven types: pet moose]
Steven pets the moose.
MOOSE crosses the crossing forth.
Steven says, 'i like it!'
Pete says, 'try typing 'tel north main street'.'

“Tel” is short for “teleport.” They both follow Pete’s suggestion, and
rematerialize at North Main Street, where they see this description:

You're in a quiet residential neighborhood of Our Town. The road here
ends in a circle surrounded by houses of all different colors and
sizes. To make a home for yourself here type 'build'.
Obvious exits: ..down.........Magic Subway Station

..south........Main Street

Steven says, 'that was fun'
Pete says, 'what do you think?'
Steven says, 'how do i build a room?'
Pete says, 'type build'
Steven says, 'okay'

Steven types “build” and sees this message:

A team of mooses and barn owls walk and fly in, carrying saws,
electric drills, and hammers. They hammer and saw and bang so fast
you can hardly see them! In seconds, you have a new house. They
attach a sign with your name over the door.
Exit from North Main Street (#208) to Steven's Room (#1842) via

{"Steven"} created with id #1815.
Exit from Steven's Room (#1842) to North Main Street (#208) via

{"out"} created with id #1843.
Your home has been set to this room.
You or anyone else may enter this room by simply typing your name

here. You may leave that room by typing 'out'.
An owl riding on a moose's antelers says 'Welcome to the

neighborhood!' The animals pick up their tools and hurry off to
their next job.

130

Pete sees:
Steven builds a new room here.

Pete says, 'type tel Steven's room'

They both do so. They could actually have gotten there by just typing
“Steven,” but teleporting works as well. They both see:

Steven's Room
Welcome to your new home! To decorate it, type 'describe here as "A
pink house with purple windows a green carpet and silver dots on the
ceiling."' Unless of course you don't like pink....
Obvious exits: ..out..........North Main Street

Steven says, 'that was easy'
Pete says, 'so, what do you want to build?'
Steven says, 'how about a pet?'
Pete says, 'why not a dog?'
Steven says, 'a dog it is'
 Pete says, 'alright! first type 'create #5 named' and put a name.'

Steven types: create #5 named ruff
He sees: You now have ruff with object number #1087 and parent generic

thing (#5).

Steven says, 'okay'
Pete says, 'press the pencil icon'
Steven says, 'okay. what button do i press then?'
Pete says, 'well, in object, type the name, click on script, and type

pet.'
Steven says, 'okay'
Steven says, 'i've now got another window open'
Pete says, 'now type 'on pet this' in it, and press return.'
Steven says, 'okay'
Pete says, 'next, try typing 'emote says "arf" ' and press return'
Steven says, 'got it'
Pete says, 'now, type 'end', press save, and close that.'
From Steven: ruff says arf

Austina logs on, pages Steven and Pete hello individually, and then joins
them.

Austina teleports in.
Austina says, 'hi! Nice to meet you!'
Pete says, 'hi'
Pete says, 'try petting ruff'
Austina smiles
Austina types: pet ruff
ruff says arf
Austina grins. "Nice dog!"

131

This interaction is entirely typical. Pete helps another adult, Nicole (woman,
age 29), later that same day. Similarly, Hermes (boy, age 9) helps Jamal (man,
age 18) not long after.

It’s remarkable to watch an eleven-year-old teaching a twenty-six-year-old.
When I visited with children participating in an educational MUD called
MariMUSE (now called Pueblo) at the Longview School in Phoenix, Arizona
in March 1994, I asked a group of children what they liked best about it. One
child replied that getting to tell adults how things work was his favorite part.
The reversal of normal roles is a powerful experience for many children.
Such role reversals are often observed not just in MUDs but in children
working with computers in general.

The role reversal is most powerful when the child and adult are in the same
room. The kids on MariMUSE were particularly pleased by being able to help
their teachers with technical problems. Interacting with others online, the
role reversal seems less strange, and in fact may not even be noticed. That is
what happened in this particular instance for Pete. He was not even aware
that Steven is an adult. When asked about it later via MOOmail (email
internal to MOOSE Crossing), he replied:

Hi! Anyway, no I did'nt know Steven was an adult. It seemed like
talking to anyone else on moose crossing. well, bye!

Pete hadn’t given the matter any thought one way or the other. Steven, on
the other hand, thought about it a great deal, but came to no conclusion. It’s
easy to find out whether someone on MOOSE Crossing is a kid or an adult,
but neither Steven nor Pete was aware of this fact at the time, and neither
chose to ask the other. When asked via email how old he thought Pete was,
Steven replied:

You know, I was curious about that very fact. I really have no idea!
At times I thought he was a grad student at the Media Lab - the way
he instructed me on how to create my room and my pet, the way he
checked my progress. But at other times, I thought he might just be 8
or 10 years old - when I had more specific programming questions, he
didn't seem to understand.

Another strange issue was the duration of time (long pauses) between
Pete’s replies to my questions. If he was a grad student, maybe he
was working on something else at the same time? If he was a kid, was
he working on homework? Having trouble typing? Building objects?
Maybe the server was slow?

Recently I've been trying to learn as much as I can about programming
in MooseCrossings (hanging out in the treehouse) so *I* can actually
help the kids (instead of the other way around).

And one final note, I'm coming to think that the most important
aspects of MooseCrossings are the code of conduct and the
teacher/student relationship that develops between players.

132

A cartoon that appeared in the New Yorker in the early 1990s showed a dog
sitting at a keyboard, and bore the caption “on the Internet, no one knows
you’re a dog.” It became an instant classic, and an instant cliché. It’s also true
that on the Internet, no one may guess that you’re eleven. This is particularly
beneficial for children whose intellectual level deviates significantly from the
level expected for their age. You don’t appear slow—people just guess that
you’re younger. You don’t appear frighteningly precocious-—you just seem
older, and have the opportunity to socialize with older children on a more
equal basis than is possible face to face. This is the case for Hermes (boy, age
9), a boy who is so exceptionally bright that people often react to him oddly.
As a fourth grader, he is already taking math classes at a local university. His
father Howard (who is also an active MOOSE Crossing member) comments
that:

The nice thing about MC is that it's an outlet for his social
interests as well as his writing skills (and his logical/mathematical
ability as he gets into programming). Plus it's a perfect father-son
activity, especially since he's been much more interested lately in
entering into "my" world -- the Net, programming, writing, etc....
Even at a gifted school he has learned to be wary of adults'
reactions to him. There's often a strong undercurrent of
discomfort/disapproval when he talks or acts above his age-range, and
he is old enough to sense it and to start looking for places &
activities where age is less of an issue.

On the Net, Hermes can interact with others more free of prejudice than he
can in real life. It’s worth noting that the invisibility of age online causes
problems as well as bringing benefits—on the first MUD Hermes tried before
finding MOOSE Crossing, he was almost immediately propositioned. The
MOOSE Crossing Code of Conduct strives to remedy that problem. Howard
was delighted to find a place for Hermes that is safer.

Returning to Pete’s encounter with Steve, two other things are noteworthy.
First, the entire interaction—from the time Pete greeted Steven through the
time Steven had built a room, made a dog, and programmed his first script—
took a total of eighteen minutes. Second, this was only Pete’s second day on
MOOSE Crossing. He had just learned everything he taught Steven the
previous day. Sometimes the best teachers are not experts, but learners only
one step ahead of you who are excited about sharing what they themselves
just learned.

In addition to learning from people who just learned the same thing recently,
members of MOOSE Crossing also seek advice from locally recognized
experts. Generally recognized experts include myself, MIT undergraduate
Austina Vainius (who has been working on the MOOSE Crossing project
through MIT’s Undergraduate Research Opportunities Program or “UROP”),
and Rachael. It’s interesting to note that the ranks of the recognized experts

133

on MOOSE Crossing has come to include one of the older children; it is not
limited to adults. Experts are consulted whenever a difficult question arises.
Support from experts is complementary to support from peers. Some
children are reluctant to ask an expert for help. Once when Rufus (boy, age
12) didn’t know the answer to a question Christopher (boy, age 7) asked him,
Rufus asked Christopher, “maybe as in I'l ask the next ranger I see for some
help or no way?” Unlike Pete who was unaware and uninterested in
whether someone is an adult, Rufus clearly notices this fact and treats adults
and peers differently. He will rarely ask for help from an adult, and
sometimes won’t accept it even when it is offered. For these children, the
availability of peer support is particularly beneficial. Other children are eager
to interact with the experts as much as possible. Still others like Pete are
blissfully unaware of who are experts and who are not. A child’s attitude
towards authority figures is a deeply personal, psychological issue. Having a
diversity of sources of help on MOOSE Crossing helps to meet the needs of
people with varied personal styles.

Liza (girl, age 10-11) has a more balanced view. Liza is one of the children
who comes to the Media Lab each week for the MOOSE Crossing after-school
program. I interviewed her on video tape, and asked:

Amy: How is it different getting help from another kid versus from an
adult?

Liza: It depends on who the kid is and who the adult is.... It's not very
different.... Some adults just do all the work for you. Some adults let
you do the work. Some kids do all the work for you. Some kids just
tell you and leave. Some kids stay around and help you more and
socialize.

Amy: Which kind do you like best?

Liza: I like the socializing kind better than just telling you what to do.
It's much better!

MOOSE Crossing is particularly conducive to the “staying around and
socializing” sort of help that Liza prefers.

Since experts are authority figures, people are often eager to show them
completed projects. The design of MOOSE Crossing deliberately attempts to
reduce the dominance of adult authority—it’s not a place where you need to
impress the teacher. However, many kids still take pleasure in asking for
approval from authority figures.

Barbara Rogoff contrasts three models of learning: adult-run (where adults
transfer information to children), child-run (where children discover things

134

on their own, with adult support only when requested), and a community of
learners (where everyone is participating in shared activities, and learning is
a process of transformation of participation). Newcomers to a community-of-
learners approach may not immediately understand the nature of the
learning taking place there. In a school using this model at which Rogoff was
a participant-observer, parents (called “co-opers”) volunteer three hours per
week at the school. New co-opers often don’t initially understand the activity
going on, because they’re trying to interpret the activity going on there in
terms of either child-run or adult-run models of instruction. Rogoff writes
that:

In fact, one indicator of alignment with the philosophy of a
community of learners in a school seems to be regarding oneself as a
learner, continually. Adults who have a learning attitude find, as one
co-oper reported, “one of the things that’s been nice for me has been
having kids, first graders, come time and say ‘don’t worry about it, I’m
gonna show you how to do it!’” (Rogoff 1994)

The reversal of typical roles can be energizing for adults as well as kids. For
Rogoff, it’s an important feature of such environments that both adults and
children see themselves as learners. On MOOSE Crossing, I originally
anticipated that adults would volunteer time to help the children. In fact, the
children more often help the adults. The interaction between Pete and
Steven is typical. Most kids have more time to devote to MOOSE Crossing
than adults and more genuine interest, and therefore have greater expertise.
Almost all members of MOOSE Crossing of all ages have at some point taken
on a teaching role, and that is an important part of the learning experience.

A wide variety of factors have come into play in this discussion of technical
and emotional support, including age, attitude towards authority, and the
nature of the personal relationship between the helper and the helpee.
Asking for, receiving, offering, and providing help are not simply exchanges
of information. They are social acts that take place in the context of networks
of relationships. Community structures that reorient the typical patterns of
those relationships can change people’s feelings about giving and receiving
help. When I asked people on MOOSE Crossing’s “social-issues” mailing list
how getting help is different on MOOSE Crossing versus in school, Rachael
replied:

From: Rachael
To: *Social Issues
One thing I'd like to mention about helping other people here, is
that just about everyone I've met at least seems like they _want_ to
help you, and aren't just obligated. They don't seem upset about
helping you out. That's different from school, when a lot of people
feel kinda upset when they help you.

135

Also, it is a lot easier here. Most people (including myself) will
drop all but the most important projects or at least set up a date
when someone needs help.

Rachael

A community of students in a traditional classroom have a different set of
social relationships than the community of MOOSE Crossing. In some cases,
students may be reluctant to ask for help because they know the teacher is
grading their performance. In other cases, a teacher may be burdened with
having too many students and not have enough time to help each student
individually. A particularly harried teacher might slip into a brusque tone of
voice when demands are made on him or her. These are just stereotypes—
every classroom is a unique community with its own patterns of interaction.
The broader point is that typical patterns of interaction among community
members affect how comfortable each participant is in asking for help or
offering it. In turn, the patterns of asking for help affect other patterns of
interaction of the community. On MOOSE Crossing, these have become
mutually positively reinforcing. People generally receive supportive, friendly
help, and then are eager to offer it to others. A friendly tone to the place
makes people comfortable asking for help, and the ready availability of
cheerful help makes the place seem more friendly.

5.6 An Appreciative Audience
Kids are always showing off their projects to others on MOOSE Crossing—
often to everyone they meet. For example, one Saturday in October 1996,
Hermes was logged on for much of the day. He worked all day on improving
his “generic magician,” a character class that lets you cast spells. At this time,
he was using one of his alternate personas, Nick. On meeting a new member,
Jamal (man, age 18), Nick/Hermes immediately showed off what his new
scripts can do:

Jamal says, 'hi'
Nick types: cc mr
Nick casts a mirror spell!
Everything that touches Nick bounces back as if something was

shooting at it!
You try to touch him but you feel a LARGE shock and your hand

fliesbackward as quickly as your arm allows!
Nick says, 'like it?'
Nick grins
Jamal says, 'pretty cool.'
Nick types: cc fb
Nick casts a fireball spell!
The fireball starts a fire that lights up the room!

Jamal types: look Nick
He sees:

136

is alot like hermes exept he's a little bit taller and a little bit
stronger.He has a peice of rusty metal in his hand. It has a strong
burning aroma and every once - in - a - while it zaps out red beams
of light that singe everything they touch.
He is awake and looks alert.
Carrying:
generic magician

Nick says, 'i've got 4 more'
Nick casts a fgjhgfhjg spell!
Jamal says, 'a what spell?'
Nick says, 'mad typing'

Nick goes west, and Jamal sees him leave, followed by his magic harp and pet
human Google. Nick pages him “come on, it's west,” and Jamal follows.
Having shown Jamal a few of his spells, he now wants to show Jamal another
one of his projects, his magic subway system. Jamal sees this room
description:

The Station Master's Office
The office of Hermes, the Magic Subway's Station Master. It looks
like a bubble surrounded by coral that is floating through time and
space itself. There is very little furniture...a bed, something that
looks like a huge blob of jello that might be a couch, and a
chandelier that has small glowing fish hanging from it. They look
like they don't give a darn that they're hanging upsidedown...in fact
they look rather happy up there.
 Obvious exits: ..east.........Closet
 ..down.........Magic Subway Station
You see Magic School Bus, Magic Harp, and Google here.

Jamal types: look Google
He sees:
A short, brown, shaggy haired humanoid. He is very tough and strong
for his size. He has a short-sword at his belt. He will protect
himself or his owner with it.

Nick says, 'like my room?'
Jamal says, 'The Closet?'

Jamal types: look Magic Harp
He sees:
You see a brand new following object that needs a description! Type
'help #342' for more information

Nick says, 'what about it?'
Nick says, 'no. my room is here'
Jamal says, 'The Closet's your room?'
Nick says, 'no.here is.your in it'
Jamal says, 'You're the Station Master?'
Nick says, 'yep'
Nick types: become Hermes
Nick freezes momentarily. You feel a psychic wrench as if a great

spell is being broken. The figure before you dissolves into a
normal human boy. Hermes is back!

Jamal says, 'Cool. Looks like I'm meeting an important person.'
Hermes says, 'that answer your question'

137

Jamal says, 'yeah.'
Hermes says, 'yeah. i made this hole thing...with my dads help'
Jamal says, 'It's pretty impressive.'
Hermes says, 'wanna be a mgician?'
Hermes types: oo magician
One of Hermes's harp strings breaks with a loud twang!
He must have made a mistake.
Hermes hits himself on the forehead and says " D'oh!"
Hermes says, 'I meant 'magician'!'
Jamal says, 'Don't know if I'm qualified. I'm new to all of this.'
Hermes says, 'you don't have to be qualified'
Jamal says, 'okay then.'

The interaction began with Nick/Hermes showing off his creations to a
newcomer, Jamal. Jamal’s appreciation gave Hermes positive reinforcement.
The encounter has now made a smooth, natural transition to a tutoring
session where Hermes is helping Jamal.

Hermes says, 'type parents Hermes'

Jamal types: parents Hermes
He sees:
Hermes(#1354) generic magician(#1448) Generic Multiple-
Personality Character(#456) MOOSE player class(#108) generic
programmer(#59) generic builder(#4) Frand's modified player
class(#141) generic player(#6) Root Class(#1)
Hermes also looks at his own parents, and sees the same thing.

Jamal says, 'okay. I see a list of objects.'

Hermes types: parents Jamal
He sees:
Jamal(#1599) MOOSE player class(#108) generic programmer(#59)
generic builder(#4) Frand's modified player class(#141) generic
player(#6) Root Class(#1)

Hermes says, 'now type chparent me to gm'

Jamal types: chparent me to gm
He sees:
You must give the name of some object.

Jamal says, 'It says I must give the name of some object.'
Jamal looks at Hermes’ parents again.
Hermes says, 'oooook.type chparent me to generic magician'
Jamal tries this, and gets the same response.
Hermes says, 'or #1448'

Jamal types: chparent Jamal to #1448
He sees:
Rebuilding Jamal (#1599)
Done. 1 objects rebuilt.
Parent changed.

138

You can’t refer to an object by its name unless it is in the same room as you or
you are holding it. Jamal needed to refer to generic magician by its number.
Hermes has learned something from teaching Jamal. Later in the day, he will
similarly help Pete to become a magician. When he helps Pete, he will get the
command right the first time.

Jamal says, 'done.'
Jamal checks his own parents and Hermes’ parents, and sees that they’re the same.
Hermes says, 'ok. type cc fb'
Jamal types: cc fb
Jamal casts a fireball spell!
The fireball starts a fire that lights up the room!
Jamal swrls his cloak and smothers the fire!
Hermes says, 'see!?'
Jamal says, 'cool!'
Jamal says, 'thanks.'
Hermes types: cc mr
Hermes casts a mirror spell!
Everything that touches Hermes bounces back as if something was

shooting at it!
You try to touch him but you feel a LARGE shock and your hand

fliesbackward as quickly as your arm allows!
Hermes types: cc fb at jamal
Hermes casts a fireball spell at Jamal!
The fireball covers Jamal in red and orange flames!
Hermes swirlshis cloak and smothers the fire!
Hermes types: cc bq at jamal
Hermes covers Jamal with a bright light and sends him to Mars and

yells after him 'BE QUIET!'
he thinks hard as soon as he hears a tiny 'All right' and brings

Jamal back to earth.
Hermes types: cc nv
Hermes casts a light spell!
A small glowing sphere appears in his hand.
he see's what he is looking for and turns the light out.
Hermes types: cc armor
Hermes casts a armor spell!
Jamal says, 'You've got a lot of spells'
Hermes says, '6 infact'
Hermes types: cc mr
Hermes casts a mirror spell!
Everything that touches Hermes bounces back as if something was

shooting at it!
You try to touch him but you feel a LARGE shock and your hand

fliesbackward as quickly as your arm allows!
Jamal says, 'So what does the Station Master do?'
Jamal types: cc
Jamal casts a spell!
Hermes says, 'oh...fix the subway when it needs it'
Hermes types: cc
Hermes casts a spell!
Hermes says, 'neat!'
Hermes says, 'never thought of that!'
Jamal says, 'was an accident actually.'
Hermes says, 'oh.stillit suprises people'

139

Jamal accidentally cast a spell with no name. Hermes decides this is a clever
trick, and compliments him on it.

Hermes says, 'let's go to the subway'
Jamal says, 'okay'

They both go down, continuing their tour of Hermes’ subway system. They
see:

Magic Subway Station
Welcome to The Magic Subway Station! You are deep underground, in a
great hall carved out of solid rock. You see a regular stream of
travellers emerging from the shimmering magical entrances that line
the west side of the hall. Most hurry across the room and vanish
into the magical exits on the opposite side, but a few stay to admire
the magnificent interior. (Typw 'view hints' for suggestions.)

When you are ready to leave, please select your destination and step
through the magic portal!

 Obvious exits: ..CR...........Crossroads
 ..EA...........Emerald Apartments
 ..HC...........Home in the Clouds
 ..IC...........Mouse’s favorite Ice Cream
 ..NM...........North Main Street
 ..PI...........Paradise Island
 ..RF...........Redwood Forest
 ..ST...........SparkyTown
 ..TA...........Travel Agency
 ..XX...........The Station Master's Office

Hermes says, 'type view mural'

Jamal types: view mural
He sees:
At the far north end of the hall, you see a gigantic three-part
mural, showing the construction of the Subway Station. The three
parts are called "PLANNING," "CREATION," and "COMPLETION."

Hermes says, 'or view hints'

Jamal types: view hints
Hermes types the same thing.
They see:
A luminous scroll dances through the air towards you and unrolls
before your eyes! It says: "You can view north, south, east, west,
up, down, and other things mentioned in those views. In addition,
you particularly notice a statue in the center of the hall." The
scroll rolls itself up with a saucy snap and dances away, humming a
spritely tune!

Jamal types: view mural planning
He sees:
There is nothing to view by that name!

Jamal types: view "PLANNING"
He sees:

140

In the left-hand portion of the mural you see a slim boy with tousled
brown hair. He is standing in a rough natural cavern, surveying its
walls and ceiling by magical light. He holds a slender rowan wand in
one hand, and a small singer's harp rests at his feet. The wand and
the harp shimmer with a powerful magical aura. There are two more
sections of the mural in the center and on the right.

Hermes types “v n” and sees the same introductory description Jamal saw when he viewed
the mural.

Jamal types: view center
He sees:
In the foreground of the center part of the mural you see a slim hand
holding a wand. Powerful lightning streams from the wand in a great
arc. Ahead of the lightning are the rough rocky walls of a natural
cavern, but where the lightning has already passed you see the walls
of the present Subway Station taking shape. There are two more
sections of the mural to the left and right.

Hermes says, 'type v planning'

Jamal types: view right
He sees:
In the center of the rightmost part of the mural a boy is using his
wand to create great magical gates and link them to faraway
locations. In the background is a shadowy older figure, using his
staff to carve columns and create chandeliers and other decorations.

Hermes types “v planning” and sees the description Jamal saw earlier.

Jamal says, 'cool. it's you in the mural right?'
Hermes says, 'yeah.how'd you guess?'
Jamal says, 'the wand and the harp.'

Hermes types “v creation” and sees the same description Jamal saw on the center wall.
Then he types “v completion”, and sees the same description Jamal saw on the right wall.

Jamal types: look CR
He sees:
A shimmering gateway of pure energy, set into the east wall of the
Subway Station. It leads to the Crossroads.

Jamal types: look HC
He sees:
A shimmering gateway of pure energy, set into the east wall of the
Subway Station. It leads to the Home in the Clouds.

Hermes says, 'type v completion'
Jamal types “v completion” and sees the same description he saw on the right wall.
Hermes says, 'the shadowy guy is my dad'
Jamal says, 'I guessed he was.'

Hermes types: v statue
He sees:
In the exact center of the Subway Station, you see a heroic statue of
a large moose, standing on his hind legs. He's wearing glasses and
agoofy grin, and his antlers seem a bit crooked. He appears to be

141

staring off into the distance. In one hand, he is holding a model
sailboat that reflects deep red sparkles. There's a flying squirrel
sitting on the moose's shoulder, wearing goggles and a leather flying
helmet.

Hermes says, 'type v statue.wonder who they are?'
Jamal looks at the statue, and sees its description.
Jamal says, 'Is it Rocky And Bullwinkle?'
Hermes says, 'yeah!'
Hermes goes ding!ding!ding!
Jamal says, 'Why are you dinging?'
Hermes types: kick google
Hermes kicks Google hard in the stomach! Google lands on his butt,

but bounces right back up!
Google says, Whadya do dat for, ya big louse?!!
Google then pulls out his sword and threatens to hack Hermes into

bits.
Hermes says, 'game shows do that when you get an answer rite’
Jamal says, 'I see. Thanks... Go easy on Google. Seems kind of

feisty.'
Hermes says, 'yeah... i will'
Hermes says, 'hey! want me to put a create candy spell?'
Jamal says, 'Sure.'
Hermes says, 'on us that is'
Jamal says, 'As long as it doesn't turn us into candy.'
Hermes says, 'ok. just a sec.click on the pencil, type me in the

browser and duble click on cast'

Having an audience has inspired Hermes to continue to improve his set of
spells. He adds a new spell to his magician. Jamal waits a few minutes,
checking help messages.

Hermes says, 'now type cc cc'
Jamal types: cc cc
Jamal snaps his fingers and your favorite kind of candy appears in

him hand!
Your mouth waters at the sight of that candy!Yum!Yum!
Jamal says, 'That's pretty cool.'

Hermes is unhappy with the incorrect pronouns in the first line of the script’s
output. He modifies the script and tries it again. The script prints out:

Hermes + my pp + snaps your favorite kind of candy appears in + my pp
+ hand!"

Your mouth waters at the sight of that candy!Yum!Yum!

There’s still an error. Now a mistake in the placement of quotation marks is
causing a line of the script not to be correctly evaluated. Hermes modifies the
script and tries it again. This time it works:

Hermes snaps his fingers and your favorite kind of candy appears in
his hand!

Your mouth waters at the sight of that candy!Yum!Yum!

142

Here’s the final version of the candy script:

on cast "cc"
 if context isn't me
 return
 endif
 announce_all my name + " snaps " + my pp + " fingers and your

favorite kind of candy appears in " + my pp + " hand!"
 announce_all "Your mouth waters at the sight of that candy! You

take the candy and gobble it up! Yum! Yum!"
end

Hermes is enjoying being the teacher:

Hermes says, 'yeah.hope you can follow my lead'
Hermes says, 'so you can make your own spells'
Hermes types: cc bq
Hermes casts a bq spell!
Hermes says, 'nuts!'
Hermes says, 'it doesn't work'
Jamal says, 'I think I can follow your lead. I have to go soon. But

I'll make a spell for next time I'm around.'
Jamal says, 'Did you create the generic magician?'
Hermes says, 'yeah. if you have any ideas for spells tell me.by mail

or talk'
Jamal says, 'Okay.'
Jamal says, 'Thanks a lot for your help.'
Hermes says, 'don't try cc bq!'
Hermes says, 'it won't work easily'
Hermes says, 'you'ljust get a turkey leg of embarresment!'
Jamal tries to smile, but can’t figure out the command.
Jamal says, 'Thanks for the tip.'
Hermes says, 'welcome'
Jamal says, 'I'll talk to you later. I have to go.'
Hermes says, 'by'
Hermes says, 'wait'
Jamal says, 'Yeah?'
Hermes says, 'i'll tell you when it's okay to do cc bq ok?'
Jamal says, 'Okay.'
Hermes says, 'by'

Jamal, an MIT undergraduate studying computer science (or “Course 6” in
MIT lingo), was impressed with his encounter with Hermes. Asked via email
about his impressions of the encounter, he replied:

I remember meeting Hermes. The deepest impressions left on me from
our conversation were his knowledge of programming in Moose
Crossing and the ease with which he was able to teach me about what
he'd done and what he knew. I even talked to one of my friends later
that day about him. It seemed then (and still does) to me that if he
continues along his present course he'll be well-prepared for Course 6
by the time he's old enough.

143

From what I can tell your MOOSE Crossing MUD is doing exactly what
you said it would; allowing kids (and others) to learn by doing and
teach others. I think it's great.

During the course of the day, Hermes showed his spells off to three different
people: Jamal, Pete, and Miranda. He showed Jamal and Pete how to change
their parent object to his character class so they can cast spells too, using his
spell scripts. Miranda already had her own character class, which has an
answering machine which records things that you hear when you’re not
connected. Hermes changes his character class to inherit from hers, so people
can use both at once.

Whenever anyone finishes a project on MOOSE Crossing, they almost always
rush to show it off to their online friends. Positive reinforcement is always
available. In fact, while I have been writing this paragraph, Mouse asked me
to come see the pool she is building as part of her hotel, and Miranda showed
me the program she wrote to be able to change her facial expression/mood
separate from changing her description. (I often have a MOOSE Crossing
session open in another window while I write.) The availability of a
potentially large audience helps motivate people to create things.

Another way kids show off their creations to one another is by placing
advertisements in our online newspaper, the MOOSE Herald-Examiner.
Here is the advertisements section on the day of this writing:

*** ADVERTISEMENTS ***

JACKET -- 10/14/96
~~~!~~~!~~!A COZY JACKET TO SLEEP IN!~~~!~~~!~~~
MOUSE HAS MADE A COZY JACKET! SOUNDS WEIRD BUT IS A GREAT PLACE TO
BUILD A HOME OR A STUDY OR MABEY JUST A ROOM! JUST TEL TO THE JACKET
AND SEE WHAT YOU CAN DO ON A COZY JACKET! IF YOU HAVE ANY QUESTIONS
OR COMENTS PLEASE MAIL MOUSE OR TALK TO HER IN PERSON. THIS IS A
GREAT PLACE TO BUILD ATTICS OR OTHER PLACES WITH LITTLE NOCKS.
REMEMBER: AFTER A MOUTH AND MOUSE DOES NOT DO WELL WITH THE JACKET,
THE WHOLE THING WILL BE RECYCLED! -- Mouse

POTATO -- 10/9/96
I just made a cool potato! You can plant new potatos with it. You can
also mash it, french fry it, make potato chips, and more! When you
use those scripts, it changes the potato's appearance! You can also
fix the potato after you've cooked it. Come see it! -- Miranda

MOUTHPIECE -- 10/09/96
Now, if you want to talk to a bunch of people at once who are in
different rooms, then join mouthpiece (#1684) by typing @addfeature
#1684, and then turn it on by typing "on mp" . Then, you can talk by
typing 'shout <whatever> into mp'. Mouthpiece is public, so anyone
can join. If you want to start your own, then make one...mouthpiece
is also a generic! -- Rachael



144

HAVE YOU EVER BEEN ON MOOSE CROSSING WITH NOBODY TO TALK TO? --
9/30/96
Now, whenever you feel like it, you can talk to your
generic_conversation object! With this object, you can ask it yes or
no questions, and whenever you tell it something, it will answer you!
Starting with asking you how you're feeling, this objct will talk to
you for hours on end, and never have to disconnect!  -- Miranda

MOOSE MAGIC -- 9/30/96
~~~~~~~~~~~~NEW MOOSE MAGIC~~~~~~~~~~~~
Ever wish you could du extraordinary stuff, like make people float,
or shoot out fake fireballs? Impress your friends by getting a free
spellbook at the Owl's Nest. Good for magic fights at the SparkArena.
To even further these powers, get an owl, all at the Owl's Nest. You
must find the Owl's Nest at your own risk. -- Rufus

UTOPIA -- 9/23/96
Do you need a break ? well if you do come to UTOPIA the greatest
resort in the land.it has swimming,shop, and a realy cool arcad
come now to UTOPIA . this lovely resort is in red wood forest off
liza s room.(for any more info talk to liza) -- liza

ANSWERING MACHINE -- 9/23/96
I just finished a character class which is an Answering Machine! It
records what people tell you when you're asleep! For more details
mail Miranda.
P.S. Please mail me if you would like to add a room to the travel
agency! -- Miranda

The power of having an audience can be seen clearly in the explosion of
interest in the World Wide Web in 1995-1996. People's home pages are a
form of multimedia self portrait. The tools to make such self portraits (for
example, paint programs) have been commonly available (to middle-class
Westerners) since the mid to late 1980s. However, it was only when tools to
share such self portraits with a large audience became commonly available
that interest in making them took off (Bruckman 1995).

MOOSE objects, like home pages, help to establish an individual's identity
within the community. The first interaction between two members often
focuses on admiring one another's creations. With most children being
followed by a small entourage of pets, it's easy to see how strongly one's
creations affect one's public image. Notice that without being prompted,
Jamal examined Google and the magic harp following Hermes. This is
typical.

More subtly, people’s creations also affect one's self image—deciding what
sort of a thing to make is partly a reflection on the question "what sort of a
person am I?" Goffman notes the role that clothes play in defining one's
sense of self and role within the community (Goffman 1959). Appadurai
studied the same function of objects collected in people's homes (Appadurai
1986). Sherry Turkle takes this analysis a step further, noting how children
use computational media to work through deeply personal issues—things

145

you make are even more expressive of who you are than things you choose to
wear or buy. Computational media present a particularly rich opportunity for
expression, because they can be used to make such a diversity of meanings.
The computer is a kind of Rorschach Test (Turkle 1984). Children not only
express who they are but also help to shape who they are through their
construction activities.

These presentations of self are motivated and shaped by the existence of an
audience. Making an object on MOOSE Crossing is a fundamentally social act
which exists in relation to an audience. Rachael summed it up in the quote
that opens this chapter: “While programing is a lot of fun, I don't think I'd
do it, if there wasn't anyone who would apprecitate it.”

5.7 Local Community and Online Community
So far in this chapter I have been focusing primarily on the impact of the
online community on the participants in MOOSE Crossing. The children’s
experiences are of course also affected by the local, face to face community
they are a part of while they participate. The local setting varies. Most
children participate from home; however, that may mean they are primarily
alone, or are interacting with parents or siblings. Some children participate in
classes at school. Some participate in after-school programs. The group I
have studied most closely are the children who came to the after-school
program I ran at the Media Lab.

On average six children (of the roughly 160 children registered as of March
1997) came to the Media Lab once per week for more than a year to participate
in a MOOSE Crossing after-school program. Each session lasted roughly two
hours. The exact composition of the group changed slightly over time—older
children started bringing younger siblings, and one pair of siblings dropped
out.3 (The reasons for their loss of interest are not clear. MOOSE Crossing,

3First, just Miranda (girl, age 10-12) came. She was the first child to work with the MOOSE
software. The software was modified and bugs fixed based on her comments and comments of
other children to join later. Then her friend Byron (boy, age 10-11) joined. Zoro (boy, age 11-12)
joined the group next. The entire time Miranda was participating, her younger sister Mouse
(girl, age 8-9) had been watching quietly over her shoulder. Miranda’s mother hadn’t had a
place to leave Mouse while Miranda was at the Media Lab. After several weeks of observing,
Mouse decided she was ready to try it too. Mouse’s best friend at school is Byron’s younger sister
Patricia (girl, age 8-9). (In fact, the older children met through the friendship of their younger
siblings.) Mouse enthusiastically invited Patricia to join. Patricia never really shared Mouse’s
enthusiasm, and only came for a few weeks. Approximately a month after she stopped coming,
her older brother Byron stopped coming as well. At around that time, Zoro’s family decided to
send their second child Liza (girl, age 10-11). Next, Miranda invited her best friend from
school, Squirrel (girl, age 11) to join. Next, Zoro’s family started sending their third child,
SpaceRabbit (boy, age 9). Their youngest child Goofy (girl, age 7) joined the group towards the
end of the year.

146

like any activity, is not for everyone.) The size of the group was limited by
the number of Macintosh computers we had available for them to use.

All of the children in the after-school program had access only from the
Media Lab for the first half of the year. Mid-way through, Miranda and
Mouse got access from home as well. Towards the end of the year, I asked
both girls to compare using MOOSE Crossing at home versus at The Media
Lab. They both said that it’s easier to get their questions answered when they
are using MOOSE Crossing at the Media Lab than at home. It’s easier to ask a
question out loud than type it. Additionally, they mentioned that Austina
and I always know the correct answers; other children online sometimes do
not. However, Mouse mentioned that getting help from Rachael is just as
good as getting help from adults—she really knows what she’s doing.

One notable difference between home and classroom or after-school program
use is the level of activity in the room. The weekly sessions at the Media Lab
often get boisterous. One teacher using MOOSE Crossing in her classroom in
California called the experience “magical chaos.” While it may be easier to get
help in an after-school program, Miranda commented that it’s quieter when
she’s working at home, and she can focus more. In contrast, Mouse
complained that at home “It’s hard to type because Miranda is always there
saying 'I want to get on! I want to get on!'“ The girls share one computer at
home, and the older sibling seems to win control of it more often. At the
Media Lab, each girl gets her own machine. The details of the local setting can
be substantially different even for two kids using the same computer in the
same family setting. That local setting strongly effects a child’s experiences.

My impression based on observing Miranda and Mouse over the past year
and a half is that having access at home significantly enhanced their
enjoyment and enhanced the benefits they got from the project. Children
who can participate only once a week may lose interest in a project between
weeks. When Zoro (boy, age 11-12) arrives at the Media Lab, he often asks to
be reminded of what he was working on the previous week. In contrast,
Miranda and Mouse often log on again immediately on arriving home and
continue working on their project. When they are excited about a project,
they may work on it every day.

The increased rate of progress I observed in Miranda and Mouse after they got
access from home can obviously be substantially attributed to their increased
time on task. However, there are also other more subtle factors:

• Engaging with others online
When they are at the Media Lab, Mouse and Miranda (and the other
children) talk primarily to people in the room, and have fewer
conversations online. It’s only when they go home that they really
start to engage with other children online. Talking with other children

147

from far-off places is good practice for written expression, may open
new cultural perspectives, and helps to form a connection to the
broader community of members rather than just the local community
of their after-school program.

• Teaching
When Miranda and Mouse are at the Media Lab, they primarily work
on their own projects and leave it to the adults to help the other
children. When they are at home, they often take the time to teach
others (as we shall see Miranda do in the next section). Teaching is
often as much an educational experience for the teacher as the learner.

• Invisibility of some social factors
Another issue concerns the invisibility of a variety of social factors
online. The invisibility of age was discussed in Section 5.5. When
Mouse is at the Media Lab, she is usually the youngest child present,
and gets treated as such by her peers. Online, other children often
guess that she is much older, because of her greater experience with the
system. (She told me with pride that Pete (boy, age 11) thought that
Mouse was 12). Other factors in addition to age that can sometimes be
beneficially invisible online include gender, physical attractiveness,
popularity, social class, and having many kinds of handicaps.

• Spontaneous versus scheduled
Finally, the home and after-school program environments differ in
how they are scheduled. At home the girls connect only when they are
in the mood to do so, and therefore well disposed to benefit from it.
The group at the Media Lab meets at a regularly scheduled time.
Sessions can be less productive if the child happens at that time to be
tired, hungry, sick, or just not in the mood.

Benefits of having access in a more formal group setting (i.e. classroom or
after-school program) include:

• Ease of communication out loud versus in text
For most people, speaking is faster and requires less effort than typing.
It’s easier to ask a question out loud. Putting a question into written
words usually requires more reflection. This reflection in some cases
may help the questioner to understand the question better; however,
the effort required can often be prohibitive, particularly for younger
children. Other channels of communication such as body language
and intonation can also be useful in getting across a meaning.

148

• Someone helping you can see your screen
It’s much easier to help someone if you can see exactly what they’re
seeing. It’s possible in theory to solve this problem in software by
letting one person have a view of exactly what another person’s screen
looks like. There was not enough time to implement this feature for
the MOOSE Crossing project. Consequently, it’s easier to help someone
who is in the same room.

• Presence of experts
If the community is large enough, there will always be “expert” help
available online for difficult questions. MOOSE Crossing is still small
enough that this is not always the case. In many group programs
organized to date, the adult leaders of those programs have not had the
time to develop even a basic understanding of the software. This is
understandable—most teachers are overworked. Children in such
programs have much more difficulty compared to those in programs
where experts are present. Over time, some of the children may
develop significant expertise, and be able to step into the expert role.
One teacher writes that “We are learning together and I am learning
from them as much or more than they are than they are learning from
me. The bolder children have a sixth sense about stuff like this and
forge ahead. They are becoming all of our tutors.” They started out
with little local expertise, but developed more over time. Having
experts present is a significant advantage.

• Scheduled vs. spontaneous
The advantages of spontaneous time dedicated to an activity were
discussed above. Scheduled time also has significant advantages. Time
in a formal program has been set aside for that purpose, and is usually
not interrupted. Other activities are not competing for the child’s
attention during that time. Setting aside a regular time for an activity
also means that a child is more likely to finish the difficult or boring
part of a project. It’s natural to set aside a project for a while when you
get tired of it, or get mired in a difficult or boring part of it. While a
child may never return to a project stuck in such a state if he or she is
working on it spontaneously from home, he or she is likely to return
to it during the next of a set of regularly scheduled meetings.

A combination of spontaneous and scheduled time has significant
advantages. In most of the classrooms in which MOOSE Crossing is currently
being used as an organized activity, the children have access once or twice per
week during a regularly scheduled time. However, in one notable school, the
computers are located in the classroom, and children may use them during
breaks in the school day. The classroom has one computer for every two to
three children. To save space, the computers are recessed into desks—the

149

surface of the desk is Plexiglas, and the monitor is underneath, at an angle.
Many of the children chose to use MOOSE before school starts, during recess,
and at other free periods. While not all children take advantage of this
opportunity, those that do have become local experts. During the class’
regularly scheduled sessions, they often help the other children. The class has
been able to accomplish much more than other classes. It’s not just a matter
of increased time on task, but also of giving students the opportunity to chose
to become more involved, and cultivate a genuine, self-motivated interest.

The students in this class see the computer as a tool, and use it fluently and
naturally for many tasks. To draw a common analogy, pencils wouldn’t have
had much of an impact on education if students were scheduled to go to the
pencil room for an hour once per week. To be effective, tools need to be
plentiful and always available—available to use in organized activities, and
during free time.

Interaction in an organized program and interaction during free time are
complementary. They each have different benefits, and work particularly
well together. Similarly, interaction face to face and interaction over the net
are also complementary. This is true in a broader sense of online
communities in general. My best relationships facilitated by MediaMOO are
with people who I see face to face once or twice a year at conferences
(scheduled, face to face), and keep in regular contact with on MediaMOO
(unscheduled, over the net). Face to face contact is richer, but online contact
is easier to maintain on a regular basis.

A related issue is the relationship between geographically local and remote
community. Alan Shaw’s MUSIC project uses a computer network to help
improve communication in an inner city neighborhood (Shaw 1994). An
online community can help to cement relationships within a geographically
local community. Children in MOOSE Crossing programs benefit both from
increased interaction and collaboration with their local classmates, and from
interactions with children in other cities and countries who they would not
otherwise have met. Local community and virtual community are not in
opposition, but rather for most applications work best together.

5.8 An Extended Example: Lady's First Script
It's worth tracing issues of community support through another extended
example: Lady's first script. Lady (girl, age 11) first connected to MOOSE
Crossing on a Friday afternoon. Austina helped her to make a dog named
Cutey, by making an object which inherits from generic smart dog. Lady
returned the next Monday and explored a bit, trying to strike up a
conversation with various people. Finally, she joins Miranda, who is in a
room called "lab" owned by Jack (boy, age 13). Their conversation is presented
here unedited. It took place over a period of 48 minutes.

150

Jack's room looks like this:

lab
You are in a hidden lab. You don't see any exits, but you doo see a
beam in the back of the room. Strange robots and potions are on
desks, and non compiled scripts are floating all over!
You see fluffey here.

Here's how the conversation begins:

Lady says, 'Hello'
Jack says, 'i made a secret passage :)'
Lady says, 'You did, Wow!'
Miranda says, 'Cool!'
Miranda says, 'Where'
Lady says, 'Yeah, where?'
Miranda smiles
Jack says, 'if you are in my room, just type beam to get here if you

are here, type beam to get to Jacks room.'
Jack says, 'it is a script.'
Lady says, 'Cool, how did you do that?'
Miranda says, 'How old are you Lady? I don't think I've met you.

Sorry I just left after you joined me.'
Lady says, 'I'm new, I'm 11'
Jack says, 'this is the script: on beam'
[They all type 'beam' to get to Jack's secret room, and 'beam' again to get back.]
Miranda says, 'Hello again'
:)
[The smiley face was announced by Miranda. Everyone in the room sees it without being
told who generated it. Technically, this is against the code of conduct all members agree to
on joining, but most people don't mind if it's done in moderation in good taste.]
Jack says, 'hi :) sorry about that'
[Jack left to try out the passage. He's apologizing for disappearing suddenly. The others
followed him and understood what was going on, so no apology was really necessary.]
Lady says, 'hello again to you too'
my personal favorite is :b [announced by Miranda]
cute huh? [announced by Miranda]
Lady says, 'what is :b'
or :d [Also announced by Miranda. No one ever answers Lady's question. Those are

emoticons of someone sticking their tongue out.]
Jack says, 'you can see the script by clicking on the pencal and

typing HERE on the box you get when you click on the pencil. Then
you click on script, and type beam and hit OK.'

Miranda says, 'ok'
Lady says, 'OK'
Jack says, 'yes :b is cool'
Lady says, 'Wow, but how do you make a script?'

Lady and Miranda were just wandering around saying hello to other kids.
Jack uses their arrival as an opportunity to show off his new creation, his
beam script. He receives immediate positive feedback from his peers. Lady is
impressed. Jack's achievement inspires her to want to learn how to make her
own script.

151

Miranda says, 'Cool script! It makes a lot of sense. Did you make it
yourself? By the way, I'm the one who announced :b'

Miranda says, 'Well do you have any creatures yet?'
Miranda says, 'Lady?'
Lady says, 'yes'
Jack says, 'yes i made it myself :) lets teach Lady some scripting!'
Miranda says, 'If you want to make a script, you go to the pencal,

and type your objects name'
Lady says, 'what's the pencal?'
Miranda says, 'But first you should know how to make scripts'
Miranda says, 'So don't do what I just said yet.'
Lady says, 'ok'
Miranda says, 'Why don't you look at the help on scipting?'
Lady says, 'how?'
Jack says, 'i have an idea'
Lady says, 'what is it?'
Miranda says, 'You go to MOOSE, on the top of your screen, (next to

size and windows) and select 'help''
Jack says, 'how about i walk you through making a magic gem!'
Miranda says, 'I'll help!'
Lady says, 'ok'

Jack and Miranda approach the task of teaching Lady how to program
enthusiastically. They're teaching technique is not, however, ideal. Instead
of asking Lady what she wants to make, Jack suggests a project for her: a magic
gem. Throughout the conversation, Jack will tell Lady exactly what to type
rather than giving her examples and general principles. Miranda, who has
tutored others before, is better at explaining the underlying ideas. Still, a
trained teacher could do much better. Peer tutoring is not a panacea. Despite
the imperfect nature of the tutoring she's receiving, Lady learns how to script
well enough to create a similar script on her own the next day. The children
are also developing a friendship as they are learning together—and it's not
just Lady who is learning. Jack and Miranda are developing a better grasp of
the material they are teaching, and are also learning something about
teaching itself.

Jack says, 'OK. first, create $thing called gem.'
[Lady types "create gem" which doesn't work.]
Miranda whispers to Jack, 'hi'
Jack whispers to Miranda, 'hi'
[Whispering lets you communicate with a specific person without everyone else in the room
hearing.]
Miranda whispers to Jack, 'What's the gem going to do?'
Lady says, 'how'
Jack says, 'type this: CREATE $thing called gem'
[Miranda types what Jack was proposing to check it, and then immediately recycles the
gem she has made.]
Miranda opens a hidden trash chute.
Jack whispers to Miranda, 'I don't know yet!'
Lady says, 'Oh, cool'
Miranda whispers to Jack, 'how about it sparkles when someone touches

it'
Jack says, 'good!'

152

Jack whisper to Miranda, 'cool!'

Team-teaching Lady creates a fun, almost conspiratorial bond between
Miranda and Jack.

An interesting problem which arises when trying to teach programming is
how to tell people what to type literally and what to fill in with your own
content. This is similar to the classic slapstick routine in which the court
clerk says, "Repeat after me. I, state your name." The witness replies, "I, state
your name." The MOOSE Crossing help system puts in angle brackets things
that should be filled in. Jack invents his own solution to this problem by
putting words to type literally in capitals and things to fill in in small letters.

Lady says, 'So now what do I do?'
Jack says, 'now type DESCRIBE GEM AS "whatever you want!"'
Jack says, 'you do not need to caps it.'
[Lady types: "describe gem as a beutiful white crystal, gleaming in the

light". She next looks at the gem to see that it worked.]
Jack whispers to Miranda, 'and we can introduce properities to her by

making it change color when someone types CHANGE GEM'
Lady says, 'ok, I have the description set'
Miranda says, 'Now, lets say, you want to make it so that when

someone types 'touch gem' it sparkles'
Miranda says, 'And when you type 'change gem' it changes color.'
Jack grins
Lady says, 'how do you do that, Miranda?'
Jack says, 'drop the gem so we can see it'
Miranda says, 'ok, first you'd have to make a script on it'
[Lady drops the gem.]
Lady drops gem.
fluffey sniffs gem curiously.
Jack says, 'hmm'
Lady says, 'how do you make a script'
Miranda says, 'A script always begins with the word 'on''
Jack says, 'OK, click on the pencil at the top of the screen and type

in gem. Then check the script circle and type in TOUCH.'
Jack says, 'then hit OK'
Miranda says, 'Tell us when your done'

The system design here is less than perfect—Miranda and Jack can't see Lady's
screen. A special "last_commands" feature lets you see what someone else
has typed (if they allow you), but can not show you the state of another
person's windowing environment. The ideal setting for MOOSE Crossing is a
combination of spontaneous use and scheduled use in an organized program.
Face to face interaction with kids in the same room is complementary to
network interaction with kids in far-off places. A local collaborator would be
able to see Lady's screen and help her through the basics of creating a script.
Luckily, the problem has limited scope—once someone has learned the basics
of how to create a script (all of which Lady will learn in this conversation),
then he or she can easily receive help on more-advanced topics from others.

153

Jack whispers to Miranda, 'this is cool, i have never tutored anyone
before!'

Miranda whispers to Jack, 'I have, sometimes it gets frustrating'
[Lady fills in the script editor box with the words "the gem sparkles " and clicks Save.
This does not create a script.]
Lady says, 'I think I'm done'
Miranda says, 'Ok, now do you have a script bow that says 'gem:touch'

on the top?'
Jack says, 'do you see a large text window?'
Miranda says, 'A meant a script box'
Jack says, 'what do you see?'
Lady says, 'I see a picture of a moose, a pencil, a envelope, and a

question mark'
Jack says, 'OK, you are still in the main window.'
Lady says, 'so what do I do'
Miranda says, 'Go to 'windows' at the top of your screen, and select

'gem:touch' if it's there'
Lady says, 'ok'
Lady says, 'it's not there!'
Miranda says, 'Then you haven't created the script yet!'
Jack says, 'click on the pencil and you will get a little window. it

says edit code at the top. type gem in the box and click on
script. then hit OK. it will say there is not scripts by that name
ob the gem. click on the button that says "CREATE AS A SCRIPT"'

Lady says, 'but it does have that script there!'
Miranda pages Amy with 'Jack and I are teaching Lady to program!
[She receives a message back that Amy has been idle for over an hour.]
Jack says, 'having two people tutor one person is a good idea,

because as one person is typing, the other person is giving
instructions :)'

Miranda pages Austina with 'Jack and I are teaching Lady to program!

Miranda is taking on a traditionally adult role in teaching Lady to program,
and she's eager and proud to show this off to the two adult authority figures
logged on, Austina and me. Austina and I are trying to get some work done
on improving the system design, and on this afternoon have limited time to
come by and hang out with the kids, but we do each stop by briefly to
appreciate the work completed.

Lady says, 'I don't get this'
Jack says, 'OK, if it does have a script, you should be in, right?'
Miranda says, 'What did you do?'
Lady says, 'I think so'
Jack says, 'yes, describe every move you made:)'
Miranda says, 'Sounds good to me!'
Lady says, 'I went to the pencil and clicked, then I typed gem, I

clicked on script and clicked "OK" after that it took me to the
script I made.'

Lady says, 'what did I do wrong?'
Jack says, 'good, what does the script you made say?'
Jack says, 'it should not say anything yet...'
Miranda says, 'Ohhh, so now go to 'windows' and click on your

script!'
Lady says, 'it says the gem sparkles'
Jack says, 'delete that, you have to put it in a diffrent way.'
Miranda whispers to Jack, 'Here comes the confusing part!'

154

Jack whispers, 'as if that first part was not confusing enough!'
Lady says, 'I did type the first line ON touch this.'
 Lady says, 'Do I need a second line with more commands?'
Miranda says, 'That is telling the computer, that when you type

'touch gem' it should do the following.'
Miranda says, 'Do you get it?'
Lady says, 'yes.'
Jack says, 'yes, you need a second line. On the second line type

ANNOUNCE "the gem sparkles" or type ANNOUNCE "whatever you want"'
Miranda says, 'Ok, now we're going to type what you want the gem to

do'
Miranda says, 'That will tell the computer that after someone types

'touch gem' it should announce <whatever>'

Miranda has tutored others before and is more skilled than Jack at explaining
the reasons for things rather than just telling Lady what to do.

Lady says, 'ok I've done that'
Austina pages Miranda, 'great! can I come over for a bit?'
Miranda says, 'OK, now, you can type 'end' to end your script. you're

done!'
Jack says, 'on the third line, type end and hit OK. lets test it out,

but add more lines to the script to make it better.'
[Lady recompiles the script:
 on touch this
 announce the gem sparkles
 end
It compiles successfully.]
Miranda pages Austina, 'Come on over!'
Jack says, 'er...add more lines to the script later. for now type

end.'
Austina teleports in.
fluffey sniffs Austina curiously.
Fluffy arrives, following Austina.
fluffey sniffs Fluffy curiously.
[Somewhat confusingly, Austina has a dog named Fluffy and Jack has a dog named fluffey!]
Lady says, 'yes, it is saved. Let's try it out now.'
Jack says, 'hi'
[Jack types 'touch gem '.]
the gem sparkles
[Miranda types 'touch gem ’.]
the gem sparkles
Miranda says, 'Lady, did you type 'touch gem'?'
Jack says, 'i did!'
Miranda says, 'Hi!'
Jack grins
Lady says, 'Thanks, Jack and Miranda! I have made my first script.'
Austina applauds loudly!!!
Lady says, 'Yes I did'
[Austina types 'touch gem '.]
the gem sparkles
Austina says, 'yay!'
Lady says, 'now Gem works!'

Lady gets immediate positive feedback on her project from two peers and one
adult. Her teachers are also her audience.

155

Miranda says, 'You could always add something like telling the person
something.'

Jack says, 'but we are not done yet... > :)'
Miranda says, 'To do that you could type in 'tell context <whatever

you want>''
Lady says, 'ok.'
Jack says, 'that will tell only the person who touched it somthing,

instead of the whole room.'
[Lady adds a line to the script:
 on touch this
 announce the gem sparkles
 tell context "I am Gem, a smart stone. I am shinny and colorful"
 end
The script compiles successfully.]
[Lady types 'touch gem '.]
[Everyone sees:] the gem sparkles
[Lady sees:] I am Gem, a smart stone. I am shinny and colorful
Amy pages Miranda, 'cool! Good luck!'
Miranda pages Amy, 'want to join us?'
Jack says, 'Lady, go back to the script window. lets add more.'
Amy pages Miranda, 'sure, but just for a minute'
Lady says, 'ok'
Miranda says, 'Cool.'
Amy teleports in.
Fluffy sniffs Amy curiously.
fluffey sniffs Amy curiously.
Pumpernickel arrives, following Amy.
Fluffy sniffs Pumpernickel curiously.
fluffey sniffs Pumpernickel curiously.
Amy says, 'hi there!'
Miranda says, 'Hi,'
Austina says, 'hi!'
Jack says, 'hi!'
Amy says, 'nice lab, Jack. My kinda place!'
Lady says, 'Hi'
Miranda says, 'Look at Lady's first script!'
Jack grins
Amy says, 'hiya Lady! Nice to meet you!'
Miranda says, 'type 'touch gem''
[Amy types 'touch gem '.]
[Everyone sees:] the gem sparkles
[Amy sees:] I am Gem, a smart stone. I am shinny and colorful
Austina says, 'well, guys, it's been cool... Congrats on your first

script Lady! You're doing great!'
Austina says, 'talk to you all later!'
Austina waves
Jack says, 'bye!'
Amy says, 'very nice!'
Austina goes home.
Fluffy follows after Austina.
Miranda says, 'I'm terribly sorry, I have to go have dinner now,

bye!'
Amy says, 'see ya!'
Lady says, 'Jack, you wnt to suggest some to add on my script?'
Miranda has disconnected.
[Amy looks at the gem.]

156

Amy ooohs at the gem. "Very pretty"
Jack says, 'say OK...'
Jack says, 'er...oK'
Amy hehs
Jack says, 'help dog2'
Jack says, 'aagggh'
[Jack now types 'help dog2']
[Lady now looks at 'help dog2' as well.]
Amy says, 'great start, Lady!'
Lady says, 'Thanks Jack. I will check the help tomorrow.'
[Jack presumably meant to just look at the second part of the dog tutorial for ideas on how to
help Lady, but by accident he said it instead of doing it. Lady interprets this as a
suggestion that she should read that help message.]
Lady says, 'Bye, everyone, I have to go home now.'
Amy waves
Amy goes home.
Pumpernickel follows after Amy.
Jack says, 'your gem?'
Jack says, 'oh well'
[Lady and Jack disconnect.]

The next day, Lady connects again and writes another script all on her own,
with no help. A few days later, she returns to write four more. She puts
these scripts on her dog Cutey (a project she selected for herself, rather than
one suggested by her friends.) Here are her scripts:

on pet this
 Announce "Cutey rolls over and wags her tail."
end

on feed this
 Announce "Cutey eats the food hungrily, and barks for a thank you."
end

on tickle this
 Announce " Cutey barks, and giggles."
end

on play with this
 Announce" Cutey runs around in circles a few times, while wagging

her tail."
end

on scratch this
 Announce "Cutey lays down comfortablely enjoying the scratching."
end

Lady's learning experience was both community motivated and community
supported. She wanted to learn to write a script because Jack had done so.
While many people (especially girls) come to think of themselves as the sort
who could never do something so high tech, Lady is surrounded by other

157

children writing programs. This helps her to realize that she too can write
scripts. Meaningful control over computers is not the privilege of the
technical elite—it's within everyone's abilities. Jack and Miranda provided
her with project models, role models, technical support, emotional support,
and an appreciative audience for her finished work.

Lady's experience would have been very different if, like Uzi, she had logged
on later in the evening and found no one else around. Members of the
community were an essential part of every aspect of her learning experience.

Real samba schools and The Computer Clubhouse are physical places. People
gather there both to work on their projects and to socialize with one another.
The architectural space serves as a community center for the members,
providing a context for both organized activity and more casual interaction.

158

159

6. Constructionist Culture
6.1 A Felicitous Type of Community
In the previous chapter, I reviewed many ways in which community
supports construction activities. Less obvious and equally significant is the
fact that the converse is also true: construction activities enhance community.

A community is a group of people brought together for a purpose. The
nature of the community is affected by the nature of that purpose, the space
(physical or virtual) in which the people interact, and the type of people
involved. A particularly felicitous type of community often emerges when
people are brought together to construct things. Samba schools in Brazil are
an excellent example. Creating a presentation for Carnival brings together a
group of people who might not otherwise meet. Creative activity is the
motivation for forming the community, and a force which gives shape to the
community’s activities. In this environment, everyone is constantly learning
and helping one another to learn. This is a very different sort of community
than, for example, a college fraternity—an organization which often seems
designed to prevent people from learning. While this is certainly not true of
all fraternities, a substantial number value maximizing alcohol consumption
and devalue studying and scholarship. This is a rough caricature, but the
underlying point is clear: not all communities have a positive impact on
their members.

This chapter argues that communities in which people are making things
often take on a special quality. Such communities have what I will call a
constructionist culture. The chapter reviews a number of issues (for
example, allocation of scarce shared resources) which take on particular
importance in such communities.

6.2 “Television Fans and Participatory Culture”
It’s helpful to begin with an example of a kind of community that has little to
do with computers: communities of television fans. Many people consider
themselves to be fans of television shows; I’m referring in particular to those
people who regularly attend conventions and other social gatherings related
to these shows. Communities of television fans are a rather surprising
example of the positive power of a contructionist culture. When most people
think of television fans, they conjure up stereotypes of unattractive and
socially inept young men who slavishly memorize obscure facts about Star
Trek episodes—people who need to “get a life.” In Textual Poachers,
Television Fans and Participatory Culture, Henry Jenkins does a participant-
observer ethnography of fan culture, and determines that fans already have a
life (Jenkins 1992). Jenkins focuses in particular on fans’ creative endeavors.
Fans of Star Trek and other television shows make videos, publish ‘zines,

160

write poetry, and compose folks songs about television shows. Much of the
activity at conventions centers on sharing these creative productions.

Underlying Jenkins’ research is an exploration of how people make meaning
from texts. The fans’ creations often make meanings clearly in opposition to
the producers’ intentions. For example, one genre of fan video implies
homosexual relationships between characters like Kirk and Spock: a shot of
Kirk looking longingly to his left is followed by a shot of Spock looking
longingly to his right, and the sequence is set to the music of a seventies love
song. Fans are clearly making their own meanings from the text! Jenkins
collects a rich variety of evidence to show that fans are not passive recipients
of meanings produced by media conglomerates, but active constructors of
personal meanings using popular culture as a source of raw materials.
Fundamentally, Jenkins is arguing for a constructivist theory of meaning .

Jenkins uses evidence from fan culture to make the broader point that no
viewer is a passive dupe of corporate interests; all viewers make personal
meanings from texts. While I believe that this is largely correct, I think it’s
important not to underestimate the significance of making things. It is
through their creative productions that fans are most easily able to construct
oppositional readings. While the readers of romance novels studied by Janice
Radway (Radway 1984) were clearly able to make their own meanings from
the texts (and from the act of reading), they seem to have fewer and less richly
nuanced oppositional readings than Jenkins’ fans. Reappropriating texts
provides rich opportunities for constructing personal meanings.

Much of the richness Jenkins found in fan culture I believe stems from its
constructionist nature. Fans not only buy things, they make them. They talk
not only about the text, but about their varied re-interpretations of the text,
and the processes of their production. These acts of creation restructure not
only individuals’ relationships to the text, but their relationships to one
another. Construction is a community-building activity.

6.3 Objects of Construction
The nature of the things being constructed is of course a central factor in the
flavor of a constructionist culture. In The Virtual Community, Howard
Rheingold movingly describes the warm, supportive community that exists
in the parenting conference on The Well(Rheingold 1993).1 The sincerity of
the participants’ interest in the subject matter is part of what gives the

1Building a shared understanding through written or oral conversation is an act of construction
in many important senses. This is particularly clear in the case of bulletin board systems like
The WELL where the permanent archive of the conversation is clearly something being co-
constructed by its participants. However, I do believe that constructing something more
substantial than a conversation tends to lead to a more constructionist culture.

161

conference its special quality. The Grateful Dead conference on The Well is
also unusually successful, for the same reason. These topics are personally
meaningful to the participants. They are of course not personally meaningful
to everyone—not everyone has children, and not everyone likes the Grateful
Dead. It’s of central importance that participation in those forums is
voluntary. The members are a self-selected group of people with a sincere
interest in the topic.

Another central factor behind the success of the parenting conference is the
fact that the participants have a basic level of shared values and shared
understanding about the nature of parenting. There is nothing excessively
controversial discussed there. The mood might be quite different if, for
example, a vocal minority of the participants insisted on fundamentalist
religious approaches to parenting. The USENET newsgroup
talk.politics.abortion forms a useful contrast. While the participants in that
group certainly care about their subject matter as sincerely and passionately as
members of the parenting conference care about the welfare of their children,
the controversial nature of the subject matter means that group is far from
warm or supportive. In fact, it is dominated by inflammatory rhetoric and ad
hominem attacks. A minimum level of shared understanding of the nature
of the thing being constructed is necessary to create a positive constructionist
environment (Bruckman 1996). To draw an analogy to theater, a production
company working to prepare a show will have a more positive experience if
everyone agrees on the basic form it will take; chaos and conflict are likely to
ensue if some members are aiming for a postmodern, highly-stylized Robert
Wilson production and others want something more like traditional Gilbert
and Sullivan!

While participants must have some degree of shared understanding of the
nature of the things being made, the limits must be neither too specific nor
too broad. If the objects of construction are too limited, many will fail to be
able to express their individuality and find something personally significant
within those limits. If the limits are too broad, then members of the
community will have too little to say to one another. The design process
itself is also more difficult when underconstrained—expert designers know to
start with imposing constraints and working within them (Schon 1987).

Any object of construction is of course part of a broader cultural context. In
the case of Brazilian samba schools, the joyous nature of Carnival helps make
preparing a Carnival performance a community-building act. Any kind of
object of construction has connotations which it gets from its role in the
broader culture. A Carnival performance has quite different associations than
a school assignment. Those associations fundamental shape the learning
experience of someone participating in the act of construction.

162

Research on constructionist learning has long aimed for picking objects of
construction which have a low threshold and no ceiling—new learners can
become involved with limited effort, but as they progress to become experts,
they will still be challenged.

MORE SUCCESSFUL LESS SUCCESSFUL
Personally meaningful Sanding a just-finished

wood project
Sanding an old wood
surface to prevent
splinters

Voluntarily selected A garden School ass ignment
about plant biology

Not too controversial The WELL’s parenting
conference

USENET’s
talk.politics.abortion

Appropriate scope A LEGO ship A LEGO pirate ship
made from a pirate-ship
kit

Cultural associations Brazil’s Carnival School assembly
Low threshold Logo Assembly language
High ceiling Logo Hypercard
Low risk Video Film
High reward Film making Lanyard weaving

Table 6.1: More and Less Successful Objects of Construction

Finally, it is also desirable for the act of construction to have low risks and
high potential rewards. It was more difficult to learn to make moving images
when each attempt required spending large amounts of money on expensive
film stock. Relatively inexpensive and reusable video tapes make moving
images a more fertile medium for construction. Lowering expense lowers
one kind of risk. Another sort of risk is emotional. Freedom from being
judged and evaluated lowers an individual’s emotional risk in participating.
Formal evaluation does supply one potential source of positive reward.
However, the sincere appreciation of a community of one’s peers also
supplies a strong positive reward with a generally lessened negative risk
(unless one’s peers are inclined to be scornful).

In summary, objects of construction should ideally be/have:

• personally meaningful,
• voluntarily selected,
• not too controversial,
• neither too limited nor too broad in scope,
• positive cultural associations,
• low threshold,
• high ceiling,
• low risk, and

163

• high reward.

These factors affect both the experiences of individuals and the patterns of
group interaction. Table 6.1 gives examples of a variety of objects of
construction which typically meet and fail each of these criteria.

In designing MOOSE Crossing, I tried to meet each of these criteria.
Reviewing each in order:

Participation in MOOSE Crossing is generally voluntary (with the exception
of some classroom use). Once on MOOSE Crossing, members are free to
construct things or not as they wish. When one teacher gave his class
assignments of things to do on MOOSE Crossing, a conversation arose on the
moose-teachers mailing list. The teachers discussed the educational
philosophy of MOOSE Crossing, and concluded that such assignments are not
a good idea. To date, every member who has participated for more than a few
minutes has chosen to construct new objects—they see others making objects
and enjoying making them, and want to make something of their own.

CODE OF CONDUCT
To be a member of MOOSE Crossing, you are expected to be a good
citizen. Most of the rules are just like rules for how to behave
in the real world:

* Don't do anything you wouldn't do at recess at school.
* Do unto others as you would have them do unto you.
* Help others whenever you can.

If you think maybe you shouldn't do something, you probably
shouldn't. Be nice to other kids. And help them out. There's
lots of stuff to learn on MOOSE Crossing. People will help you
get started, and then you can help the next new person.

These rules you might not have heard before. They're important:

* Don't tell anyone your home address or phone number.
* Don't meet anyone face to face.

Most people are nice, but there are some people out there who want
to hurt kids. No matter how nice someone seems or how old they
are, don't tell them your home address or phone number or agree to
meet with them in person. If you really really want to meet
someone, ask your parents to help you set up a safe meeting in a
public place, and have your parents come with you.

I PLEDGE:
I won't do anything I wouldn't do at recess at school.
I'll treat others the way I want them to treat me.
I will help others whenever I can.
I won't tell anyone my home address or phone number.
I won't meet anyone face to face.

164

Table 6.2: The MOOSE Crossing Code of Conduct (Kid Version)

MOOSE Crossing’s code of conduct helps to keep the objects of construction
not too controversial. All members agree to a code of conduct when they
join. Table 6.2 shows the code of conduct agreed to by kids, and Table 6.3
shows the additional things that rangers (participants 14 and older) agree to.
Based on this code of conduct, kids were able to judge for themselves that
making guns and bombs would not be appropriate, but making nerf guns and
fireworks is fine. These restrictions are perceived as fair because they are a
prior condition of participation. The code of conduct helps to maintain
harmony within the community.

This code of conduct applies even more strongly to adults. It's
important that you set a positive example for the kids.

RANGER DUTIES
* Be a positive role model.
* Be patient and helpful to all kids.
* Help kids to solve their own social problems by:
 -- Listening to everyone's side of the story,
 -- Asking kids to evaluate their own behavior,
 -- Asking kids to see things from other people's point of view,
 -- Reminding kids of the MOOSE Crossing Code of Conduct, and
 -- Leading a thoughtful discussion.
* Help kids to solve their own technical problems by:
 -- Explaining general principles,
 -- Pointing out good examples and relevant documentation,
 -- Giving direct answers where appropriate, but
 -- Making sure not to do the work for them.
* Read the mailing lists *news, *social-issues, and *Rangers
regularly.

RANGER AGREEMENT
I will set a positive example at all times. I will abide by the
MOOSE Crossing Code of Conduct. My conduct needs to be better
than acceptable--it needs to be exemplary. I am a role model for
the members.

I will be patient and helpful. I will help kids to solve their
own social and technical problems, not solve them for them.

I understand the importance of kids not giving out their home
address or phone number, or arranging to meet people face to face.
To set a good example, I will not give out my home phone number or
address either. I will not arrange to meet kids I meet on MOOSE
Crossing face to face. If I see a child violating these rules, I
will explain to them why they should not do so, and notify the
MOOSE Crossing janitors.

I will read *news, *social, and *Rangers on MOOSE Crossing
regularly.

Table 6.3: Ranger Addition to the Code of Conduct

165

The scope of projects possible for MOOSE Crossing is somewhat limited by the
code of conduct, but primarily by the affordances of the technology developed.
Most unusual about that scope is its limitation to text. Children trying
MOOSE Crossing for the first time are usually initially surprised to find no
pictures. In a video interview, Mouse (girl, age 9) comments:

Amy: How is this different from other things you did on the
computer before you came here?

Mouse: Well, there are no pictures.
Amy: Is that bad?
Mouse: No, it's good.
Amy: Why is that?
Mouse: Because then you can imagine things. It’s better to imagine

things than see them on the screen. What if you don't like
the picture that they made. And then you write them a letter
(raising her voice and one arm) "I hate that picture cause I
don't see it that way." And so you can see it your own way.

Not everyone finds text an appealing medium. However, for those who do,
creating worlds out of text and communicating with people in text opens up
new imaginative possibilities, and helps create a meaningful context to
develop creative writing skills. The scope of projects possible in this
environment is broad enough that people can find a personally meaningful
topic, and narrow enough that participants can have a meaningful dialog
about their creations.

The cultural associations of MOOSE Crossing are particularly positive: kids
associate it with the world of games and free play. Although they are
engaging in serious intellectual activity, it is perceived as more play than
work. Children’s appropriations of elements of popular culture in their
creations also bring to the environment the positive associations of those
elements.

The threshold for participation in MOOSE Crossing is quite low. I originally
expected the activity to appeal primarily to kids 10 and older, and to
exceptional nine-year-olds. In practice, several kids as young as seven have
been able to participate in a meaningful fashion. Children just learning to
read have found MOOSE Crossing to be a fun way to practice reading. The
activity also has a relatively high ceiling. Two thirteen-year-olds participating
(one boy and one girl) have become accomplished programmers, making
elaborate creations enjoyed by the community as a whole, and mastering
advanced concepts.

The risks of participation in MOOSE Crossing are low. For Cindy (girl, age 11),
it’s important that it’s not being graded:

166

 Amy: How is writing here different from writing in school?
Cindy: Usually in school you have to do a certain thing. Here you

can write whatever you want. And also this computer
language or whatever you call it, here it's like "context" and
"announce_all_but", and, well, it's like... "fork"...

Amy: How is writing a description different from writing in
school?

Cindy: You can make it be whatever you want. It's describing
whatever you want. And it's not being graded, which is
good!

Cindy is not confident about her school abilities, but she enjoys trying new
things and challenging herself on MOOSE Crossing because she feels safe
there. There is little risk of failure. Everyone has questions and seeks help
from others on their projects when they need it. Social support and freedom
from evaluation reduce the risk of trying something new.

Finally, significant rewards follow the completion of even the simplest
project. On finishing a new object, children almost always immediately show
their creation off to others. The first creations of new members are received
with particular enthusiasm, even if they are extremely simple. More
elaborate creations become a basis for others’ social activity, providing
ongoing positive feedback to the designer. The large amount of positive
feedback typically received by children is one of MOOSE Crossing’s strongest
features.

6.4 Worlds Made by Their Inhabitants
Not all MUDs are constructionist learning cultures. Far from it. The first
MUDs (starting in 1979) were violent hack-n-slash games where participants
compete to see who can kill the most monsters and amass the most treasure.
Those who win the game become wizards, and only then (if ever), after
hundreds of hours of playing time, are they granted the privilege to build a
small portion of the world. At the time of this writing, the majority of MUDs
still take this form.

The strongest sense of community is adventure-game MUDs is often among
the wizards. Once one has won the game and built a castle, there’s not much
left to do. However, by this time, the participant has invested huge amounts
of time in reaching wizard status and in the process has made friends and
gained status within the community. Wizards hang around and talk with
one another. One veteran MUDder interviewed by Sherry Turkle and myself
over the summer of 1992 reported that his desire to talk to the wizards and
join that community was his central motivation for trying to win the game
(Turkle 1995).

167

In 1989, a graduate student at Carnegie Mellon University named James
Aspnes created a new kind of MUD with no monster or magic swords. He
called it “TinyMUD” because the set of available commands was much
smaller than the complex variety of combat-oriented commands in other
MUDs. Instead, he built in a programming language to allow users to extend
the virtual world. People’s main activity went from trying to conquer the
virtual world to trying to construct it collaboratively. This led to a much
more egalitarian society. In an electronic mail conversation in 1992, I asked
Aspnes if that had been part of his goal in creating TinyMUD. He replied:

You raise an interesting question about the ideals of the TinyMUD
community coming from the few founding members. Most
adventure-style games and earlier MUDs had some sort of scoring
system which translated into rank and often special privileges; I didn't
want such a system not because of any strong egalitarian ideals
(although I think that there are good egalitarian arguments against it)
but because I wanted the game to be open-ended, and any scoring
system would have the problem that eventually each player would hit
the maximum rank or level of advancement and have to either
abandon the game as finished or come up with new reasons to play it.
This approach attracted people who liked everybody being equal and
drove away people who didn't like a game where you didn't score
points and beat out other players (I did put in a "score" command early
on since almost everybody tried it, but most players soon realized that
it was a joke). I think that this effect created a kind of natural selection
which eventually led to the current egalitarian ideals. I like the
egalitarianism, but it wasn't my original goal (Aspnes 1992; Bruckman
1992).

One of Aspnes’ primary motivations was to fight “bored wizard syndrome,”
the problem of people who have invested so much time in a community
later finding themselves with nothing to do because they had “won.” The
increased egalitarianism of the new type of MUD was a somewhat unexpected
bonus. Permitting and encouraging construction activities created a new kind
of community.

There are hundreds of communities descended from TinyMUD where
making things (rather than killing them) is the chief activity. Collectively,
they are often referred to as “social MUDs.” It’s a remarkable fact that at any
given moment there are thousands of people doing creative writing and
computer programming in their spare time for fun in these environments.
This is what initially interested me in exploring the educational potential of
MUDs.

Allowing users to build the world of course has its risks. A world designed by
its inhabitants will inevitably have less coherence and more uneven quality

168

than one designed by a single experienced designer. Someone once called
MediaMOO “a multicultural mess”—I was never so flattered! While it’s true
that the parts of the virtual world don’t form a complete whole, they reflect
the rich diversity of the community’s members. A team of Peter Anders’
architecture students at New Jersey Institute of Technology (NJIT) studying
the structure of existing virtual worlds immediately assumed that
MediaMOO’s more structured Curtis Common area must have been designed
first, and loosening control led to disorganization as the space grew. In fact,
the opposite is true. MediaMOO was designed to maximize opportunities for
individual construction. Much later, a group of regular members desiring
more coherence collaborated to add the more structured Curtis Common
complex.

There are clearly some situations in which greater coherence is desired, and
others in which diversity can be cultivated and enjoyed. Division of the
world into public space (with higher coherence and minimum standards) and
private space (with greater diversity and opportunity for personalization)
makes it possible to resolve this dilemma.

Encouraging users to build the virtual world also helps a community to adapt
over time to the changing needs of its members. Themes and patterns
emerge and evolve as the user community grows and changes. Users also
have a greater sense of ownership in a community which they have helped
build. These factors help to create a stronger community.

6.5 Sharing Scarce Resources
TinyMUD didn’t stay tiny very long. People built too much. Undergraduates
made detailed replicas of their universities. A replica of MIT included much
of The Media Lab. In the lab’s cube auditorium was a replica of the set of a
play being performed there at that time. A negative review of the play was
posted on the wall. Replicas of other universities were equally detailed—
room after room went on without end. Eventually, the database got too big
for the computer it was running on, and TinyMUD was shut down. Virtual
worlds are limited not by availability of land, but by the disk space and
processor power of the computers they run on.

Deciding how to allocate scarce shared resources is a key issue that both
solidifies and fragments communities, both virtual and real. In any situation
in which resources must be shared, some social or political process must
evolve to manage those resources. The necessity of sharing resources—
whether they be land, fresh air, disk space, or attention of the group’s
members—is a hallmark of what makes a community.

My parents live on a street called The Circle, right in the center of a medium-
sized town. A few years ago the town wanted to add more parking to increase

169

business for merchants on Main Street. A plan was put forward to seize a
number of houses on The Circle by eminent domain to make way for the
parking lot. The new lot would increase traffic on all of The Circle and make
the neighborhood less attractive. Residents of The Circle formed The Circle
Association to protest the plan. They had emergency meetings at people’s
homes, and recruited local politicians and eminent members of the
community to oppose the plan. They wrote letters and spoke with reporters
from the local paper. They appealed to other members of the town to
consider what kind of a town they really want anyway—is bigger necessarily
better? The campaign was ultimately successful—plans for the parking lot
were abandoned. In the process, my parents got to know their neighbors in a
way they never had before. Years later, members of The Circle Association
still meet not only to keep up on the affairs of the town, but also to socialize
with one another. A crisis concerning the allocation of scarce resources (land,
parking spaces), sparked reflection on the nature of the community (what
kind of a town do we want anyway?) and the formation of a strong sub-
community.

In the original TinyMUD, anyone could build as much as they liked. This led
to overly rapid growth and waste, so a money system was added to control it:
people wandering around the world find pennies at random intervals, and a
certain number of cents was charged for each thing built. This system too
proved unwieldy. Next they added a “builder bit”: to be allowed to build, you
needed to be granted that permission by the MUD’s administrators. This still
failed to provide adequate control and explosive growth continued. Many
communities descended from TinyMUD switched from pennies to a quota
system: each individual gets an initial quota for the number of objects he or
she can build. When you have used up your quota, you must request more
from the system administrators. While pennies could be accumulated by
shear persistence, quota required permission of an administrator. Quota-
based systems reintroduced an element of centralized control.

Communities need mechanisms to determine not only how much
individuals can build, but where they may build. Most MUDs divide the
world into public and private space. In certain special places, sometimes
called “residence halls,” anyone may build a private home. Off of your
private home you may build anything (within the limits of your building
quota). To build something in a public place requires permission of the
centralized authority.

As communities grow very large, requiring the administrators to judge each
request for quota or building in public space can become time consuming and
also divisive. To counter these problems, LambdaMOO formed a committee
of members called the Architecture Review Board (ARB) to make such
decisions. Members of the ARB were initially appointed by the
administrators but now are elected.

170

Conflicts and debates over resource allocation are inevitable in any
community with shared resources. They are obviously not always either
community-building experiences or learning opportunities for community
members—but they can be. How such resource management problems are
handled has a strong impact on the flavor of a constructionist culture.

An emerging technical shift promises to change these social dynamics
substantially. All early MUD software operated on a centralized, single-server
model. All data about the world is stored on one computer, and the
controller of that computer ultimately must make resource allocation
decisions. An alternative model is to have many interconnected servers.
Centralized servers often out grow the memory and processing power of the
computer they run on. Much of the current interest in distributed servers is
rooted in concern about scalability. A community can grow many orders of
magnitude bigger if it can be served off of multiple computers. Whenever
the community needs room to grow, another computer can be added. An
interesting side effect of this technical change is that it could potentially
democratize the management of resource allocation (and many other features
of communities as well.) If my part of the world runs on my computer and
yours on your computer, then the scope of what I can construct is limited by
my financial resources (how big a computer I can buy), rather than by the
whim of the administrator of a centralized server. In the future, it may be
possible for everyone to control his or her own little corner of cyberspace.

6.6 Believing in Users
Many MUDs design spaces for users, rather than letting users build spaces for
themselves. In July 1996 I met with researchers from SRI designing an online
teacher professional development center in a MUD called Tapped In (Schlager
and Schank 1996b). They were neatly organizing virtual offices and meeting
rooms. A tremendous amount of effort was being put into anticipating
teachers’ needs.

I believe Tapped In will be a great resource for teachers. As I argued in
Chapter 2, I believe the education community needs to put more effort into
supporting teachers rather than replacing them or working around them.
Projects like Tapped In are exactly what is needed. However, to my design
sensibility, something seemed to be missing from their preliminary design:
opportunities for the teachers to extend the virtual world. Instead of trying to
anticipate and cater to all of teachers’ needs, why not work to give them
opportunities to design spaces to meet their own needs?

SRI researcher Mark Schlager replied that he didn’t believe that teachers had
either the time or the technical expertise to do so. It’s clear that for some
teachers this is true; for others, it is not. Exactly what proportion have either

171

the time or the confidence necessary I don’t know, but I do know that an
environment could be designed to accommodate both sorts of people.
Teachers with more time could design spaces to meet the needs of those with
less time. This is exactly what has happened with MediaMOO’s Tuesday Café.

When I founded MediaMOO, I was largely unfamiliar with the field of
teacher professional development. MediaMOO members Tari Fanderclai and
Greg Siering built a place they called the Netoric (from “network rhetoric”)
Center. Inside the Netoric Center they built The Tuesday Café (Fanderclai
1996). Every Tuesday night at 8 PM ET they organize a discussion of some
aspect of how to use computers to teach writing. Fifteen to sixty teachers
usually attend. This appreciative message was posted by a regular Tuesday
Café attendee:

From: MikeS
To: *Anything (#9008)
Subject: PhD program announcement

MikeS (michael j. salvo IRL) will be attending Texas Tech University
in the fall as a PhD candidate in the English Department's Technical
Communication and Rhetoric concentration.

MediaMOO was my first exposure to the technorhetorical community and
continues to be the most dynamic and committed group of teachers,
pedagogues, and net-rats i know. thank you for welcoming me almost
two years ago (!!). thanks to greg and tari for keeping the tuesday
cafe going, and thanks especially to all the regulars who tolerated
me as a clueless newbie and who have given me hope for the future of
critical educational reform and technorhetoric. without you all, i
would have left academia -- which *i* consider your greatest gift
(others may not feel the same;-). i thank you, and i hope our
community lasts a long long time. thanks, Amy, for keeping this
community going.

mike 2

Notice that Mike refers to “our community.” It’s critical that The Tuesday
Café was built by teachers for teachers. It gives them a greater sense of
ownership over the space. It also means teachers are taking responsibility for
their own professional development, rather than simply following a
researcher-designed program for credit. The philosophy of education of The
Tuesday Café models the sort of progressive learning environment I would
hope that teachers will learn to use with their students.

Also missing from the Tapped In preliminary model is adequate opportunity
for social activity. Many regular Tuesday Café attendees return during the
rest of the week to play scrabble, order virtual drinks, and just generally spend
time with their fellow teachers. Conversations often make an elegant

2Posting quoted with permission from the author.

172

transition from purely social topics to those more clearly work-related, as
Rémy Evard noted in his study of The InfoPark, the MUD he used to
coordinate activity among his system administrators (Evard 1993). Social
activity among peers increases time of participation and reinforces
professional development.

Schlager notes that The Tuesday Café is primarily for college and community
college writing instructors; elementary school teachers like his targeted
Tapped In users have heavier demands on their time and often suffer from
greater technophobia. These observations are undoubtedly significant.
However, I still believe that Tapped In’s users would benefit from greater
opportunity and encouragement to build spaces for themselves and their
peers.

At the Tenth Computers and Writing Conference, a teacher approached me
and proudly told me about a project he was working on. Over the summer
he had his graduate students preparing a model of the Pequod in a MUD for
his freshman composition students (who would be reading Moby Dick) to
explore. Won’t this be a wonderful educational experience, he asked? Yes, I
replied—for the graduate students making the model. Making the model is a
much more powerful learning experience than walking through it.

Unfortunately, only a small fraction of MUDs actively encourage users to
extend the virtual world, creating new places and objects. Collaborative
construction is one of the most interesting and educationally valuable
features of these environments. I hope in the future more community
founders will trust in their users, encouraging them to make worlds for
themselves.

6.7 Construction and Community
Diversity is an asset: there are many kind of communities, filling different
needs for different sorts of people at different stages of their lives. While I
currently regard violent hack-n-slash MUDs somewhat disparagingly, I
understand that they serve an important social and recreational (and to a
limited extent educational) function for a large number of people. In fact, if I
had had access to MUDs when I was 13 or 14, I’m certain I would have loved
that sort of environment—I was an avid Dungeons and Dragons player at
that age. Different communities serve different needs.

Does this, however, mean that we can make no value judgments among
them? I don’t believe so—multiculturalism and subjectivity have their
limits. Even though as a young teenager I might have enjoyed a violent
adventure game environment, I believe that a more constructionist
environment would have been better for my social, intellectual, and creative
development (and just as much fun). I believe this to be true not just for me

173

at that age but for most people at most ages. This is most certainly a value
judgment. The key things I value in a constructionist learning culture are:

• the positive value placed on creative and intellectual activity,
• the ready availability of social support for such activity, and
• a model of learning that is:

— self-directed,
— self-motivated,
— peer-supported, and
— life-long.

A constructionist culture can bring these benefits to its members.

174

175

7. Conclusion: Constructionism and Virtual Communities
This chapter will present a number of open questions for further research,
and then summarize the contributions of this thesis.

7.1 Open Research Questions
7.1.1 The Social Implications of Distributed Systems
MOOSE Crossing runs on a single, centralized server. A distributed model is
preferable for both social and technical reasons.

From a technical perspective, a distributed model is necessary for scalability.
A centralized server will always be limited by the memory, speed, and disk
capacity of the machine it runs on. A system implemented on a distributed
architecture can grow many orders of magnitude bigger—perhaps
indefinitely. Expansion simply requires additional machines.

This technical change has potentially large social implications. A centralized-
server model usually implies centralized control over most policy decisions
affecting the community. On MOOSE Crossing and MediaMOO, I make the
rules. This includes deciding who gets to be a member of the community,
what counts as acceptable conduct, how much each person can build in the
virtual world, and even whether the system continues to operate at all. (In
other words, it’s my sandbox.) MediaMOO briefly experimented with
democratic control, but that experiment failed. Part of the reason the
experiment failed is the difficulty of avoiding the fundamental fact that the
person who controls the hardware and software has ultimate control over the
system.1 If the server is distributed, social control over the virtual world
might be more effectively distributed. Everyone could have his or her own
small piece of the world, and make the rules for that piece of the world.
(Everyone could have his or her own sandbox.)

1This is only one of many reasons the experiment failed. Few if any of the active participants
had any background in political science, and many mistakes were made. I began the experiment
by establishing a voting mechanism to chose an elected council, and left it up to the newly-
elected representatives to decide how the council would operate. The new council members
chose a consensus-based decision making process, which proved unwieldy and vulnerable to
being manipulated by minority interests. Making even minor decisions proved time consuming
and difficult, and the elected council members found that the process was taking a great deal of
time and emotional energy for little reward. Discussion of even trivial issues became heated as
factions began to fight one another for purely political rather than substantive reasons. I tried
to make the elected council take on more responsibility and authority than they were willing to
accept, and then interfered too much in the process by continuing to participate in ongoing
discussions of issues. Early on in the experiment, the not-yet-developed political process was
put to a tough test by an accusation of sexual harassment made by a council member against a
member of the community. This led to a voluminous, heated, and acrimonious debate which
contributed to establishing a hostile atmosphere surrounding the entire political process.
Eventually, the council voted to dismantle the experiment and return to autocratic rule.

176

Distributed architectures do not necessarily imply distributed control over
decision making. For example, Fujitsu’s WorldsAway graphical world is
implemented on a distributed software base for reasons of scalability, but
Fujitsu retains complete control over all design decisions, just as is usually
the case in single-server models. Distributed architectures do, however, make
it much easier to establish distributed social control, where it is desired.

If the economic and technical barriers to establishing your own little piece of
the virtual world remain relatively high, then the system that emerges will
not be radically different from what exists today. Communities will be more
interconnected, and will need to negotiate border issues. Gateways between
separate servers may be invisible to the user, or they may come with customs
stations checking that you are authorized for access, are not carrying any
prohibited objects, and agree to abide by the local rules and regulations.
However, overall, things will not be very different.

As the barriers to having your own corner of the virtual world drop, the
nature of the medium will likely begin to change more radically. What will
be the impact of democratization of control? Will many people want to have
their own corner of cyberspace? If so, what will they do there? Are realms
run by individuals subject to any broader laws? Whose laws apply? Are
there any civil rights in cyberspace? The nature of the social changes this
technological shift will facilitate is an intriguing question for further research.

7.1.2 The Cognitive Implications of Graphical Media
Many people who visit the Epistemology and Learning Group at the Media
Lab are initially surprised to see that MOOSE Crossing is a text-based system.
Isn’t this the Media Lab, they wonder? After they’ve seen the children’s
projects, they are usually charmed. The children are using words
imaginatively and expressively, developing a new understanding of and love
for the written word. After a class in California had been using MOOSE
Crossing for a few months, I called their teacher on the phone and asked how
things were going. Her first comment was that she couldn’t believe the
improvement in her students’ writing. The students are devoting significant
energy to writing, and to revising their writing. They really seem to care
about the outcome, because they want to show it off to their peers. For this
particular application, the text-based medium supports rich learning
experiences.

For many other applications, other media types are preferable. For example,
members of MediaMOO would be able to communicate more fluently with
one another if they could do so by voice. An educational system designed to
promote visual expressiveness would of course be better in a graphical
medium. A media type should be chosen by analyzing the unique
requirements of each design situation.

177

Unfortunately, many designers chose to use the flashiest medium possible,
regardless of the goals of a specific application. The benefits of text need to be
explained to people seeing it for the first time; graphics are more immediately
accepted. The initial threshold to using graphical media is often lower, but
the limit on what you can ultimately accomplish with it is often lower as
well. People seeking commercial success with new media are particularly
vulnerable to choosing the highest production values possible to maximize
immediate appeal, regardless of the real requirements of the situation.

In reality, higher production values are not always more commercially
successful. Fujitsu’s WorldsAway two-and-a-half-dimensional virtual world
has been much more popular and financially successful than its three-
dimensional competitors like AlphaWorld and WorldsChat by Worlds, Inc.2
One likely reason is that WorldsAway has stronger support for human
communication. While AlphaWorld may look much fancier, in
WorldsAway your avatar has a wider range of body language and emotional
states. Since this medium is ultimately about interpersonal communication,
WorldsAway has greater appeal to users than its slicker but less expressive
competitors.

This is not an argument in favor of text, or against high production values.
It’s an argument in favor of the appropriate use of media, and against using
graphical media solely for surface appeal.

As of 1997, text-based MUDs are used for many virtual world applications that
would be better off being graphical. The reasons are largely economic—most
text-based MUD servers are given away for free, are easy to run, and require
no computing power on the client side. They can be accessed from almost any
computer with any kind of net connection. For many applications such as
hack-n-slash games, graphical media are preferable, and will likely replace
text-based media in the near future. For example, Diablo by Blizzard
Entertainment is a networked Dungeons-and-Dragons-like game which has
very quickly gained popularity, with over 5000 players participating each
night only a few months after its release. Graphical media offer significant
advantages for this application, and it’s likely that commercial graphical
systems will dominate over freeware text-based systems in the near future.

For educational MUDs, text continues to have pedagogical advantages.
However, as children’s media companies begin to design large-scale online
services, it’s inevitable for marketing reasons that those services will be
graphical.

2This information is from an unconfirmed source.

178

Currently available graphical systems are much less intellectually engaging
than text-based ones. The ability of text-based worlds to encourage creative
writing is only part of the reason. Text-based worlds allow users to construct
new spaces, and program objects with behaviors. Few graphical worlds allow
users to build, and none that I know of created to date (March 1997) allow
users to program.

While current graphical technology is less intellectually engaging, this does
not have to remain the case. This leads to an intriguing set of design
questions. The goal of the design of the MOOSE language and MacMOOSE
client was to make the text-based medium more intellectually engaging. How
could graphical media be enriched in this fashion? What new learning
experiences can graphical media support? Given the inevitability of media
for children and adults becoming increasingly graphical, this is an important
set of research questions to address in the future.

7.1.3 Gender, Technology, and Learning Styles
In the spring of 1992, I bumped into Mitchel Resnick (who was at that time
still a graduate student, but about to become a faculty member) in the hallway
by the Media Lab’s back elevator. I had recently given a presentation about
my research into social and psychological phenomena in MUDs to the Media
Lab’s Narrative-Intelligence Reading Group. That original work was done as
a term paper for a course on the sociology of science and technology with
Sherry Turkle. My main research at that time was still on interactive cinema.
In the hallway, Mitch asked me: What do you think of the idea of making a
MUD based on the Babysitters’ Club series of books to encourage girls to be
interested in computing? That was the beginning of what would later
become the MOOSE Crossing project—the initial motivation was to explore
ideas about gender and computing.

The Babysitters’ Club is a series of books for young adults published by
Scholastic Books that are enormously popular with girls. While that theme
might help attract girls, it also seemed a bit restrictive to the imaginative
possibilities a virtual world might offer. A theme based on the PBS television
show Ghostwriter was considered, but also dismissed for similar reasons. I
wanted something that would appeal to both girls and boys, and would be
fairly open-ended, allowing children to construct anything they imagined.
MicroMUSE’s theme of the city of the future struck me as being a bit too
masculine. On the other hand, a Babysitters’ Club MUD seemed to go too far
in the other direction. The project had no name until June 1993, when I sent
this email to a few friends and colleagues:

179

Subject: The social construction of MOOSE
Date: Fri, 25 Jun 93 10:13:56 -0400
From: asb@media.mit.edu

I'm getting awfully tired of referring to "the MUD for kids" and "the
scripting language we're designing." Names are needed. And
yesterday I had this wonderful/terrible idea: it's a MOO Scripting
Environment, right? That sounds like MOOSE to me! So the language
would be called MOOSE. The place would be called "MOOSE Crossing."
It's a crossing of ways for many different sorts of people.

When you connect, you're at the intersection of two roads. One way
leads to the city. Another leads to the country. There's one tree
in the middle of the clearing. Dangling from the tree is a horn. If
you blow the horn, the moose will come. The moose is a program which
tries to be helpful and answer questions. When it hasn't been
summoned, it wanders around (usually in the forest, behind the
clearing.) If you climb the tree, you get to a tree house. If you
climb past the tree house up into the clouds, you get to a kind of
fantasy land. This is just a place where kids can build new areas
based on whatever fantasy themes they like. Over all, this is just a
core structure for the kids to build off of.

So here's the gender question:
Clearly we wouldn't want to call a MUD designed to encourage girls to
be excited about computers "racetrack," "boxing rink," or "the
tower." But I also don't want to call it "teddy bear place,"
"unicorn land," or "rainbow home." I want something gender neutral
leaning a touch towards the feminine, but not corny. Does "MOOSE
Crossing" fit the bill?

-- Amy

p.s. Clearly, the moose is a female moose. (Does that mean no
antlers?) What is her name?

The idea of having a programmatic moose was later abandoned as
unnecessary, but otherwise the structure of the virtual world ended up pretty
much as described above.

The idea of making MOOSE Crossing a girls-only environment was
considered, and rejected for a variety of reasons. I thought it would be more
interesting to construct an environment for both girls and boys, and see
whether they reacted differently to it. Additionally, although I’m not fully
versed in the literature on single-sex education, my inclination is against it.
Girls need to learn to function effectively in the real world, and this includes
the presence of boys and men in almost all social contexts. For these reasons,
MOOSE Crossing was made a co-ed environment, and its agenda of
investigating gender and computing was not announced to participants.

As time went on, gender issues faded in prominence on the research agenda.
There seemed to be so much to understand about phenomena like

180

community, construction, and learning in the environment. Gender seemed
more appropriate for a follow-on study.

Another reason for delaying research on gender on MOOSE Crossing is
methodological. An ethnographic methodology uses detailed observation of
particular individuals to try to understand broader phenomena. In the case of
studying learning, this methodology seemed appropriate. Applying this
approach to the study of gender is more problematic. In examining small
groups of individuals, how can we understand what factors are attributable to
individuals’ personalities, and what factors are correlated with gender?

More quantitative approaches are also problematic. It’s difficult to develop a
rich understanding of human social behavior from such an approach. We
have done some statistical analysis of data recorded on MOOSE Crossing. We
divided commands issued into the categories of movement, scripting,
looking, help, object manipulation, communication, etc. and compared
results for boys and girls.3 There were no statistically significant differences
(See Figure 7.1). Overall, girls and boys appear to be using this medium in the
same general ways.

Anecdotally, one teacher of a MOOSE Crossing program at a private school in
Minnesota reported that the girls were initially much more interested in
MOOSE Crossing than the boys. During this time, the children were creating
objects and rooms, spending most of their time writing; no one in the class
knew how to write programs. Austina Vainius and I visited the class, and
showed the students how to write some simple programs. During that
session, the boys and girls appeared to have equal interest. The teacher was
quite surprised at the difference from previous sessions. (At the time of this
writing, it’s not yet clear whether the boys’ increased interest will persist over
time.)

Of the children who are members of MOOSE Crossing, 44% are girls and 56%
are boys. This is a slightly higher percentage of female participants than has
been reported for the net in general. Reports of the percentage of women
online vary. A survey by the Nielsen company reports that 34% of people
going online for the first time in 1995 were female; that percentage rose to
42% in 1997 (Bray 1997). (MOOSE members all joined during this time
period.)

It’s interesting to break these percentages down by where they (or their
parents) heard about MOOSE Crossing and where they connect to MOOSE
Crossing. This data is summarized in Table 7.1 and Figure 7.2. When
MOOSE is presented to children in the context of a school or after-school

3MIT student Austina Vainius did this data analysis, working on the project under the auspices
of MIT’s Undergraduate Research Opportunities Program (UROP).

181

program, girls and boys participate in roughly equal numbers. Kids who
heard about MOOSE from a friend are equally split along gender lines.
Likewise, educational researchers who heard about MOOSE Crossing in a
professional context bring an almost equal number of girls and boys to the
community (slightly more girls). Data from one girls-only after school
program is separated out.

M
ov

em
en

t

C
om

m
un

ic
at

io
n

H
el

p

Lo
ok

in
g

C
re

at
io

n

In
fo

. a
bo

u
t

O
th

er
s

Sc
ri

p
ti

n
g

O
bj

ec
t B

ro
w

si
ng

P
ro

p
er

ti
es

M
ai

l

U
si

ng
 O

bj
ec

ts

O
th

er
Girls

Boys
0

5

10

15

20

25

Pe
rc

en
ta

ge
 o

f
T

ot
al

 C
om

m
an

ds
T

yp
ed

Categories of Commands, by Gender

Figure 7.1: Categories of Commands, by Gender

The only gender-unbalanced category is that of kids who heard about MOOSE
Crossing via the media (i.e. the popular press, mailing lists, or the web.) More
boys are enthusiastic to try MOOSE Crossing and more parents of boys actively
seek this educational opportunity for their children than parents of girls.
However, usage data indicate that girls tend to like MOOSE Crossing as much
as boys. The number of commands typed broken down by gender are
presented in Table 7.2. Once they become members, girls and boys participate
to a fairly equal degree—the mean number of commands typed is slightly
higher for boys, but the median is higher for girls. People expect that boys will

182

like this kind of activity more, but in reality girls and boys like it equally. Our
expectations of children’s behaviors are more gender-stereotyped than their
actual behaviors.

Both ethnographic and statistical methods are limited in their ability to
analyze gender-related phenomena. Justine Cassell suggests that a composite
methodology where ethnography is used to further explore hypotheses
generated by statistical data analysis may be more fruitful. More research is
needed to understand gendered phenomena on MOOSE Crossing and in
other computational environments.

How Kids Heard About MOOSE Crossing
by Gender

Media (i.e. popular press, web, mailing lists)
Girls: 10 (29%)
Boys: 25 (71%)

Research Community
Girls: 15 (54%)
Boys: 13 (46%)

School
Girls: 28 (47%)
Boys: 32 (53%)

Friend
Girls: 5 (50%)
Boys: 5 (50%)

Girls-Only After-School Program
Girls: 9 (100%)
Boys: 0 (0%)

Other
Girls: 5 (50%)
Boys: 5 (50%)

Table 7.1: How Kids Heard About MOOSE Crossing, by Gender

183

Commands Typed Per Child
by Gender

Median Mean
Girls: 354 2808
Boys: 390 2139
Both: 375 2440

Table 7.2: Commands Typed Per Child, by Gender

Where Kids Connect to MOOSE Crossing, by Gender

N
u

m
b

er
 o

f
K

id
s

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

Home School Media Lab
After-
School

Program

The
Computer
Clubhouse

Girls

Boys

Figure 7.2: Where Kids Connect to MOOSE Crossing, by Gender

7.2 Contributions
The primary contributions of this thesis are:

• The creation of a working “technological samba school.”
• An articulation of design principles for computer languages (and other

technologies) for kids.

184

• Elucidation of the mutually supportive relationship between
construction activities and community, particularly:
— An expansion of fundamental understanding of

“constructionist” learning, particularly the essential role played
by community support for that learning.

— An exploration of how constructionism can enhance virtual
communities.

This last point is of key importance. The Internet is becoming an increasingly
important part of how we work, play, and learn. It remains an open question
to what extent communities on the Internet will empower their users. At a
colloquium speech at The Media Lab in 1996, David Kurlander, author of
Microsoft’s Comic Chat client, had a bullet point on one of his slides that said
“chat is inane.” He smiled and moved on to the next point as if what he had
just said was simply a fact of life to accept. Chat is not necessarily inane.
Furthermore, interactions among groups of people online can be much more
than chat. A constructionist approach to the design of those communities can
help to make them more valuable to their members.

A constructionist approach to virtual community design:

• Seeks to maximize each individual’s opportunities for creative
expression and active participation.

• Starts with the assumption that average people are smarter and more
creative than is often assumed, and can achieve great things if given a
supportive context to do so. (Applied to software design this is the
antithesis of “idiot proofing.”)

• Provides well-designed software tools which have a low initial barrier
to use, and a high ceiling for what can be accomplished with them.

• Encourages users to be creators of content, maintaining overall quality
by enforcing a minimal set of community standards and establishing a
distinction between private space and public space.

• Provide opportunities and infrastructure for community support for
learning.

In a paper commissioned for the Getty Museum’s Art History Information
Program, I wrote:

Cyberspace is not Disneyland. It's not a polished, perfect place built by
professional designers for the public to obediently wait on line to
passively experience. It's more like a finger-painting party. Everyone is
making things, there's paint everywhere, and most work only a parent
would love. Here and there, works emerge that most people would
agree are achievements of note. The rich variety of work reflects the
diversity of participants. And everyone would agree, the creative

185

process and the ability for self expression matter more than the
product. (Bruckman 1995)

This is a rather different vision than what many designers of corporate web
sites have in mind. The Disneyland metaphor dominates the design of many
sites whose goal is to display products and services in the best possible light.
But the Internet can and will be more than a marketing tool. A
constructionist approach can help to make virtual communities empowering
for their members, helping groups of people to accomplish what individuals
can not accomplish alone.

186

187

Appendix: Five Children’s Creations
To give the reader a feeling for what children have been able to accomplish
on MOOSE Crossing, this appendix includes all the programs and descriptions
of five randomly-selected children. A random-number generator was used to
pick them. I decided in advance that I would continue picking children
randomly and use the first who fit into each of these categories: a participant
in the local after-school program, a home-schooled child, a child who heard
about MOOSE Crossing over the net and participates from home, and a child
who participates as part of an in-school activity. I also decided that I would
keep picking until the full range of ages (7 to 13) was represented. The first
four children randomly picked filled most of these categories. I had to pick
several more until a child participating from an in-school program was
selected.

While this sample was randomly selected, it is unrepresentative in two ways.
First, four girls and one boy are included in the sample. The over-all
population of MOOSE Crossing is 56% male and 44% female. Second, these
children have participated more than is typical. The mean number of
commands typed for all children on MOOSE Crossing is 2440 but the mean for
this sample is 6994.

Of the children selected, one (Mouse) I would call unusually successful; one
(Angela) I would call unusually unsuccessful. Angela participates in school,
and has been singled out as having particular difficulty compared to her
classmates. The other three children (Goofy, Werdna, and Rowena) are more
typical in their level of accomplishment.

Only those objects in existence as of March 1997 are shown. (Mouse in
particular has a large number of objects which she recycled when she no
longer wanted them.) The children are listed in order of increasing age.

The children’s objects are listed in the order in which they were created. This
means that the programs they have written are not listed in the order in
which they were written. For example, Mouse has written a number of
programs on her own character object. Your character is the first object you
own, so these are listed first. However, these programs are actually relatively
advanced programs that she wrote at a much later date. Her first program is
on the next object she created, Charlie the caterpillar.

188

Goofy
Age: 7
Gender: Female
Participating from: Media Lab after-school program; no home access
Joined in: October 1996
Total commands typed: 153

I never anticipated that MOOSE Crossing would be used by kids as young as
seven. It’s a very different activity for young children who are just learning
to read. Goofy is the youngest of four siblings who all participated in the
Media Lab’s after-school program. Her eldest brother Zoro joined the
program first, and the others followed in age order, a few months apart. Zoro
had been participating for almost a year by the time Goofy decided to give it a
try.

Writing is a painstaking process for Goofy. The long “emote” command in
her banana joke script on her monkey took her a few hours of work, spread
out over several sessions. She would often pause to ask her older sister (Liza,
age 10) how to spell a particular word.

*** goofy (parent: MOOSE player class) ****
a fat person with little arms and legs

*** goofy's Room (parent: Generic MOOSE Room) ****
light pink with blue and green dots

*** goofy (parent: generic exit) ****
From: Paradise Island
To: goofy's Room

*** out (parent: generic exit) ****
From: goofy's Room
To: Paradise Island

*** a sing tree (parent: generic thing) ****

*** generic monkey (parent: Generic Puppet) ****
he has a red shirt

*** jj (parent: generic monkey by goofy) ****
he has a red shirt and black pants he is a ranbow monkey

2 scripts on jj:

 on talk
 say knock knock
 say whos there

189

 say boo
 say boo who
 say "don't cry it's only a joke"
 end

 on banana
 say "knock knock"
 say "nobody is home"
 emote "reaches into his pocket and pulled out a bunch of bananas"
 emote "reaches into his pocket and pulled out a pietray and then

said hmmmn how can I do this then he reaches into his pocket
and pulled's out a portable oven and say's hmmmn how can I do
this then he unpeels all the bananas smushis the bananas into
the pietray and puts it in to the oven and wates for it to cook
then it gos ding rb pushes the button that says cool then the
oven gos ding rb pulls the pie out of the oven and smacks itto
goofys face the end.

 end

*** lemon chime (parent: Generic Puppet) ****
she is brown she loves to eat sweet milk grass she loves to run and

eat sweet milk grass she understands me and I understand her we
love each other and she loves to leap over things

******** TOTAL: 2 scripts on 8 objects. ********

Mouse
Age: 8 to 10
Gender: Female
Participating from: Media Lab after-school program;

additional access from home starting in June 96
Joined in: November 1995
Total commands typed: 12972

Like Goofy, Mouse wasn’t originally supposed to be participating in MOOSE
Crossing—she was, after all, only eight years old. She got involved as a result
of a child-care problem. Her ten-year-old sister, Miranda, was one of the first
children to try it out. On Miranda’s fourth visit to the Media Lab, their
mother Lynn had no place to leave Mouse. Lynn asked if it would be OK if
Mouse watched. For three sessions, Mouse watched intently over Miranda’s
shoulder, not saying a word. Two things became immediately clear about
Mouse: she is extremely shy, and she worships her older sister. Lynn
commented that Mouse generally won’t talk to adults at all, unless she knows
them extremely well. Every time I asked Mouse if she would like to try
MOOSE Crossing too, she responded with a silent shake of the head. At the
start of her fourth visit, I asked again. This time, she nodded.

190

Mouse had clearly been watching carefully. Three and a half minutes after
first connecting, she had already found the secret path to the clouds and built
a home next to her sister’s room there. She gave it this description:

a tiny room with a desk in the center of the room. On the desk there
is a pen and a stuffed teddy bear. In the corner is a mouse hole. A
mouse sticks its head out.

Both her name and room description emphasize a sense of feeling small.
After describing her room she joined Miranda and typed ‘say "Hi Miranda".’
Then she didn't say anything, but sat looking at Miranda at the computer next
to her, silently. I said out loud to Mouse, "I don't think she's looking at her
screen." Miranda heard me and turned to her computer and typed “say hi”
back. This conversation ensued:

Miranda gives you a hug
Mouse says, "I'm here to hug you!"
Mouse hug Miranda
Mouse hugs Miranda
Mouse says, "I made a mistake"
Miranda smiles
Mouse smiles back

Here Mouse types “ask Eddy for joke.” Eddy is one of Miranda’s creations—a
giant light bulb that tells light bulb and other jokes.

Eddy says, 'What is the best way to catch a squirrel?'
Eddy says, 'Climb up a tree and act like a nut'
Miranda says, "Great joke, right?"
Mouse says, "I guss so."
Mouse hugs Miranda again
Miranda says, "You spelled 'guess' wrong"
Mouse says, "I made a mistake again"
Miranda says, "Everybody makes mistakes."

Variations on Miranda’s “on blink this number times” script on Eddy would
form the basis for many of Mouse’s projects over the next few months.
Initially, she was just following a pattern without fully understanding its
component parts. Later on, she would come to understand those parts, and
progress to writing more varied and original scripts.

The nine scripts on Mouse’s character object were written at a later date. Her
first scripts are those on Charlie the caterpillar.

*** Mouse (parent: generic_answering_machine by Miranda) ****
Mouse has Dark brown hair which is worn in a lose ponytail. Her eyes

are brown and are twinkling happily. She is wearing blue jeans and
a white, velvet shirt.

9 scripts on Mouse:

191

 on follow any_person
 set person to any_person
 join person
 fork 500
 join person
 tell me "You are not following anybody anymore."
 endfork
 fork 400
 join person
 endfork
 fork 300
 join person
 endfork
 fork 200
 join person
 endfork
 fork 100
 join person
 endfork
 end

 set my awake to 1
 end

 set my awake to 0
 end

 on float
 tell this "Who would you like to float into?"
 set float to input
 join float
 tell float "Mouse's soul has chosen to float into your body. It

will follow you where ever you go."
 tell this "Mouse's soul has chosen to float into your body. It

will follow you where ever you go."
 set my floater to float
 end

 on exit here by object
 if player is my floater
 fork 5
 this:join player
 tell player "soul is in your body, it followed you"
 tell me "you follow " + player's name
 endfork
 endif
 end

 on unfloat
 tell my floater "I float out of you"
 tell this "I float out of you"
 set my floater to {}
 end

 on Easy_Audit
 set Dog to context's owned_objects
 set pigs to {}
 for mouse in dog

192

 set rat to nn mouse
 set pigs to (add rat to pigs)
 endfor
 columnize pigs into 3 of width 135
 tell_lines context it
 end

*** Mouse (parent: generic exit) ****
From: Home in the Clouds
To: Main Kitchens

*** Charlie (parent: Generic Following Object) ****
a dark green catorpilor with red bumps on his legs. He has purple

eyes with bule dots in the middle of them.

2 scripts on Charlie:

 on change this number "times"
 set changed to number
 if changed > 5 times
 emote "bumps turn blue"
 endif
 if changed > 50 times
 emote "bumps turn purplish pink"
 endif
 if changed > 100 times
 emote "bumps turn light green"
 endif
 if changed > 500 times
 emote "bumps start to blink black and brown"
 endif
 if changed > 550 times
 emote "bumps blink purple and pink then turn red"
 endif
 end

 on enter here by object
 emote " wiggles bumps madly and turns a bright yellow."
 end

*** Mouse (parent: generic exit) ****
From: Paradise Island
To: generic_penguin

*** Stacy (parent: Generic Joke-Telling Object) ****
a frendly killer whale. She has Brown eyes and her tail has a rash.

1 script on Stacy:

 on flap this number "times"
 set flapped to number
 if flapped > 5 times
 emote " blinks her eyes happily"
 endif

193

 if flapped > 50 times
 emote " waves fin as in a way to say hi"
 endif
 if flapped > 100 times
 emote "looks angry"
 endif
 if flapped > 500 times
 emote "wiggles arond madly"
 endif
 if flapped > 550 times
 emote "flips over"
 endif
 end

*** R.C. (parent: Generic Puppet) ****
a gray dolphin with a really, really, really shinny tail. He is

Stacy's boyfriend.

1 script on R.C.:

 On flap this number "times"
 set flapped to number
 set Stacy_here to #xxx member here's contents
 if flapped > 5 times
 if Stacy_here
 emote " jumps over Stacy"
 else
 emote " jumps up in the air"
 endif
 endif
 if flapped > 20 times
 emote "dances around like a crazy person."
 endif
 if flapped > 50 times
 emote "does the hokey pokey."
 endif
 if flapped > 100 times
 emote " puts his fins on his hips."
 endif
 if flapped > 500 times
 if Stacy_here
 emote "dances on Stacy's head"
 else
 emote " spins like a top"
 endif
 endif
 end

*** Newty Cutey (parent: generic_newt by Byron) ****

2 scripts on Newty Cutey:

 On crawl this number "times"
 set Crawl to number
 if crawl > 10 times
 emote "slimes you!"

194

 endif
 if crawl > 50 times
 emote "sticks its toungh out at you."
 endif
 if crawl > 100 times
 emote "turns around dizzlely."
 endif
 if crawl > 500 times
 emote "bites you."
 endif
 end

 On sign_here
 end

*** Mouse's room (parent: Generic MOOSE Room) ****
a chocolate covored room. You lick some of the chocolate off, yummy.

You lick some more. You can see through the chocolate! You see a
box. You lick around the box and take it out. It's full of
chocolate bars! You also see a blue couch and a blue table.

*** Mouse (parent: generic exit) ****
From: Paradise Island
To: Mouse's room

*** out (parent: generic exit) ****
From: Mouse's room
To: Paradise Island

*** generic_bubble_blower (parent: generic thing) ****
A bottle with a labble on it that says "do not touch." You also see

a bubble blowing stick taped to the bottle. You guess it's a
bubble blower.

2 scripts on generic_bubble_blower:

 on blow bubbles number "times"
 set blow_bubbled to number
 if blow_bubbled > 5 times
 announce_all "bubbles float around in the air."
 endif
 if blow_bubbled > 100 times
 announce_all " bubbles look angry"
 endif
 if blow_bubbled > 500 times
 announce_all " bubbles blow up!!"
 endif
 end
 on blow red bubbles
 announce_all "red bubbles floats in the air"
 end
 on blow blue bubbles
 announce_all "blue bubbles pop on your head"
 end

195

 on blow green bubbles
 announce_all "green bubbles pop as they float through the air"
 end
 on blow yellow bubbles
 announce_all "yellow bubbles do a silly dance"
 end

*** Dolly (parent: Generic Following Object) ****
 A little doll with a little hat and a little outfit and little

shoes.

3 scripts on Dolly:

 on drop this
 tell context " I fell down. Pick me up mommy! "
 pass
 fork (25)
 if this memberof player's contents
 tell context " thank you mommy! Ha!Ha!Ha! Ha!Ha!Ha! "
 else
 tell context " BAD MOMMY!!! "
 endif
 endfork
 end

 on Somersault this number "times"
 set somersaulted to number
 if somersaulted > 5 times
 emote "Somersaults 5 times and drols happily."
 endif
 if somersaulted > 30 times
 emote "then somersaults 30 times and falls on his head."
 endif
 if somersaulted > 50 times
 emote "then Somersaults 50 times and Tinky tinkles in his

toilt."
 endif
 if somersaulted > 100 times
 emote " then somersaults 100 times and starts to spin around in

circles."
 endif
 end

*** Quiet Clearing (parent: Generic Residence Hall) ****
A huge clearing. On the right there is a freash water pond. You

hear birds singing. It seems like a quiet and cozy place to build
a home. To build a house, type 'build'

*** Quiet (parent: generic exit) ****
From: Redwood Forest
To: Quiet Clearing

*** out (parent: generic exit) ****

196

From: Quiet Clearing
To: Redwood Forest

*** Floppy (parent: generic_greeting_creature by Byron) ****
A cute Puppy with floppy ears. She is black, except her back which is

white. As you look at her face, You see a gold metal around her
neck that reads:FLOPPY IS HEREBY NAMED 'OBJECT #xxxx'. Floppy is a
REALY cute dog.

5 scripts on Floppy:

 on touch this string
 if string is "on the tail"
 say "Hee, hee, hee!"
 endif
 if string is "on the eye"
 say "Ow!"
 endif
 if string is "on the nose"
 say " Don't do that! "
 endif
 if string is "on the head"
 say " Bopy Bop "
 endif
 if string is "on the feet"
 say "watch out I might scratch you"
 endif
 if string is "on the back"
 say " That feels good! "
 endif
 if string is "on the ear"
 say " what did you say? "
 endif
 if string is "on the tummy"
 say "tummy tum tum!"
 endif
 if string is "on the leg"
 say "Hey! You can't touch me there!"
 endif
 end

 on leash_on this
 emote "smiles happily as you put her leash on."
 end

 on tell this string
 if index string "Floppy"
 announce_all_but this "floppy smiles when she hears her name

being called"
 endif
 end

 On carry this
 tell player "You pick up floppy and pet her on the head."
 end

197

 on hug this
 tell player "Floppy woofs in delight"
 end

*** Mouse's Plants (parent: Generic MOOSE Room) ****
You are in a Florist. There are plants everywhere!

*** Mr.Planter (parent: generic_creator) ****

2 scripts on Mr.Planter:

 on buy plant
 tel player "What name would you like your plant to have?"
 set plantname to input
 make #xxxx named plantname
 if context not memberof my buylist
 set my buylist to (add context to my buylist)
 endif
 end
 on buy bush
 tel player "What name would you like your bush to have?"
 set bushname to input
 make #xxxx named bushname
 if context not memberof my buylist
 set my buylist to (add context to my buylist)
 endif
 end
 on buy tree
 tel player "What name would you like your tree to have?"
 set treename to input
 make #xxxx named treename
 if context not memberof my buylist
 set my buylist to (add context to my buylist)
 endif
 end
 on buy flower
 tel player "What name would you like your flower to have?"
 set flowername to input
 make #xxxx named flowername
 if context not memberof my buylist
 set my buylist to (add context to my buylist)
 endif
 end

 on enter here by person
 say "Hi," + person's name + " , you are at Mouse's Plants. To buy

a tree, type buy_tree, to buy a bush, type buy_bush, to buy a
flower, type buy_flower, and to buy a plant, type buy_plant. If
you want to ask a question about a plant, a bush, a flower or a
tree, page Mouse with the question or join her and ask her."

 end

*** flu (parent: generic_plant by Miranda) ****

198

*** proy (parent: generic_flower by Mouse) ****

*** hoyem (parent: generic_bush by Mouse) ****

*** green (parent: generic_tree by Mouse) ****

1 script on green:

*** generic_bush (parent: generic thing) ****

1 script on generic_bush:

 on enter here by object
 announce you see a rabbit scamper away from behind the bush
 end

*** generic_tree (parent: generic thing) ****

1 script on generic_tree:

 on enter here by object
 announce "a bunch of nuts pour out of a hole in the trunk and a

squirrel poks his head out."
 end

*** generic_flower (parent: generic thing) ****

1 script on generic_flower:

 on enter here by object
 announce a petal drops from the flower
 end

*** Ouija_Board (parent: generic thing) ****
A big board with the alphabet on it and a magnifying piece

1 script on Ouija_Board:

 on use this
 tell context "ask question that initials will answer."
 fork (60)
 set initials to pick my letters
 tell context initials
 set initials2 to pick my letters
 tell context initials2
 endfork
 end

*** Generic_Multiple_personality_puppet (parent: Generic_Assistant by
Rachael) ****

199

4 scripts on Generic_Multiple_personality_puppet:

[Note: The scripts on this object were copied by Mouse from a system object, without her
really understanding them. Many kids use “generic multiple personality character” to
enable them to switch personalities. Mouse decided she wanted her puppet to be able to
switch names and descriptions as well. She copied the code from multiple personality
character to make multiple personality puppet. I helped her with this. The code isn’t
representative of her level of achievement, so I have omitted it here.]

*** Mouse's favorite Ice Cream (parent: Generic MOOSE Room) ****
A very big Ice cream store. There is a big, shiny red counter in the

center. Behind the counter, there is a robbot with an apron that
says Mouse's Helper. To buy somthing, type buy <flavor>. The Ice
cream is FREE. The room is all white except for the floor which
is covered with a brown carpet. On the wall, there are pictures
of famos people eating Ice Cream. In the back there is a blue
door that reads: Employees Only. You like this store a lot. You
will probably buy some. The Robot smiles at you warmly and says '
What flavor would you like.' You think hard and decide you'll
get.........

*** Ice_cream_man (parent: generic_creator) ****

1 script on Ice_cream_man:

 on buy string
 tell player "In a cone or a cup?"
 set cko to input
 tell player " You now have " + string + " Ice cream in a " + cko

+ " To lick, type 'lick' now"
 if string memberof my flavors
 tell player " You now have double fudge " + string + " Ice

cream in a " + cko + " You get double fudge, because you are a
friend of Mouse. To lick, type 'lick' now"

 endif
 set slobber to input
 if slobber is lick
 tell player " You lick your " + string + " Ice cream. "
 tell player "You lick your " + string + " ice cream again."
 tell player "You lick your ice cream until the Ice cream is

gone."
 else
 tell player " You tip your ice cream " + cko + "."
 endif
 if context not memberof my buylist
 set my buylist to (add context to my buylist)
 endif
 end

*** Mouse's Nest (parent: Generic MOOSE Room) ****
A tiny ramshakle nest which is falling apart. To fix it up, type

'describe here as <description'.

200

*** Mouse (parent: generic exit) ****
From: Nest Gather Grounds
To: Mouse's Nest

*** down (parent: generic exit) ****
From: Mouse's Nest
To: Nest Gather Grounds

*** Side Hall (parent: Generic Residence Hall) ****
A Very airy, long Hall with a view of a lake. there are lots of open

windows. On windows, there are lots of plants.

2 scripts on Side Hall:

 on enter here by player
 (pick my open)
 announce_all it
 set my window to it
 end

 on set tempature
 tell player "What would you like the tempature to be? It has to

be above 40 degrees and under 100 degrees."
 set temp to input
 if temp is "40"
 tell player "The temp is forty, it's mighty cold , you might

want to turn it up a noch."
 set my temp to 40
 endif
 if temp is "41"
 tell player "The temp is forty one, it is cold in here, you

might want to turn the heat up more."
 set my temp to 41
 endif
 if temp is "42"
 tell player "The temp is forty two, it is a little cold, you

should turn it up a little."
 set my temp to 42
 endif
 if temp is "43"
 tell player "The temp is forty three, it's cool in here, you

should turn it up a little, so people dont shiver."
 set my temp to 43
 endif
 end

*** Mouse's Labratory (parent: Generic MOOSE Room) ****
A very green room with blue carpet. There is a desk with lots of

bottles full of stuff like, blue liquid and strange possions. Next
to the desk there is a HUGE window covering tho whole wall! Next
the window is a tiny table with two books on it and a pad of paper
and a pen. On the other side of the room there is a bookcase with
many books about chemisty. Next to the desk there is a little
stove. This is a cozy little lab.

201

*** Mouse (parent: generic exit) ****
From: Side Hall
To: Mouse's Labratory

*** out (parent: generic exit) ****
From: Mouse's Labratory
To: Side Hall

*** Mouse's bed room (parent: Generic MOOSE Room) ****
You're standing in a small space with a bunk bed on the side. There

is also a dresser and a wooden desk. Next to the desk there is a
bookcase. A closet is next to the bookcase. This is Mouse's bed
room.

*** Bedroom (parent: generic exit) ****
From: Mouse's Labratory
To: Mouse's bed room

*** Lab (parent: generic exit) ****
From: Mouse's bed room
To: Mouse's Labratory

*** whatsnew (parent: Generic Large-Capacity Mail Recipient) ****
a mailing list with lots of new stuff.

*** LAB (parent: generic exit) ****
From: Mouse's favorite Ice Cream
To: Mouse's Labratory

*** BAL (parent: generic exit) ****
From: Mouse's Plants
To: Mouse's Labratory

*** Down (parent: generic exit) ****
From: Side Hall
To: Main Kitchens

*** up (parent: generic exit) ****
From: <nowhere>
To: Side Hall

*** Plants (parent: generic exit) ****
From: Mouse's Labratory
To: Mouse's Plants

*** Cream (parent: generic exit) ****

202

From: Mouse's Plants
To: Mouse's favorite Ice Cream

*** Time Traveler (parent: Generic Viewable Room by Churchill) ****
You see a big Black tube in front of you. On the wall there is a sign

that looks very old. It reads: 'To travel to a time, Either 1987,
1984, 1000 bc, 20034 or 90000, just type 'Travel_to <time>'

3 scripts on Time Traveler:

 on Travel_to string
 if string is "1987"
 travel_to 1987
 endif
 if string is "1984"
 travel_to 1984
 endif
 if string is "1000 bc"
 travel_to 1000 bc
 endif
 if strig is "9000"
 travel_to 9000
 endif
 end
 on travel_to 1987
 describe this as "This year was when Mouse was born! You see a

person holding a baby, The baby's Mouse. You float to a window of
a house and see the same person, (Mouse's mother) holding Mouse. A
3 yr. old walks over to Mouse and says 'Ooh! I have a Little
sister!' That's Miranda. To go Back to 1996, type go_back."

 look
 pick my Says
 tell player it
 tell player "remember, if you want to go type 'go_back'"
 end
 on travel_to 1984
 describe this as "This year was when Miranda was born! You see a

person holding a baby, The baby's Miranda. You float to a window
of a house and see the same person, (Mouse's mother) holding
Miranda. As you look through the window, You see all or Miranda's
relatives are there. They all never leave her"

 look
 pick my Saysb
 tell player it
 tell player "Remember: if you want to go back to 1996, type

'go_back'"
 end
 on travel_to 1000 bc
 describe this as "As you look around you see big trees

everywhere. On rocks carved into chairs, there are people carving
bows and arows, knitting quilts and molding Bowls. To buy
something, type buy <thing>. "

 Look
 Tell player "If you want to buy somthing type 'buy <thing>."
 set buy to input
 pass
 tell player "remember, if you want to go type 'go_back'"

203

 end

 on buy string
 if string is "Bow and arrow"
 Tell player "you walk over to a man carving a bow and arrow and

ask 'Can you make me one?' the man looks at you oddly, so you
repet it slowly. He nods his head as if to say 'ok'. He starts
carving. After awhile he asks you 'what name I carve on bow?'"

 set Bowname to input
 make #xxx named Bowname
 endif
 end
 if string is "Quilt"
 Tell player "you walk over to a women knitting a quilt and ask

'Can you knit me one?' the women must know a little english
somehow, because she nods her head as if to say 'ok'. She then
starts knitting. After a long, long, while, she asks you 'what
name I knit on quilt?'"

 set quiltname to input
 make #xxxx named quiltname
 endif
 end
 if string is "bowl"
 Tell player "you slowly walk over to a little child molding bowls

'Can you give me one?' you watch the child walk over to the women
nitting quilts,(who must be her mother) and says some thing too
her, she comes back and nods her head. She then picks up a nice
blue bowl and says, 'what name I carve on bowl on quilt?'"

 set bowlname to input
 make #xxx named bowlname
 endif
 end

 on go_back
 tell player "you go back to 1996"
 describe here as "You see a big Black tube in front of you. On

the wall there is a sign that looks very old. It reads: 'To travel
to a time, Either 1987, 1984, 1000 bc, 20034 or 90000, just type
'Travel_to <time>'"

 end

*** Time (parent: generic exit) ****
From: Mouse's Labratory
To: Time Traveler

*** back (parent: generic exit) ****
From: Time Traveler
To: Mouse's Labratory

*** Generic_Bow_and_arrow (parent: generic thing) ****

204

1 script on Generic_Bow_and_arrow:

 on shout this
 Tell player "you shout your bow across the room and it land in

the wall."
 pick my Shout
 set ho to input
 tell player "you walk over to the wall and" + ho + "it out."
 end

*** Generic_quilt (parent: generic thing) ****

1 script on Generic_quilt:

 on Lay_on this
 If player is #xx
 tell player "You lay softly down on the blacket, (hi amy!).
 endif
 end
 if player #xxx
 tell player "Since you are Miranda, As you lay down a pillow

appers under your head."
 endif
 end
 if player #xxx
 Tell player "You lay softly on the blacket. As you do a voice

Comes out of the air and says 'Hi austina!'"
 endif
 end
 if player #xxx
 tell player "HI Mouse! You are a hero! You lay on a gold blacket

and a pillow slides under your head. Also, a blacket falls down
over you."

 endif
 end

*** generic_Bowl (parent: generic thing) ****

1 script on generic_Bowl:

 on eat string
 tell player "You eat" + string + "out of your bowl"
 end

*** a sign (parent: Generic Sign by Austina) ****

*** Heavy Cedar Door (parent: generic exit) ****
From: Side Hall
To: Rachael's study

*** Side hall (parent: generic exit) ****
From: Rachael's study
To: Side Hall

205

*** Code room (parent: Generic MOOSE Room) ****

2 scripts on Code room:

 on code string
 set answer to ""
 set h to characters string
 for dog in h
 set hog to dog memberof my letters
 set how to item hog of my code
 set answer to answer + how
 endfor
 return answer
 end

 on say string
 set newstr to (code string)
 tell context "You say, " + newstr
 announce_all_but context context's name + " says, '" + newstr +

"'"
 end

*** Code (parent: generic exit) ****
From: Mouse's bed room
To: Code room

*** back (parent: generic exit) ****
From: Code room
To: Mouse's bed room

*** Hannah/Ileza (parent: generic_conversation by Miranda) ****

1 script on Hannah/Ileza:

 on tell bob string
 pick my Bob
 set bob1 to it
 tell player Bob1
 end

*** Special_Code (parent: generic thing) ****
Code room's code

1 script on Special_Code:

 on read this
 if player is not #xxx
 tell player "You're not Mouse! you just want to read the code!"
 else
 endif

206

 tell player "A=@ b=e c=; d=$ e=n f=? g=o h=& i=t j=s k=* l=m m=<
n=r o=> p=q q=% r=w s=(t=c u=) v=h w=: x=g y=~ z+d = .=|!=b
?=_"

 end

*** Box (parent: generic container) ****
A box with all of Mouse Generics in it

*** The GreenHouse (parent: Generic MOOSE Room) ****
You stroll down a garden path with cobblestones along the side, you

enter a huge greenhouse full of exquisite bushes, trees, and
flowers. The greenhouse is comfortably warm, and it smells of
flowers. There are sprinklers sprinkling cool water on the
plants. In this room, you feel at peace with the world.

*** LAB (parent: generic exit) ****
From: The GreenHouse
To: Mouse's Labratory

*** Golumeena (parent: Generic Cliche-Spouting Object) ****
A little round, plump, two inches tall person. She is very cute. But

has a loud vouce for her size.

2 scripts on Golumeena:

 on poke this number "times
 set poke to number
 if poke > 1
 tell player "Kindly stop poking me"
 endif
 if poke > 5
 tell player "I'll give you one more chance: stop poking me NOW"
 endif
 if poke > 10
 tell player "STOP POKING ME NNNNNNNNOOOOOOOOWWWWWW!!!!"
 endif
 if poke > 20
 emote throw a fit.
 tell player "STOP!!!!"
 endif
 if poke > 50
 tell player "I'll punch you if you don't stop"
 endif
 if poke > 100
 tell player "NOW I'M SO MAD"
 Emote turns red
 endif
 if poke > 500
 tell player "STOP! I CAN'T TAKE IT ANY LONGER!!!!"
 emote crys
 endif
 end

207

 on enter here by object
 emote quickly jumps out of Mouses pocket
 emote waves
 end

*** Mouse's Room (parent: Generic MOOSE Room) ****
You turn the handle of a red door with a green handle. As you turn

the handle, it turns into a unique, gold door knob with a lion
carved into it. You slowly walk into a small room with a nice
flowery chair in the center. The chair looks as though it is
magic, it has has a dusty look to it.

*** out (parent: generic exit) ****
From: Mouse's Room
To: turtle

*** Bearuni (parent: Generic_Multiple_personality_puppet by Mouse)

Bearuni is really Possie, but now Possie thinks she is a white Polar
Bear!

1 script on Bearuni:

 On Talk_to this
 say "Hi! " + player's name + " is it? Well, anyway, can you

tell me a story? I love storys."
 set story to input
 say "Nice Story! I'm making a book called Possie's book of

story's. Can you tell me your name so that I can put this story in
my book?"

 set nme to input
 set Entry to {story, nme }
 set my Stories to (add entry to my Stories)
 say "Thank you SO much! I love when people add a new story to my

book! When you have time, tell people to add a story to my book.
Can you tell me an animal? I can become different animals, and I
need ideas."

 set idea to input
 If idea memberof my Ideas
 say "I already have that name, but thanks any ways."
 return
 endif
 set my Ideas to (add idea to my Ideas)
 say "Thank you! I don't have that animal yet. Do you have any

ideas on what my name name should be when I become that animal?"
 set name2 to input
 set my Ideas to (add name2 to my Ideas)
 say "That's a lovely name! Can you describe it for me?"
 set descript to input
 set my name to (add descript to my Ideas)
 say "Well, gotta go! See you later!"
 end

*** Possie's Book (parent: generic thing) ****

208

1 script on Possie's Book:

 on Scan this
 tell player "You open a small brown book with a gold broken

clasp. As you look at the contents you see:"
 slice #xxxx.stories 2
 set author to it
 set nut to length author
 for time in 1 to nut
 tell player time + ". " + author[time]
 endfor
 end

*** Mouse's Room (parent: Generic MOOSE Room) ****
READ THIS FIRST!!!!!
As you walk into Mouse's room, you see it's not a room at all! It's

a hallway, an endless hallway! You walk cautionsly onward through
the corridor. As you walk passed the first door, the stench of
garbege fills the air. YUCK! You quickly read the sign on the
first door: STINKY LAND *under construction* You walk on until
you get to the second door. COME IN! reads the purple letters
painted onto the door. You turn the door knob. As you look down at
your hand you realize there was gum on the door! You peel the gum
off into a ball. Once you do, it flatens out and on it appers the
words: Tricked you! It then falls back onto the door. You walk
on to the next door, dazziled. You look at the sign on the door:
COME IN AND HAVE SOME TEA! Just as you read the last words, you
get sucked into the door and apper in a cartoon world! You look
down at your hands and realize you're a cartoon drawing too!
There is a tree on the right with a little blonde girl on a
branch, sleeping. HEY! You're in the first scene of Alice in
Wounderland! The abbreviations for:

The scene where Alice falls down a hole:AH
The scene with the Mad Hatter and the March Hair:MH
The scene where the Queen is playing Croquet:QC
The scene with the Treasure cat:TC
The scene where Alice is on trial:AT
Use the abbreviations to figure out where the exits below lead.

*** Mouse (parent: generic exit) ****
From: Tech City
To: Mouse's Room

*** out (parent: generic exit) ****
From: Mouse's Room
To: Tech City

*** Roo's Room (parent: Generic MOOSE Room) ****
Roo's home to which also belongs to Kanga. It will soon be described

better!

*** Roo (parent: generic exit) ****

209

From: The Hundred Acre Woods
To: Roo's Room

*** out (parent: generic exit) ****
From: Roo's Room
To: The Hundred Acre Woods

*** mall (parent: generic exit) ****
From: Mouse's favorite Ice Cream
To: The Grand Moose Mall

*** Lily (parent: generic_female_potato by Miranda) ****

*** Bill (parent: generic_male_potato by Miranda) ****

*** Beely (parent: generic_bee by Miranda) ****

*** little boy potato (parent: generic_male_potato by Miranda) ****
A creamy, buttery, mashed potato.

*** Cheese_Machine (parent: generic_creator) ****
You see a big metal machine built with big metal poles and small red

buttons. At the end of the machine there is a mini Conveyor belt.
In the center there is a large button with the Words 'BREAD'
printed on it. There are 3 differnt levels with little doors on
the sides of them.

1 script on Cheese_Machine:

 on push red button
 tell player "What kind of bread would you like, Pita Bread,

hamburger bun, Rye bread, Wheat bread or white Bread? ?"
 set bread to input
 If bread is Pita Bread
 Tell Player "Two little mice pop out of a door. One dressed in

a pink tu-tu with a Pink bow tied in her hair, The other is
dressed in a black tux with a black bow-tie at the coller. They
dance out andpush a small blue button labuled 'claw'"

 endif
 end

*** The Anteater Rentel Shop (parent: Generic MOOSE Room) ****
A big whote room with with and blue tiles on the floor. There is a

desk in the back with a sign on it that reads: To Buy a Anteater,
type buy anteater.

*** Ant (parent: generic exit) ****
From: Mouse's bed room
To: The Anteater Rentel Shop

210

*** eater (parent: generic exit) ****
From: The Anteater Rentel Shop
To: Mouse's bed room

*** Anteater1 (parent: generic thing) ****

2 scripts on Anteater1:

 on buy Anteater
 if my Babies is 1
 tell player "You're in luck! There are still babies left!

Would you like a boy or girl?"
 set gender to input
 if gender is "girl"
 tell player "You pick up a fuzzy anteater with a bow on her

head. Her long nose sniffs you with her eyes closed. Suddenly,
She sneezes all over you!"

 endif
 if gender is "Boy"
 tell player "You pick up a rough anteater with ablue and with

cap on his head. He puts his hands together and swings them back
and forth as though swinging a baseball bat. How Funny!"

 endif
 tell Player "Have good luck with your anteater! What would you

like to name it?"
 set name to input
 make #xxxx named name
 endif
 if my babies is 0
 tell player "Tell Mouse, (#xxx) right away that there are no

more babies, then try again later."
 endif
 end

 on exterminate here
 tell player My name + " sucks up all you ants and get a little

bigger."
 end

*** AnteaterPen (parent: generic thing) ****
A cardboard box full of anteater babies

2 scripts on AnteaterPen:

 on load this
 set babies to 1
 describe me as "A cardboard box full of anteater babies"
 end

 on unload this
 set babies to 0
 describe me as "an empty cardboard box."
 end

211

*** fuzzball (parent: Anteater1 by Mouse) ****

*** JarOfAnts (parent: generic thing) ****

1 script on JarOfAnts:

 On pour this
 tell player "you pour ants all over the room"
 Page here's owner with "Ants are invading one of your rooms!

Teloport to Anteater rental shop and buy an anteater to
exterminate your ants!"

 end

*** Kleenex (parent: generic thing) ****
You see a cute, red-brown puppy. His ears flop around when he walks

around and his tongue hangs sideways out of his mouth. His tail
wags back and forth with exitment. He is a time-telling dog. To
see the time, type 'dial Kleenex'.

2 scripts on Kleenex:

 on dial this
 Tell player "You dial the number. Ring! Ring! Goes the phone.

Soon, you here a voice say: You have reached " + my name + "'s
Clock. At the tone, his clock will read," (hhmmss (timestr)) ".
Beep!!!!! Thank you for calling " + My name + "'s Clock. Call
again soon!"

 fork 20
 Tell player "Oops! I forgot to tell you, If you want to find

out the date, type: Dial-date " + My name + "."
 endfork
 end

 on dial_date this
 tell player "You dial:553-3639. Ring! Ring! Goes the phone. Soon,

you her a voice say: You have reached " + my name + "'s Calendar.
His calendar says it's" (ddmmyy (Timestr)) ". Thank you for
calling " + My name + "'s Calender. Call again soon!"

 Fork 20
 tell player "Oops! I forgot to tell you, If you want to find

out the time, type: Dial " + my name + "."
 endfork
 end

*** Mouse's Useful Pet Shop (parent: Generic MOOSE Room) ****

*** Pet (parent: generic exit) ****
From: Mouse's bed room
To: Mouse's Useful Pet Shop

212

*** back (parent: generic exit) ****
From: Mouse's Useful Pet Shop
To: Mouse's bed room

*** Ms.Saleswoman (parent: generic_creator) ****

2 scripts on Ms.Saleswoman:

 on enter here by player
 tell player "Welcome to Mouse's Useful Pet Shop. Here, we sell

all kinds of useful pets. If you would like to buy: A Time-telling
dog, type 'buy TimeDog'. Thank you for shopping here at Mouse's
Useful Pet Shop."

 end

 on buy timeDog
 tell Player "What would you like to name your time-telling dog?"
 set name to input
 make #xxxx named name
 end

*** SUPER_CHEESE =) (parent: generic thing) ****

******** TOTAL: 63 scripts on 93 objects. ********

Angela
Age: 9 to 10
Gender: Female
Participating from: In school
Joined in: October 1996
Total commands typed: 308

Angela participates in MOOSE Crossing from school. Her class is scheduled to
all log on together for an hour and a half once per week. Many of her
classmates chose to log on during recess and other free periods as well. On a
visit to Angela’s class, I noted that she seemed less interested in MOOSE
Crossing than her classmates. Her teacher commented that Angela often
seems uninterested in school activities.

*** Angela (parent: MOOSE player class) ****
I am about 5 feet tall and I have brown eyes.I have light brown hair.

*** Angela's Room (parent: Generic MOOSE Room) ****
You see a room with a toy box that has my name on it. Next to the box

is a red throne with a dog named Faith sitting on it. On one side
of the room is my bed. Next to my bed is my dresser. My dresser
has school supplies on it. Next to the dresser is a blue
handball.

213

*** Angela (parent: generic exit) ****
From: Paradise Island
To: Angela's Room

*** out (parent: generic exit) ****
From: Angela's Room
To: Paradise Island

*** Tiffany (parent: Generic Dog) ****
Tiffany is a grey dog that is about 12 inches tall.She has brown

eyes.She is very nice.She likes to play fetch.

*** toy box (parent: generic thing) ****

*** toy box (parent: generic thing) ****

*** Angela's Shop (parent: Generic MOOSE Room) ****
You enter Angela's pet shop.In the middle of the shop is the bird

cage.Look to the right of the bird cage and you see the big
dogs.Next to that are the bunnies and rabbits.On the left side of
the bird cage are the puppies.Next to them are the hampsters and
small pets.To the north side of the bird cage is the counter.

*** Angela (parent: generic exit) ****
From: Crossroads
To: Angela's Shop

*** out (parent: generic exit) ****
From: Angela's Shop
To: Crossroads

******** TOTAL: 0 scripts on 10 objects. ********

Werdna
Age: 9 to 10
Gender: Male
Participating from: Home (home schooled)
Joined in: May 1996
Total commands typed: 9880

Werdna is particularly fond of dice games, and has spent a significant portion
of his online time teaching other children how to make dice so that they can
play dice together.

214

*** Werdna (parent: Generic_Nest_Player by Rachael) ****
a short male elvin wolfrider beside him stands his wolf (nightrunner)

he is very loyal and will not hurt you

1 script on Werdna:

*** Werdna's room (parent: Generic Atmospheric Room) ****
one door with a lock on it to the north it looks as if it is locked

and can only be opened from this side so you will have to teleport
out. blue carpet. its a castle like room with non painted brick
walls"

*** Werdna (parent: generic exit) ****
From: North Main Street
To: Werdna's room

*** out (parent: generic exit) ****
From: Werdna's room
To: North Main Street

*** Bobo (parent: Generic Dog) ****
You see a large Golden Retriever.

3 scripts on Bobo:

 on tickle Bobo
 say ha ha ha that tickles stop that
 emote rolls on his belly
 end

 on pet
 emote wags tail
 end

*** Werdna's room (parent: Generic MOOSE Room) ****
Green cloud white walls with a roof window to the right one window on

each wall and a door to the north that has a sign that says
gambling room for dice games

*** Werdna (parent: generic exit) ****
From: Home in the Clouds
To: Werdna's room

*** out (parent: generic exit) ****
From: Werdna's room
To: Home in the Clouds

*** luckey die (parent: Generic Die) ****
 |----|

215

1 script on luckey die:

 on roll die
 (random 5) + 1
 announce my name + " rolls " + it
 end

*** Wackey Toaster (parent: generic thing) ****
A little toaster-person with white hands coming out of the sides of

its toaster body. its two big eyes and its wide, happy smile make
you feel like you'd really like some toast.

[Note: Werdna’s toaster is the result of him following the system’s toaster tutorial.]

2 scripts on Wackey Toaster:

 on turn knob to string
 set my knob_setting to string
 tell context "You turn the knob on " + my name + " turns the knob

on "
 + my name + " to " + string + "."
 end

 on make toast
 tell context my name + " gets all excited and puts on a bis simle

when it realizes that you would like some toast."
 tell context "First, " + my name + " shoves a piece of fresh

bread in the slot in its belly."
 tell context "Then, " + my name + " takes a deep breath and

clenches his fists, working hard to make your toast."
 tell context "CLICK!"
 tell context my name + " pops your piece of " + my knob_setting +

" toast high into the air. it lands straight into your hands."
 announce_all_but context my name + " makes a piece of " + my

knob_setting + " toast for " + context's name + "."
 end

*** Werdna's castle (parent: Generic MOOSE Room) ****
a huge room with one door to the south

*** castle (parent: generic exit) ****
From: Werdna's room
To: Werdna's castle

*** great hallway (parent: Generic MOOSE Room) ****

*** south (parent: generic exit) ****
From: Werdna's castle
To: great hallway

*** back (parent: generic exit) ****

216

From: great hallway
To: Werdna's castle

*** Werdna's gambling room (parent: Generic MOOSE Room) ****
"a big room with tables all over the place. a counter sticking out of

the wall to the south Werdna's clerk is behind it he says 'wecome
do you want to play dice. ask somebody to play with you. want some
beer Ha Ha Ha NOT your to young and i don't have any because this
is a kids bar or gambling room Ha Ha Ha you kid Ha Ha Ha'

*** gambling (parent: generic exit) ****
From: Werdna's room
To: Werdna's gambling room

*** back (parent: generic exit) ****
From: Werdna's gambling room
To: Werdna's room

*** Werdna's passage (parent: generic exit) ****
From: Werdna's room
To: Werdna's room

*** Werdna's passage (parent: generic exit) ****
From: Werdna's room
To: Werdna's room

*** The arcade (parent: Generic MOOSE Room) ****
"you see many coin games here. (sorry but right know we don't have

any games programed but when we do we will take this part away.)

*** leave (parent: generic exit) ****
From: The Mall
To: The arcade

*** the mall (parent: generic exit) ****
From: The arcade
To: The Mall

*** ford f - 150 (parent: Generic Vehicle) ****

*** hawk (parent: Generic_Assistant by Rachael) ****
You see a elf as short as Werdna he loves the stars has silver hair

and blue pants.

*** Werdna's nest (parent: Generic MOOSE Room) ****

217

a very nice nest (and pretty big) there are no details but a picture
to your right the picture is Werdna the elvin wolfrider and his
wolf (Nightrunner)

*** Werdna (parent: generic exit) ****
From: Nest Gather Grounds
To: Werdna's nest

*** down (parent: generic exit) ****
From: Werdna's nest
To: Nest Gather Grounds

*** fuzzy (parent: Generic Joke-Telling Object) ****
a fuzzy dog like creature but this guy can tell jokes

*** leather shirt and pants (parent: Brown Cloak by Rachael) ****
You see a simple pair of leather pants and a leather shirt which can

be pulled over ones head. (Quite a feat if I may say so myself.)

*** Werdna's armor and accessories (parent: Generic MOOSE Room) ****
A room full of leather and metal armor he also has wallets and weapon

holders he will get other things soon.

*** Werdna (parent: generic exit) ****
From: Crossroads
To: Werdna's armor and accessories

*** out (parent: generic exit) ****
From: Werdna's armor and accessories
To: Crossroads

*** if i'm not here read this (parent: generic note) ****
if you want some armor or accessories page me if i'm not connected

mail me tell me what you want and what you want it made out of and
any special things you want

*** metal armor (parent: generic thing) ****
bright metal armor that covers the entire body it makes byron look

very strong and brave and its true he is.

1 script on metal armor:

 on wear this
 this:moveto player
 set players description to add my worn_msg to player's

description
 announce_all_but player player's bame + " " + my oputon_msg
 tell player my pton_msg
 end

218

*** golden gold halberd (parent: generic_weapon by Byron) ****

*** fireplace (parent: fireplace by Jack) ****

*** dagger sheath (parent: generic container) ****
a lovely dagger sheath with the name of the person who made it in the

bottom right hand corner it says Werdna! it is very nice and must
hold a lovely dagger it is owned by hera she welds it greatly

*** comfy chair (parent: Generic Chair by Austina) ****

*** chainmail (parent: generic thing) ****

2 scripts on chainmail:

 on wear this
 this:moveto player
 set players description to add my worn_msg to player's

description
 announce_all_but player player's name + " " + my oputon_msg
 tell player my puton_msg
 end

 on wear this
 this:moveto player
 set players description to add my worn_msg to player's

description
 announce_all_but player player's name + " " + my oputon_msg
 tell player my puton_msg
 end

*** figaro (parent: Generic Dog) ****
A big male black cat not fat but big with a black and pink nose white

tummy and white paws

2 scripts on figaro:

 on pet Figaro
 announce_all_but context context's name pets Figaro
 set answer to pick {"purrs and lies down", "runs away from you",

"walks away from you" }
 tell context my name + " " + answer
 end

 on pick up figaro
 announce_all_but context context's name + " picks up Figaro"
 set answer to pick {"meeows and scratchs + " context's name", "

jumps out of + " context's names arms", "purrs and rubs up against
+ " context's name" }

 emote answer
 end

219

*** anna (parent: Generic Dog) ****
a white and grey female cat pretty small for a grown up cat with a

white tummy and a white and pink nose with white paws

1 script on anna:

 on pet Anna
 announce_all_but context context's name + " pets anna
 set answer to pick {"purrs and lies down", "runs away from you",

"walks away from you" }
 emote answer
 end

*** fireball (parent: generic spell_book by Gandalf) ****

*** corgan (parent: generic magic_staff by Gandalf) ****

*** time spender (parent: generic_conversation by Miranda) ****

*** "the mall to the room (parent: Generic MOOSE Room) ****

*** The mall (parent: generic exit) ****
From: The Mall
To: The arcade

******** TOTAL: 13 scripts on 47 objects. ********

Rowena
Age: 13
Gender: Female
Participating from: Home (heard about over the net)
Joined in: May 1996
Total commands typed: 11657

Rowena enjoys role playing, and has been a key participant in the medieval
role-playing subcommunity started by Rachael.

*** Rowena (parent: generic_answering_machine by Miranda) ****
Rowena is a girl with short dark hair.
She is wearing a light forest green dress. It is lightweight and

seems to 'breathe' in air, making it look cool as a cucumber. It
looks cheerful and relaxing. Her collar has a white border with
yellow violets on it. The dress comes down to just below her
knees, and hangs there. When she walks, it flows around
majesticly.

220

She is wearing a light forest green dress. It is lightweight and
seems to 'breathe' in air, making it look cool as a cucumber. It
looks cheerful and relaxing. Her collar has a white border with
yellow violets on it. The dress comes down to her ankles, and
hangs there. When she walks, it flows around majesticly.

2 scripts on Rowena:

 if (hug Rowena)
 disp "Rowena smiles and hugs you back!"

 on 'hi Splat
 emote splats Splat on the head.
 end

*** Wheel of Time (parent: generic_book by Rachael) ****
"You see a very old brown leather-bound book. The spine looks as if

it has been opened and closed so many times that the cover is
ready to fall off. On the cover the title " The Wheel of Time" is
written in flowing gold script. The pages look yellow with age."

*** storeroom (parent: Generic Viewable Room by Churchill) ****
You are in a dark room lit only by a single candle. The walls are of

stone. Along one wall you see a ladder leading up. This is a
viewable room. type 'view <object>' to see something in more
detail.

2 scripts on storeroom:

 on grab stone
 if my stone_out is 0
 tell context "You pull the stone out of the wall."
 announce_all_but context context's name + " pulls a loose stone

out of the wall."
 set my stone_out to 1
 set #xxxx's locked to 0
 else
 tell context "The stone is already out of the wall."
 endif
 end

 on replace stone
 if my stone_out is 1
 tell context "You put the stone back into the hole."
 announce_all_but context context's name + " puts a stone into

the hole in the wall."
 set my stone_out to 0
 set #xxxx's locked to 1
 else
 tell context "The stone is already in the hole."
 endif
 end

221

Views on storeroom:

up: Above you you see a square of faint light. If you climb up to
ladder you cluld see it better.

candle: You see a yellowish wax candle. It appears to be melting
quickly. The flame dances, throwing strenge shaddows on the wall.

ladder: You see an old-looking wooden ladder stretching up the wall
to a square of light in the celing. The rungs appear to be simply
lashed to the sides, making it look quite unsteady, but hey, you
climbed down it to get here.

shadows: You see strange shadows fliting across the wall. The look
almost as if they are cast by strange beings, not just the
candle's dancing flame.

wall: You see a stone wall with moss growing all over it. ne of the
stones looks loose.

stone: You see a loose stone. If you grabed it just right it looks
like you could get it out...

*** Mystic (parent: generic thing) ****

2 scripts on Mystic:

 on bless object
 announce_all player's name + " chants in Latin."
 emote glows yellow.
 announce_all player's name + " seems to glow white as she lays

her hands on either side of " + object's name + "'s head."
 announce_all object's name + " is blessed."
 end

 on zap object
 announce_all player's name + " chants in Latin."
 announce_all "A bar of white light shoots out of " + my name + ".

"
 announce_all "You hear a small rip and " + object's name + "

suddenly disapears."
 move object to object's home
 end

*** Mat (parent: Generic_badger by Zoro) ****
You see a large bager with a beautiful white stripe down his back.

He looks like quite a trickster.

*** a hole in the wall (parent: Generic MOOSE Room) ****
The walls are entirely lined with wooden shelves and cabinets. The

shelves have lots of jars and bottles on them as well as some
fresh potted herbs and the cabinets are filled with dried herbs.
Sitting against the wall there is a large wooden chest.

222

*** hole (parent: generic exit) ****
From: storeroom
To: a hole in the wall

1 script on hole:

*** back (parent: generic exit) ****
From: a hole in the wall
To: storeroom

*** mrMemo (parent: generic_memopad by Miranda) ****

*** Generic Musical Instrument (parent: generic thing) ****
You see a beautiful silver lap harp. The REAL silver leaf covering

the harp looks shiny enough to see yourself in, exept for around
the intricate scroll-work which looks slightly tarnished.

2 scripts on Generic Musical Instrument:

 on sing string
 set my song to string
 tell context my name + " will now sing " + my song + "."
 end

 on play this
 announce_all_but context context's name + " plays " + my song + "

on " + my name + "."
 tell context "You play " + my song + " on " + my name + "."
 emote rings out with the melody.
 end

*** Bowl of the Winds (parent: generic_Bowl by Mouse) ****
you see a huge bowl. It looks very old. The bottom of the bowl is

decorated with clouds. When you glance back at the bowl the clouds
appear to be in a different position.

*** chest (parent: generic container) ****
You see a large wooden chest. It looks very sturdy, though quite old.

On the front it has a large brass lock.

*** Elcoiwen (parent: generic exit) ****
From: Tech City
To: storeroom

*** up (parent: generic exit) ****
From: storeroom
To: Tech City

*** Flying Toaster (parent: generic thing) ****

223

You see one of those silver toasters that's almost round. It has
wings sticking out of its sides and a flock of toast hovering
around it.

[Note: Rowena’s toaster is the result of her following the system’s toaster tutorial.]

2 scripts on Flying Toaster:

 on turn knob to string
 set my knob_setting to string
 tell context "You turn the knob on " + my name + " to " + string

+ "."
 announce_all_but context context's name + " turns the knob on " +

my name + " to " + string + "."
 end

 on make toast
 tell context "You push down on the little lever on " + my name +

" and in a minute your " + my knob_setting + " toast pops up."
 announce_all_but context context's name + " pushes down on the

little lever on " + my name + " and in a minute " + context's pp +
" " + my knob_setting + " toast pops up."

 end

******** TOTAL: 11 scripts on 15 objects. ********

224

Bibliography
Appadurai, Arjun (1986). The Social Life of Things : Commodities in Cultural
Perspective. New York, Cambridge University Press.

Arnold, Michael (1995). “The Semiotics of Logo.” Educational Computing
Research 12(3): 205-219.

Aspnes, James (1992). Personal communication.

Baker, Charles L. (1981). “Johnniac Open-Shop System.” History of
Programming Languages Ed. Richard Wexelblat. New York, Academic Press.

Bartle, Richard (1990). “Interactive Multi-User Computer Games.” MUSE Ltd.
ftp://ftp.lambda.moo.mud.org/pub/MOO/papers/mudreport.txt

Batson, Trent (1993). “The origins of ENFI.” Network-Based Classrooms Eds.
Bertram Bruce, Joy Peyton and Trent Batson. New York, Cambridge
University Press.

Benedikt, Michael, ed. (1991). Cyberspace, First Steps. Cambridge, MA: MIT
Press.

Bray, Hiawatha (1997). “Survey: ‘Net usage doubled since late ‘95.” The Boston
Globe. Boston, MA, D17.

B r o w n , C a r l (1 9 9 2) . “ M i c r o M U S E H i s t o r y . ”
ftp://ftp.musenet.org/micromuse/Muse.History

Bruce, Bertram, Joy Kreeft Peyton, et al., Eds. (1993). Network-Based
Classrooms. New York, Cambridge University Press.

Bruckman, Amy (1992). “Identity Workshop: Social and Psychological
P h e n o m e n a i n T e x t - B a s e d V i r t u a l R e a l i t y . ” M I T .
ftp://ftp.media.mit.edu/pub/asb/papers/identity-workshop.{ps.Z,rtf.Z}

Bruckman, Amy (1994). “Programming for Fun: MUDs as a Context for
Collaborative Learning.” National Educational Computing Conference,
Boston, MA. ftp://ftp.media.mit.edu/pub/asb/papers/necc94.{ps.Z,rtf.Z,txt}

Bruckman, Amy (1995). “Cyberspace is Not Disneyland: The Role of the
Artist in a Networked World.” Commissioned by the Getty Art History
Information Program. http://www.ahip.getty.edu/cyberpub/bruckman.html

Bruckman, Amy (1996). “Finding One’s Own Space in Cyberspace.”
Technology Review 99(1): 48-54.

225

http://web.mit.edu/afs/athena/org/t/techreview/www/articles/jan96/Bruck
man .h tml

Bruckman, Amy and Mitchel Resnick (1995). “The MediaMOO Project:
Constructionism and Professional Community.” Convergence 1 (1) .
http://www.gold.ac.uk/difference/bruckman.html

Cherny, Lynn (1995). “The MUD Register: Conversational Modes of Action
 in a Text-Based Virtual Reality.” PhD dissertation, Stanford University.

Crowther, Will (1992). Personal communication.

Curtis, Pavel (1993). “LambdaMOO Programmer’s Manual.”
ftp://ftp.lambda.moo.mud.org/pub/MOO/ProgrammersManual.{ps,dvi,txt}

Curtis, Pavel (1996). Personal communication.

Dewey, John (1938). Experience and Education. New York, Macmillan
Publishing Company.

diSessa, Andrea A. and Harold Abelson (1986). “Boxer: A Reconstructible
Computational Medium.” Communications of the ACM 29(9): 859-868.

Eisenberg, Michael (1995). “Programmable Applications: Interpreter Meets
Interface.” SIGCHI Bulletin 27(2): 68-83.

Evard, Remy (1993). “Collaborative Networked Communication: MUDs as
Systems Tools.” Seventh Systems Administration Conference (LISA VII),
M o n t e r e y , C A , U S E N I X A s s o c i a t i o n .
http://www.mcs.anl.gov/people/evard/papers/cncmast.html

Falbel, Aaron (1989). “Friskolen 70: An Ethnographically Informed Inquiry
Into the Social Context of Learning.” PhD dissertation, Massachusetts Institute
of Technology.

Fanderclai, Tari (1996). “Like magic, only real.” Wired Women: Gender and
New Realities in Cyberspace Eds. Lynn Cherny and Elizabeth Weise. Seattle,
WA, Seal Press.

Feurzeig, Wally (1984). “The Logo Lineage” Digital Deli. Ed. Steve Ditlea.
New York, NY, Workman Publishing Company.

Feurzeig, Wally (1996). Personal communication.

Frazier, Frank (1967). “The Logo System: Preliminary Manual.” Cambridge,
MA, Bolt Beranek and Newman.

226

Geertz, Clifford (1973). The Interpretation of Cultures. New York, Basic Books.

Glusman, Gustavo, E. Mercer, et al. (1996). “Real-time Collaboration On the
Internet: BioMOO, the Biologists’ Virtual Meeting Place.” Internet for the
Molecular Biologist. Eds. S.R. Swindell, R.R. Miller and G.S.A. Myers.
Norfolk, UK, Horizon Scientific Press.

Goffman, Erving (1959). The Presentation of Self in Everyday Life. New York,
Doubleday.

Goodman, Danny (1988). The Complete HyperCard Handbook. New York,
Bantam Books.

Guzdial, Mark (1994). “Software-Realized Scaffolding to Facilitate
Programming for Science Learning.” Interactive Learning Environments 4(1):
1-44.

Harel, Idit (1991). Children Designers. Norwood, NJ, Ablex Publishing.

Holdaway, Don (1979). The Foundations of Literacy. New York: Ashton
Scholastic.

Honey, Margaret, Babette Moeller, Cornelia Brunner, Dorothy Bennett, Peggy
Clements, and Jan Hawkins (1991). “Girls and Design: Exploring the Question
of the Technological Imagination.” Technical Report No. 17. New York:
Bank Street College of Education.

Hooper, Paula (1997a). Personal communication.

Hooper, Paula (1997b). “Their Own Thoughts.” MIT.

Hughes, Billie (1996). Personal communication.

Hughes, Billie and Jim Walters (1995). “Children, MUDs, and Learning.”
AERA, San Francisco, CA.
http://pcacad.pc.maricopa.edu/Pueblo/writings/bib/AERA-paper-1995.html

Hughes, Billie and Jim Walters (1997). Personal communication.

Jenkins, Henry (1992). Textual Poachers, Television Fans and Participatory
Culture. New York, Routledge.

Kaehler, Ted (1996). Personal communication.

227

Kay, Alan (1996). “The Early History of Smalltalk.” History of Programming
Languages-II . New York, ACM Press.

Keller, Evelyn Fox (1985). Gender and Science. New Haven: Yale University
Press.

Kleinschmidt, Klaus (1996). “The Internet is a waste of time for schools.” The
Boston Globe. Boston, 22.

Klietz, Alan (1992). Personal communication.

Kort, Barry (1997). Personal communication.

Kurtz, Thomas (1981). “BASIC.” History of Programming Languages Ed.
Richard Wexelblat. New York, Academic Press.

Latour, Bruno and Steve Woolgar (1986). Laboratory Life: The Social
Construction of Scientific Facts. Princeton, NJ, Princeton University Press.

Laurel, Brenda, Ed. (1990). The Art of Human-Computer Interface Design.
Reading, MA, Addison-Wesley.

Laurel, Brenda (1991). Computers as Theatre. Reading, MA, Addison-
Wesley.

Lave, Jean and Etienne Wegner (1991). Situated Learning: Legitimate
Peripheral Participation. Cambridge, UK, Cambridge University Press.

Leron, Uri (1985). “Logo Today: Vision and Reality.” The Computing
Teacher.

Levin, James A., Al Rogers, et al. (1989). “Observations on educational
electronic networks: The Importance of appropriate activities for learning.”
The Computing Teacher 16:

Morningstar, Chip and F. Randall Farmer (1991). “The Lessons of Lucasfilm’s
Habitat.” Cyberspace, First Steps. Michael Benedikt, editor. Cambridge, MA,
MIT Press.

Newman, Denis, Peg Griffin, et al. (1989). The Construction Zone:
Working for Cognitive Change in School. Cambridge, England, Cambridge
University Press.

O’Day, Vicki (1997). Personal communication.

228

O’Day, Vicki, Daniel Bobrow, et al. (1996). “The Social-Technical Design
Circle.” CSCW 96, Cambridge, MA, ACM Press.

Oldenburg, Ray (1989). The Great Good Place. New York: Paragon House.

Papert, Seymour (1980). Mindstorms: Children, Computers, and Powerful
Ideas. New York, Basic Books.

Papert, Seymour (1991). “Situating Constructionism.” Constructionism Eds.
Idit Harel and Seymour Papert. Norwood, NJ, Ablex Publishing. 518.

Pea, Roy (1993). “Practices of Distributed Intelligence and Designs for
Education.” Distributed Cognitions: Psychological and Educational
Considerations Ed. Gavriel Salomon. Cambridge, England, Cambridge
University Press.

Postman, Neil (1985). Amusing Ourselves to Death, Public Discourse in the
Age of Show Business. New York, Viking.

Putnam, Robert (1995). “Bowling Alone: America’s Declining Social Capital.”
Journal of Democracy 6(1).

Radway, Janice (1984). Reading the Romance: Women, Patriarchy, and
Popular Literature. Chapel Hill, University of North Carolina Press.

Raymond, Eric (1991). The New Hackers Dictionary. Cambridge, MA: MIT
Press.

Reid, Elizabeth (1991). "Electropolis: Communication and Community on
Internet Relay Chat." Bachelors thesis, University of Melbourne.
ftp://ftp.lambda.moo.mud.org/pub/MOO/papers/electropolis.{ps,txt}

Resnick, Mitchel (1993). Personal communication.

Resnick, Mitchel (1994). Turtles, Termites, and Traffic Jams: Explorations in
Massively Parallel Microworlds. Cambridge, MA, MIT Press.

Resnick, Mitchel, Amy Bruckman, and Fred Martin. “Pianos, Not Stereos:
Creating Computational Construction Kits.” Interactions September/October
1996, 40-50.

Resnick , Mitchel (1997) . “StarLogo Reference Manual .”
http://www.media.mit.edu/~starlogo/documentation/refman.html

229

Resnick, Mitchel, Robert Berg, et al. (1997). “Beyond Black Boxes: Brining
Transparency and Aesthetics Back to Scientific Instruments.”

Resnick, Mitchel and Natalie Rusk (1996). “The Computer Clubhouse:
Preparing for Life in a Digital World.” IBM Systems Journal 35(3-4): 431-440.
http:/ /el .www.media.mit.edu/groups/el/Papers/mres/Comp_club/Clubhou
se.html

Resnick, Paul and James Miller (1996). “PICS: Internet Access Controls
Without Censorship.” Communications of the ACM Forthcoming.
http://www.w3.org/pub/WWW/PICS/iacwcv2.htm

Rheingold, Howard (1993). The Virtual Community: Homesteading on the
Electronic Frontier. Reading, MA, Addison-Wesley Publishing Company.

Rogoff, Barbara (1994). “Developing Understanding of the Idea of
Communities of Learners.” Mind, Culture, and Activity 1(4): 209-229.

Rubin, Andee and Brad Goodman (1991). “TapeMeasure: Video as Data for
Statistical Investigations.” Proceedings of American Educational Research
Association, Chicago.

Sammet, Jean (1981). “The Early History of COBOL.” History of Programming
Languages Ed. Richard Wexelblat. New York, Academic Press.

San Jose Mercury News (1996). “Clinton Makes Cyberspace Connection.” San
Jose Mercury News. San Jose, CA, 18A.

Scardamalia, Marlene and Carl Bereiter (1994). “Computer Support for
Knowledge-Building Communities.” The Journal of the Learning Sciences
3(3): 265-283.

Schlager, Mark and Patricia Schank (1996a). “A Networked Environment for
T e a c h e r P r o f e s s i o n a l D e v e l o p m e n t . ” S R I .
http://tappedin.sri.com/info/concept.html

Schlager, Mark and Patricia Schank (1996b). “TAPPED IN: A Multi-User
Virtual Environment for Teacher Professional Development and Education
R e f o r m . ” T h e V i r t u a l C l a s s r o o m , B e r k e l e y , C A ,
http://www.soe.berkeley.edu/~schank/TappedIn.html

Schon, Donald A. (1987). Educating the Reflective Practitioner. San Francisco,
Jossey-Bass.

Shaffer, David Williamson (1996). “Escher’s World: Learning Mathematics
through Design in a Digital Studio.” MIT.

230

Shaw, Alan (1994). “Social Constructionism and the Inner City: Designing
Environments for Social Development and Urban Renewal.” PhD
dissertation, Massachusetts Institute of Technology.

Skinner, B. F. (1968). The Technology of Teaching. New York, Appleton-
Century-Crofts.

Songer, Nancy (1996). “Exploring Learning Opportunities in Coordinated
Network-Enhanced Classrooms: A case of kids as global scientists.” The
Journal of the Learning Sciences 5(4): 297-327.

Stone, Allucquere Rosanne (1991). “Will the Real Body Please Stand Up?:
Boundary Stories about Virtual Cultures.” Cyberspace, First Steps. Michael
Benedikt, editor. Cambridge, MA, MIT Press.

Strohecker, Carol (1991). “Why Knot?” PhD dissertation, Massachusetts
Institute of Technology.

Turkle, Sherry (1984). The Second Self: Computers and the Human Spirit.
New York, Simon and Schuster.

Turkle, Sherry (1986). “Computational Reticence: Why Women Fear the
Intimate Machine.” Technology and Women’s Voices Ed. Cheris Kramerae.
New York, Pergamon Press.

Turkle, Sherry and Seymour Papert (1992). "Epistemological Pluralism and
the Revaluation of the Concrete." Journal of Mathematical Behavior 11:3-33.

Turkle, Sherry (1995). Life on the Screen: Identity in the Age of the Internet.
New York, Simon & Schuster.

Van Buren, David, Pavel Curtis, et al. (1994). “The AstroVR Collaboratory.”
Astronomical Data Analysis Software and Systems IV Eds. R. Hanish and H.
Payne. San Francisco, Astronomical Society of the Pacific.

Vygotsky, Lev (1978). Mind in Society. Cambridge, MA, Harvard University
Press.

Wall, Larry (1996). “Wherefore Art, Thou?” The Perl Journal 1(1): 5 - 7.

Walters, Jim and Billie Hughes (1994). “Camp MariMUSE: Linking
Elementary and College Students in Virtual Space.” National Educational
Computing Conference, Boston, MA,

231

Weir, Sylvia (1992). “Electronic Communities of Learners: Fact or Fiction.”
Cambridge, MA: TERC Communications.

Winner, Langdon (1986). The Whale and the Reactor. Chicago: University of
Chicago Press.

Winograd, Terry and Fernando Flores (1987). Understanding Computers and
Cognition. Reading, MA, Addison-Wesley.

