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1. Introduction 

Enabling a human to efficiently transfer knowledge and skills to a robot has inspired decades of research.  
When much of this prior work is viewed along a guidance-exploration spectrum, an interesting dichotomy 
appears. Many prior systems are strongly dependent on human guidance, learning nothing without human 
interaction (e.g., learning by demonstration [Chernova07,Atkeson97] or by tutelage 
[Nicolescu03,Lockerd04]).  In systems such as these, the learner does little if any exploration on its own to 
learn tasks or skills beyond what it has observed with a human. Furthermore, the teacher often must learn how 
to interact with the machine and know precisely how it needs to perform the task.   
 
Other approaches are almost entirely exploration based.   For example, many prior works have given a human 
trainer control a reinforcement learner’s reward [Blumberg02, Kaplan02, Saksida98], allow a human to 
provide advice [Clouse92, Maclin05], or have the human tele-operate the agent during training [Smart02].  
Exploration approaches have the benefit that learning does not require the human’s undivided attention. 
However, they often give the human trainer a very restricted role to scaffold learning, and require the human 
to learn how to interact with the machine. 
 
Our research is motivated by the promise of personal robots that operate in human environments to assist 
people on a daily basis. Personal robots will need to be able to learn new skills and knowledge while “on the 
job.” Certainly, personal robots should be able to learn on their own – either discovering new skills and 
knowledge or mastering the familiar through practice. However, personal robots must also be able to learn 
from members of the general public who are not familiar with the technical details of robotic systems or 
Machine Learning algorithms.  However, they do bring a lifetime of experience in learning from and teaching 
others. This is a collaborative process where the teacher guides the learner’s exploration, and the learner’s 
performance shapes further instruction through a large repertoire of social interactions. Therefore, personal 
robots should be designed to be social learners that can effectively leverage a broad repertoire of human 
scaffolding to be successful and efficient learners.  
 
In sum, personal robots must be able to move flexibly along a guidance-exploration spectrum.  They should 
be able to explore and learn on their own, but also take full advantage of a human teacher’s guidance when 
available. 
 

 
Figure 1. Our social robot, Leonardo, interacts with a human teacher to learn about a puzzle box. 



 
In this paper, we present a novel learning architecture for a social robot that is inspired by theories in 
developmental psychology and is informed by recent advances in intrinsically motivated reinforcement 
learning (e.g., [Singh05, Oudeyer04, Schmidhuber05]). We call this approach Socially Guided Exploration to 
emphasize that the robot is designed to be an intrinsically motivated learner, but its exploration and learning 
process can readily take advantage of a broad repertoire of a human teacher’s guidance and scaffolding.  
 
Further, we approach this challenge from a Human-Robot Interaction perspective where we are interested in 
the human-teacher/robot-learner system. Hence, our analysis examines and compares the learning 
performance of the robot both when learning in isolation and with a human teacher. For the later, we 
conducted a human subjects experiment where we had 11 people (all previously unfamiliar with the robot) 
teach it to perform a number of tasks using a “smart” puzzle box. The puzzle box is pre-programmed with a 
suite of behaviors such as changing the color of its lights, opening or closing its lid, or playing a song when 
the correct sequence of button presses, switch flips, or slider toggles is performed. We analyze our human 
subjects’ teaching behavior in relation to the robot’s learning behavior to understand the dynamics of this 
coupled social process. Our findings reveal social constraints on how people teach socially interactive robots. 
These findings have important implications for how to design social robots that learn from everyday people. 
 

2. Robot Platform 

Our research platform is Leonardo (“Leo”), a 65 degree of freedom anthropomorphic robot specifically 
designed for human social interaction (Figure 1).  Leo has speech and vision sensory inputs and uses gestures 
and facial expressions for social communication (the robot does not speak yet).  Leo can visually detect 
objects in the workspace, humans and their head pose [Morency02], and hands pointing to objects. For highly 
accurate tracking of objects and people, we use a 10 camera VICON optical motion capture system. The 
speech understanding system is based on Sphinx, and has a limited grammar to facilitate accuracy.   
 
The cognitive and learning system extends the C5M architecture [Blumberg02].  The Perception and Belief 
Systems are most relevant to the learning abilities described in this paper.  Every time step, the robot has 
observations from its various sensory processes, O={o1,..,ok}.  The Perception System is a set of percepts P = 
{p1,..., pn}.  Each p∈P is a classification function, such that p(o)=m where m∈[0,1] is a match value.  The 
Belief System maintains the belief set B by integrating these percepts into discrete object representations 
(based on spatial relationships and various similarity metrics).  Figure 2 shows a simple example in which 
sensory data leads to five percepts with m>0, that result in two beliefs in B.  In this paper, a “state” s refers to 
a snapshot of the belief set B at a particular time, and S refers to the theoretical set of all possible states. Let 
A={a1,...,ai} be the set of Leo’s basic actions.   For more details of the Perception and Belief Systems see 
[Breazeal05]. 
 
The Socially Guided Exploration system builds on these existing mechanisms --- adding capabilities for 
representing and learning goal-oriented tasks, self-motivated exploratory behavior, and expression/gesture 
capabilities to support a collaborative dialog with a human teacher. 
 
 



 
 
 
 
 
Figure 2. Sensory input is classified by percepts and then merged into discrete object representations.  In this time step, five percepts 
yield two object beliefs. 
 

3. Socially Guided Exploration 

In most Machine Learning systems, learning is an explicit activity. Namely, the system is designed to learn a 
particular thing at a particular time.  In human learning, on the other hand, learning is a part of all activity. 
There is a motivation for learning, a drive to know more about the environment, and an ability to seek out the 
expertise of others. Children explore and learn on their own, but in the presence of a teacher they can take 
advantage of the social cues and communicative acts provided to accomplish more (also known as social 
scaffolding [Vygotsky78]).  A teacher often guides a learner by providing timely feedback, luring them to 
perform desired behaviors, and controlling the environment so the appropriate cues are salient, thereby 
making the learning process more effective.  This is the primary inspiration for the Socially Guided 
Exploration system. This section highlights the key implementation details: the Motivation System, learning 
behaviors, goal-oriented task representation, transparency devices and social scaffolding mechanisms. 

3.1 Motivational Drives for Learning 

Living systems work to keep certain critical features within a bounded range through a process of behavioral 
homeostasis (e.g., food, water, temperature).   If a parameter falls out of range, the animal becomes motivated 
to behave in a way that brings it back into the desired range.  
 
Recently, this concept has inspired work on internal motivations for a Reinforcement Learning (RL) agent 
[Oudeyer04, Singh05, Shumidhuber05].  These works use a measure of novelty or certainty as intrinsic 
reward for a controller.  Thus, an action that leads to a prediction error results in rewards that encourage focus 
on that portion of the space.  Our approach is in a similar vein, but rather than contribute to the reward 
directly, Leo’s internal motivations trigger learning behaviors that help the system arbitrate between learning 
a new task, practicing a learned task, and exploring the environment.  Additionally, prior works in 
“motivated” RL have relied on a single drive (novelty/curiosity).   In this work we introduce a mastery drive 
and demonstrate the benefits of the interplay between novelty and mastery in an agent’s learning behavior. 
 
Leo’s Motivation System (based on prior work [Breazeal02]) is designed to guide a learning mechanism.  
Inspired by natural systems, it has two motivational drives, Novelty and Mastery.  Each drive has a range 
[0,1], initial value of 0.5, a tendency to drift to 0.0, and a drift magnitude of 0.001 (max change in a time 
step).  The Motivation System maintains the drive values based on the status of the internal and external 
environment: 
 



The Novelty Drive. The Novelty Drive is an indication of the unfamiliarity of recent events.  
Every state transition will cause the Novelty Drive to rise for an amount of time related to the degree of 
the change, dchg, based on the event’s frequency: dchg(s1,s2) = 1/frequency(s1,s2).  An event causes the 
Novelty Drive to drift towards its maximum value for a period, t = dchg (s1,s2) tmax.  The maximum effect 
time, tmax, is 30 seconds. 
 
The Mastery Drive. The Mastery Drive reflects the current system confidence of the learned task 
set.   Mastery is the average confidence of the tasks that are relevant in (i.e., can be initiated from) the 
current state, s.   A task’s confidence is the number of successful attempts over the total task attempts made.   
  
 

 
Figure 3. The three learning behaviors and their social/motivational contexts. 

 

3.2 Learning Behaviors for Motivational & Social Contexts 

The Task Learning Action Group is the piece of the Socially Guided Exploration system responsible for 
identifying and responding to learning opportunities in the environment.  It maintains the set of known tasks 
(Tasks), and has three competing learning behaviors that respond to social and motivational learning contexts.  
Figure 3 is an overview of the behaviors and their internal/external triggering contexts.   

The Novelty Behavior. One purpose of the Novelty Drive is to encourage the system to better 
understand new events, expanding the Tasks set.  Thus, a significant rise in the Novelty Drive makes the 
Novelty Behavior available for activation.  Additionally, this behavior may be activated due to a social 
context, when the human points out an event (e.g., “Look Leo, it’s TaskName-X.”).  Once activated, the 
Novelty Behavior tries to create a new task.  It makes a goal representation of the most recent state 
transition (s1, a, s2), and if there is not a T ∈ Tasks with this goal, then a new task is created. Task creation, 
expansion, and generalization are covered below.   

The Mastery Behavior. The purpose of the Mastery Drive is to cause the system to become 
confident in the environment, fleshing out the representations in the Tasks set.  When the Mastery Drive 



is low and any tasks are relevant in the current state, the Mastery Behavior may be activated.  This 
behavior randomly selects a relevant task, executes it, and updates the confidence based on success in 
reaching the goal. 

The Explore Behavior. Both motivational drives also work to encourage exploration.  The Explore 
Behavior becomes available when novelty is low, encouraging the system to seek out the unexpected.  
Exploration is also triggered when mastery is high. Even if a known task is relevant, the system is biased to 
try to expand the Tasks set once confidence is high.  Additionally, social interaction can trigger the Explore 
Behavior --- for example, if the human suggests an action (e.g., “Leo, try to Act-X the Obj-Y.”).  When 
the Explore Behavior is activated, it first tries to do any human-suggested action if possible.  Otherwise, 
the Explore Behavior selects from the actions it can do in the current state, with a minimum frequency 
requirement.  Once the action is completed, if it was a human-suggested action, the robot’s attention is biased 
to look to the human in order to acknowledge the suggested action and provide the human with an opportunity 
for feedback.   

3.3 Task and Goal Representation 

These three behaviors result in a mechanism that learns object-oriented tasks.  Tasks and their goals are 
represented with Task Option Policies.  This name reflects its similarity to the Options approach in 
Reinforcement Learning [Sutton99]. 
 
Goals encode what must hold true to consider the task achieved.  Specifically, a goal G = x1,..., xy where every 
x ∈ G represents a belief that changed over the task, grouping the belief’s percepts into expectation percepts 
(indicating an expected feature value), and criteria percepts (indicating which beliefs to apply this expectation 
to).2 
 
Each T ∈ Tasks is a Task Option Policy, and is defined by a variation of the three Options constructs: I, π, β.  
To define these we use two subsets of states related to the task.  Let Stask ⊂ S be the states in which the task is 
relevant but not achieved, and Sgoal ⊂ S be the states in which the goal is achieved.  Then, a Task Option 
Policy is defined by: 
•  π’: Stask × A → [0,1]; estimates a value for (s, a) pairs in relation to achieving the task goal, G. 
•  β’: Sgoal; represents all of the states in which this task terminates because G is true. 
•  I’ = Stask; represents the initiation set. The task can be initiated in any state for which it has a policy of 
action. 
 
A task can be executed (is relevant) when the current state is in Stask.  During execution, actions are chosen 
according to π’ until the current state is in Sgoal (with some probability of terminating early).  A state s 
achieves the goal if: ∀ x ∈ G, if any belief b in s matches all the criteria ∈ x, then b also matches all the 
expectation ∈ x.   

3.4 Task Learning 

The Socially Guided Exploration system learns a new Task Option Policy by creating a goal G about a state 
change and refining Stask, G, and π’ over time through experience.  The Novelty Behavior creates new 
tasks.  First, it makes a potential goal state G from the most recent state change, (s1, a, s2), with a 
                                                
2 This goal construct is also used in prior work, [Breazeal05,Lockerd04] 



representation, x, for each belief in s1 that changed in s1 → s2.  Any percept that changed is an expectation, the 
rest are criteria (e.g., see Figure 4). 
 
 
 

 
Figure 4. A simple example of creating a goal from a state change. 
 
If there does not exist a T ∈ Tasks with goal G, then a new Task Option Policy, Tnew, is created.  The Stask of 
Tnew is initialized with the initiation state s1, and π’ is initialized with default values q = .1 for all actions from 
s1.  Then, the system takes into account the experience of (s1, a, s2), and (s1, a) gets a higher value since s2 is 
the goal.   
 
Each T ∈ Tasks can learn and expand from every experience (also referred to as intra-option learning 
[Sutton98]).  Every action is an experience, (s1, a, s2); and each T ∈ Tasks has the opportunity to extend its set 
Stask and update its π’ based on this experience.  To update π’, rather than rely solely on external rewards from 
the environment, the system estimates the reward function based on the task’s goal: r = 1 if the goal is true in 
s2, otherwise r = 0. 
 

3.5 Task Generalization 

In addition to expanding initiation sets and updating value estimates for tasks, the system tries to generalize 
tasks over time.  It works to generalize both the state representations in Stask and the goal representation G for 
all T ∈ Tasks.   
 
Given two different tasks T1 and T2, the generalization mechanism attempts to combine them into a more 
general task Tgen.  For example, if T1 has the goal of turning ON a red button in location, loc(1, 2, 3), and T2 
has the goal of turning ON a red button in location, loc(4, 5, 6), then Tgen would have the goal of turning ON 
a red button without a location feature.  When a feature is generalized from the goal, the system also tries to 
generalize the states in Stask, letting the task ignore that feature.  Thus, Tgen can initiate in any location and any 
state with a red button ON achieves its goal.   
 
This generalization is attempted each time a Tnew is added to Tasks.  If there exist two tasks T1 and T2 with 
similar goal states, then the system makes a general version of this task.  Two goals are similar if they differ 
by no more than four percepts.  In generalizing Stask and G for all T ∈ Tasks, the generalization mechanism 
expands the portion of the state space in which tasks can be initiated or considered achieved.  This results in 
an efficient representation, as the system continually makes the state space representations more compact.  
Additionally, it is a goal-oriented approach to domain transfer, as the system is continually refining the 
context and the goal aspects of the activity representation.   



 
In our red button example, the two tasks are similar since their expectations are the same, expt = {ON}, and 
their criteria differ only by the location feature.  A new task is made with a goal that does not include location: 
Ggen = {expt = {ON}; crit = {object,red,button,....}}  If the policies of the two tasks are similar, for 
example to do the Press Action in the state s ={b1={object,red,button,loc = (x, y, z),...}}, then 
the new task will generalize location from all of Stask.  On the other hand, if T1 has the policy of doing the 
press action in state s={b1={object,red,button,loc=(1, 2, 3),...}}, and T2 has the policy of doing the 
flip action in state s={b1={object,red,button,loc=(4, 5, 6),...}}, then the generalized task policy will 
maintain that in loc(1, 2, 3) a red button should be pressed to make it ON and in loc(4, 5, 6) a red button 
should be flipped to make it on. 
 

3.6 Transparency Mechanisms 

Leo has several expressive skills contributing to the robot’s effectiveness as a social learner.  Many are 
designed around theories of human joint activity [Clark96]. For example, consider principles of grounding.  In 
general, humans look for evidence that their action has succeeded. This extends to joint activity where the 
ability to establish a mutual belief that a joint activity has succeeded is fundamental to a successful 
collaborative activity.   
 
Table 1 highlights many of the social cues that Leo uses to facilitate the collaborative activity of learning.  
Eye gaze establishes joint attention, reassuring the teacher that the robot is attending to the right object.  
Subtle nods acknowledge task stages, e.g., confirming when the teacher labels a task goal. 
 

Tab le 1 .  Soc ia l Cu es  for  Tr ansp aren cy  in  a Soc ia lly  Gu id ed  Exp lora t ion  

Context Robot Behavior Intention 

Human points to object Looks at object Shows object of attention 

Human present in workspace Gaze follows human Shows social engagement 

Executing an action Looks at object Shows object of attention 

Human says “Look Leo, it’s TASK-X” Subtle head non and happy 
facial expression 

Confirms goal state of task, TASK-X 

Human says “Try to ACT-Y the OBJ-Z” Look to human if suggestion is 
taken 

Acknowledge partner’s suggestion to perform 
specified action, ACT-Y on specified object, OBJ-Z 

Speech did not parse; Unknown object 
request; Label without pointing gesture 

Confusion expression Communicates problem 

Unconfident task execution Glances to human more Conveys uncertainly 

Task is done and human says “Good” Nods head Positive feedback for current option 

Human asks a yes/no question Head Nod/shake Communicates knowledge/ability 

Intermittent Eye blink, gaze shifts, posture 
shift 

Conveys awareness and aliveness 

Novel event Surprise expression Task model is created 

Mastery triggers a task execution Concentration expression A known task is attempted 



Completion of a successful task attempt Happy expression Expectation met 

Completion of a failed task attempt Sad expression Expectation broken 

Positive/Negative feedback from a 
human 

Happy/Sad expression Acknowledge type of feedback 

 
 
Additionally, Leo uses its face for subtle expressions about the learning state.  The robot’s facial expression 
shifts to a particular pose for fleeting moments (2-3 seconds), indicating a state that pertains to its internal 
learning process, and then returns to a neutral pose.   The expressions are chosen to communicate information 
to the human partner. They are inspired by research showing that different facial action units communicate 
specific meanings [Smith97] (Figure 5).  For example, raised eyebrows and wide eyes indicate heightened 
attention, which is the desired communicative intent with Leo’s surprised expression.   This approach results 
in a dynamic and informative facial behavior. 
 
 

 
 
 
 
 
 
Figure 5. Leo can use several facial poses to express internal learning state. 
 
Leonardo also communicates various learning contexts to the human partner with its facial expressions (Table 
1).  When the Novelty Behavior is triggered, a fleeting surprised expression lets the human know that a 
task is being created.  When the Mastery Behavior causes a task to be practiced, Leo makes a 
concentrated facial expression and later a happy/sad expression upon the success/failure of the attempt.  
Throughout, if the human gives positive or negative feedback, Leo makes a happy or sad expression to 
acknowledge this feedback.  When the human labels a goal state, Leonardo makes a happy expression and a 
head nod to acknowledge the labeling. 

3.7 Scaffolding Mechanisms 

The goal of our approach is for a robot learner to strike a balance between learning on it’s own and benefiting 
from the social environment.  The following are social scaffolding mechanisms at work on the Leonardo 
platform to enable Socially Guided Exploration. 
 



Social attention: The attention of the robot is directed in ways that are intuitive for the human.  Attention 
responds to socially salient stimuli and stimuli that are relevant to the current task.  The robot tracks the 
pointing gestures and head pose of a human partner, which contribute to the saliency of objects and their 
likelihood for attention direction.  For details on the robot’s social attention system see [Thomaz05]. 
 
Guidance: Throughout the interaction, the human can suggest actions for Leo to try.  The human’s request is 
treated as a suggestion rather than an interrupt.  The suggestion increases the likelihood that the Explore 
Behavior will trigger, but there is still some probability that Leo will decide to practice a relevant task or 
learn about a novel state change. 
 
Recognizing goal states:  Leo creates task representations of novelties in the environment.  The human can 
facilitate this process by pointing out goal states with a variety of speech utterances (e.g., “Look Leo, it’s X”).  
This serves to increase the likelihood that the Novelty Behavior will trigger, creating a task with the 
label “X”. 
 
Environmental structure: An implicit contribution of the human teacher is their ability to physically 
structure the learning environment, highlighting salient elements.  They draw the robot learning system into 
new generalizations, link old information to new situations, and point out when a learned task is relevant in 
the current situation. 
 

4. Experiment 

To evaluate our Socially Guided Exploration system, we conducted a human subjects experiment where 
subjects interacted with the Leonardo robot.  We solicited participation from the campus community, and had 
11 participants complete the experiment over the course of two days (5 male, 6 female).  Due to corrupted log 
files for two subjects, we only use data from 9 of the subjects in our analysis that depends on those log files.  
For the video analysis, we use the data from all 11 subjects. 

4.1 Experimental Scenario 

The experimental scenario is a shared workspace where Leo has a “smart” puzzle box (Figure 1).  The puzzle 
box has three inputs (a switch, a slider, and a button), a lid that can open and close by activating an internal 
motor, five colored LEDs, and sound output.  The box can be programmed with specific behaviors in response 
to actions on the input devices (e.g., the actions required to open the lid, or turn a colored LED on, etc.).   
 
Leo has five primitive manual actions it can apply to the box (Button-Press, Slider-Left, 
Slider-Right, Switch-Left, Switch-Right), but no initial knowledge about the effects of these 
actions on the puzzle box.  Leo uses the Socially Guided Exploration mechanism to build a Tasks set about 
the puzzle box.   
 
In our experiment, the puzzle box is pre-programmed with the following input-output behavior:  

• Pressing the button toggles through the five LED colors: white, red, yellow, green, and blue.  
• If both the slider and the switch are flipped to the left when the color is white, then the box lid opens.  
• If the slider and switch are flipped to the right when the color is yellow, then the box lid closes.  
• If the lid is open and the color changes to blue, then the box will play a song.  



4.2 Instructions to Human Subjects 

Subjects are shown the functionality of the puzzle box and told that their goal is to help Leo learn about it.  
They are told the robot is able to do some simple actions on the toy puzzle box, and once turned on, it will 
start exploring what it can do with the box.  Then the scaffolding mechanisms are explained.  They were told 
they can help Leo learn tasks by making action suggestions, by naming aspects of the box, and by testing that 
these named aspects have been learned.  The subjects were told that Leo understands the following kinds of 
utterances: 

• “Leo, try to...[press the button, move the slider left/right, move the switch left/right].” 
• “Look Leo, It’s...[Open, Closed, A Song, Blue, White, Green, Red, Yellow].” 
• “Leo, Try to make it...[Open, Closed, Play a Song, Blue, White, Green, Red, Yellow].” 
• “Good Leo”, “Good job”, “Well done”, “No”, “Not quite.” 

 
Finally, the goal in this interaction was to make sure that Leo learns to do three things in particular:  

• TBlue--Make the light blue;   
• TOpen--Make the lid open;  
• TSong--Make the song play.   

 
 
5. Evaluation 

5.1 Analysis of Guided Exploration versus Self Exploration 

This first set of analyses examines how the teacher’s social scaffolding influenced the robot’s learning 
process.  We compare data from the learning sessions in two conditions: 

• GUIDED: The robot learns with a human teacher.  As mentioned above, we have data from 9 
participants in this condition. 

• SELF: The robot learns by itself.  For this condition, we collected data from 10 sessions of the 
Leonardo robot learning alone in the same environment. 

 
All 9 participants succeeded in getting the robot to reach the TBlue and TOpen tasks, but only four of the 
participants taught Leo the more complex TSong.  Everyone taught the TBlue task first, and there was an average 
of 9 actions between first encountering the TBlue and  TOpen goals. 
 
During the learning session, we logged several measures to analyze the effect of guidance on the learning 
process.  In addition to collecting metrics during the learning session, the efficacy of the learned task sets was 
tested in simulation afterwards (detailed below).  The differences between the Self Exploration and Socially 
Guided Exploration cases are summarized in Table 2. 
 
 
 
 
 
 
 
 



Tab le 2 .  Summary  of  d if fer en ces found  b etween Guid ed  exp lora t ion  and  S elf  explor a t ion .  

Means 1-tailed T-Tests  
Measure SELF GUIDE t(19) p 

Number actions to reach first goal in learning session 11.2 3.56 2.11 < .05 
Size of resulting Tasks set 10.4 7.55 7.18 < .001 

Number tasks for TBlue 0.833 1.333 -2.58 < .01 
Number tasks for TOpen 1 1.77 -1.83 < .05 

Number Init States can reach TOpen  0.58 1.56 -2.88 < .01 
Number actions to reach TBlue  2.66 1.69 2.19 < .05 

 
 
We found that the human teacher is able to guide the robot to the desired goal states faster than it can discover 
them on its own.  This is seen in the difference between groups in the number of actions to the first encounter 
of any of the three experiment goal states.  The average for GUIDE, 3.56, is significantly less than the average 
for the SELF condition, 11.2. Thus, people were able to utilize the social scaffolding mechanisms to focus the 
robot on aspects of the environment that they wanted it to learn.  This is also supported by qualities of the 
resulting Tasks set that is learned.  In the GUIDE condition, the resulting Tasks sets were more related to the 
experiment goals (i.e., TBlue, TOpen or  TSong is true in a task’s goal state).  We see a significant difference in 
both the number of tasks related to TBlue and TOpen (see Table 2). 
 
Also, we found that the Socially Guided Exploration case learns a better task set for achieving the experiment 
goals. In the post analysis of the learned tasks, we tested each task set from a test suite of five initial states, 
looking for their ability to achieve the experimental goals.   Each experiment goal has a different test suite of 
five initial states: three of which are very close to the goal (1 or 2 actions required), two of which are farther 
away (more than 2 actions required to achieve the goal).   For each of the learned Tasks sets, we record the 
number of actions needed to reach each of the experimental task goals from each of the test states.  We found 
some significant differences in the generality of the learned tasks.  The average number of states that the 
GUIDE condition sets could reach the TOpen goal, 1.56, was significantly better than the average in the SELF 
condition, 0.58.  And though we didn’t find this particular difference for the TBlue goal, we do see that the 
GUIDE condition is significantly faster at achieving TBlue in the post analysis than the SELF condition, 1.69 
versus 2.66.  Thus, human guidance leads to task sets that are better at achieving the designated experimental 
goals.   

5.2 Analysis of Human Scaffolding Behavior 

Having learned about how human scaffolding changes the nature of what is learned during an exploration 
session, our next set of analyses focuses on understanding how people used the scaffolding mechanisms 
provided.  We have video from each of the learning sessions, and we coded a transcript from each video that 
summarizes the following:  
 
For each of the human’s utterances, we coded the type of scaffolding: suggestion, task label, task test, positive 
or negative feedback.  We also coded for three types of context for each utterance.   

• Context 1: Did the person wait for the robot to make eye contact before they made the utterance?   
• Context 2: Did the utterance happen after the robot made a facial expression?   
• Context 3: Did the utterance happen while the robot was completing an action?   

 



The transcript includes a recording of each action made by the robot, as well as each emotional expression.  
The camera was placed such that it was difficult to see every small facial expression made by the human, but 
we recorded all visible and audible emotional expressions (smiles, laughs, etc.). 
  
 

Tab le 3 .  Re la t iv e amoun ts  of  th e  var ious  s caffo ld ing  u t ter an ces by  each  
par t ic ipan t .  

Subject Suggestions Task Labels Task Tests Pos. Feedback Neg. Feedback 

1 44 8 7 16 10 

2 49 26 18 30 0 

3 82 36 15 34 23 

4 7 2 2 3 0 

5 75 31 8 11 9 

6 35 10 14 4 4 

7 40 20 5 20 9 

8 14 7 4 6 4 

9 32 15 12 6 2 

10 29 14 3 15 4 

11 33 16 1 8 0 

 
 
Table 3 summarizes the frequency with which each of the subjects used each type of utterance.    After 
normalizing by length of the learning session, we calculate the average frequency (i.e., number of utterances 
per action) for each scaffolding type. Interestingly, we found there was little variance in these frequencies 
across the participants.   

• Action suggestions:  average = 0.85, variance = 0.038 
• Task labels:   average = 0.36, variance = 0.022 
• Task tests:   average = 0.17, variance = 0.007 
• Positive feedback:  average = 0.31, variance = 0.027 
• Negative feedback:  average = 0.11, variance = 0.001 

 
In addition to a characterization of how much and what kinds of scaffolding people used, we also looked at 
whether each type of scaffolding utterance happened in a particular context.  Table 4 shows the average 
percentages for each of the three contexts for each type of scaffolding utterance. We see that nearly all (97%) 
task tests happen after eye contact, i.e., Context 1. Action suggestions are similar --- 89% are in Context 1.  
With task labels, 88% happen in Context 1. However, there is some tendency (14%) toward Context 3 where 
people label a state during Leo’s action and before Leo looks up.   
 
 



Tab le 4 .  Summary  of  the  con tex ts  of  each  typ e  o f  s caffo ld ing  u t teran ce.  

Context 1: eye contact Context 2: expression Context 3: action  
Scaffolding average variance average variance average variance 

suggestions 0.892 0.011 0.084 0.003 0.075 0.007 

task labels 0.879 0.012 0.051 0.003 0.136 0.027 

task tests 0.971 0.006 0.049 0.008 0.000 0.000 

positive feedback 0.469 0.049 0.050 0.005 0.582 0.059 

negative feedback  0.538 0.155 0.000 0.000 0.631 0.091 

 
 
Feedback is the most varied in terms of context, and like labeling it is seen in both Contexts 1 and 3, but 
people are more diverse in their behavior.  Two of the 11 people issued most of their feedback (more than 
65%) in Context 1; six people did most of their feedback in Context 3; and three people split their utterances 
nearly 50/50 between Contexts 1 and 3.  In addition to the context of feedback, we looked at the relative 
amounts of positive and negative utterances (Figure 6).   Again we have diversity among the 11 participants.  
We see that 3 people gave only positive feedback, 6 people had a positive bias to their feedback, and 2 people 
had fairly even amounts of positive and negative feedback. It is interesting that none of our subjects had a 
negative feedback bias. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Relative amounts of positive and negative feedback issued by our human subjects. 
 
The final question we looked at in the video analysis was “How often do people mirror the expressions/affect 
that Leo displayed?”  Table 5 summarizes this data.  There was a fairly wide range of matching behavior.  
Two people never did any visible or audible mirroring, while one person matched nearly 50% of Leo’s 
expressions. On average people matched Leo’s emotional expression 24% of the time. 
 
 



Tab le 5 .  Summary  of  each  p erson’ s  m ir ror ing  b ehavior  

Subject Total amount of 
Expressions by Leo 

Number of expressions 
that were matched 

ratio 

1 10 0 0.000 

2 16 2 0.125 

3 13 3 0.231 

4 4 0 0.000 

5 14 5 0.357 

6 17 8 0.471 

7 12 4 0.333 

8 7 1 0.143 

9 10 4 0.400 

10 6 2 0.333 

11 9 2 0.222 

    

Average   0.238 

 

6. Discussion 

In designing robotic agents that learn new skills and tasks “on the job” from everyday people, we recognize 
that the average person is not familiar with machine learning techniques, but they are intimately familiar with 
various forms of social learning (e.g., tutelage, imitation, etc.).  This raises important research questions.   For 
instance, “How do we design robots that learn effectively from human guidance?”; “What does human 
teaching behavior look like when interacting with a social robot?”; “How do we design robot learners to 
support human teaching behavior?” Also, there still remains the more traditional robot learning question, 
“How can robots be effective learners when a human teacher is not available?” 
 
In prior works that incorporate a human into a machine learning process, the level of human interaction 
generally stays constant, remaining at one end of the guidance-exploration spectrum.  Some are more 
guidance oriented, completely dependent on a human instruction.  Others are more exploration based, using 
limited input from a teacher.  In this work, we recognize that a social learner needs both, and the Socially 
Guided Exploration mechanism brings these together in one learning system.  Motivations drive exploration 
of the environment and the creation of goal-oriented tasks about novel events.  A human partner can influence 
learning through typical scaffolding acts such as directing attention, suggesting actions, highlighting and 
labeling goal states as interesting states to learn to achieve, testing task knowledge, and issuing 
positive/negative feedback.     



 
Our experiments show that the Socially Guided Exploration mechanism is successful in allowing non-expert 
human teachers to guide the robot’s learning process. People were able to focus the robot’s learning to 
particular goals that they desired.  And compared to self-learning in the same environment, the learning of 
these goals is accelerated, and the resulting representation of these tasks is more useful at a later time.  The 
task sets resulting from guidance are smaller and more closely related to the specific tasks that the human was 
trying to teach.   In self-learning on the other hand, the robot learned a broader task set, serendipitously 
learning aspects of the environment that the human was not focused on teaching.   While not what the human 
had in mind today, this knowledge about the environment could be advantageous in the future.  Clearly both 
types of learning are beneficial to a robot learner in different ways, supporting our approach of covering the 
full guidance-exploration spectrum.   
 
In addition to illustrating the differences between guided and self learning, our experiment allows us to further 
explore a question that we have raised in prior work: “How do people naturally approach the task of teaching 
a machine?”  
 
Our video analysis of the learning sessions lets us characterize key similarities and differences in how people 
use social scaffolding to help teach a physically embodied learner. First, we found that people exhibit 
consistent behavior in the relative frequency of the different types of scaffolding mechanisms available.  
Additionally we were able to learn something about the typical context for each of the scaffolding 
mechanisms.  When making action suggestions or asking Leo to try to complete a task, people generally wait 
for eye contact.  Presumably waiting for a signal that the robot is finished with its current action and ready to 
move on.  Labeling a state (e.g., “Look, it’s Blue”) mostly happens after eye contact as well, but also happens 
during an action.  Sometimes people want to give the label right as the state change happens.  Feedback has an 
even greater split between the eye contact and action contexts.  Either a feedback utterance is given right as an 
action is happening or the person waits until after the action completes and the robot looks up.   This raises an 
important question for a social learning agent.  Does a state label or a feedback utterance take on a different 
connotation when it is given in a different context?  It is possible that a person means something different by 
an utterance given during an action versus one given at completion. 
 
There is some anecdotal evidence that people have different interpretations of how task labeling should work.  
The current system assumes that the human might provide a label, and that it would pertain to the current 
state.  Most participants did label in this way, but at least one participant gave ‘pre-labels’ for a given task.  
Saying, “Leo, now let’s make it Blue.” This is an interaction that the system is currently not designed to 
handle.  Other people gave multiple labels for a state (“Look Leo, it’s open, and it’s green, and the switch is to 
the right...”).  Over half of the participants did this multiple labeling behavior at least once.  Again, the system 
is not designed to take advantage of this, but it is an interesting area for future work.  These multiple labels 
could help the system more quickly learn to differentiate and generalize when a task is considered achieved. 
 
The findings in this study support our previous data with teachable game characters regarding human 
feedback behavior.  Previously, we studied people’s interactions with a virtual robot game character that 
learns via interactive reinforcement learning [Thomaz07].  We found that people had a variety of intentions 
(guidance, motivation) that they communicated in addition to instrumental positive or negative feedback 
about the last action performed.  We found a positive bias in the feedback an agent gets from a human teacher.  
Additionally, we showed that this asymmetry has a purpose.  People mean qualitatively different things with 
positive and negative feedback.  For instance, positive feedback was used to reinforce behavior but also to 



motivate the agent. Negative feedback was used to “punish” but also to communicate, “undo and back up to 
your previous state.” 
 
In the study presented here we see more evidence of the varied nature of positive and negative feedback from 
a human partner.   The split contexts of the feedback messages are an interesting area for future study.  It is 
likely that the feedback takes on a different meaning dependent on the context.  Again, we see a positive bias 
in people’s feedback with 9 out of 11 people using more positive utterances (and in three of those cases the 
person only gave positive feedback).   
 
The following is an interesting anecdote that highlights the complexity of feedback from a human partner. 
 During a particular learning session, one teacher made the action suggestion to move the switch left when the 
box switch was in the left position. Leo did the suggested action, but since it was already left the action had no 
effect.  The teacher gave positive feedback anyway, and then quickly corrected herself and suggested switch 
right.  The true meaning of this positive feedback message is, “yes, you did what I asked, good job, but what I 
told you was wrong...”  Thus, positive and negative feedback from a human partner is much more nuanced 
than a simple good/bad signal from the environment, and an embodied social learning agent will need the 
ability to discern these subtle meanings.  
 
A final topic addressed this study is the extent to which the behavior of the robot influences the human 
teacher.  In prior work, we showed that a virtual robot game character can influence the input from a human 
teacher with a simple gazing behavior [Thomaz06].  An embodied robotic agent like Leonardo has many more 
subtle ways in which to communicate its internal state to the human partner, and we see some evidence that 
people’s behavior is influenced by the social cues of the robot.  On average about 25% of the robot’s facial 
expressions were mirrored by the human either with their own facial expression, tone of voice, or with a 
feedback utterance.  Also, people waited for Leonardo’s to make eye contact with them before they would say 
the next utterance. This has the nice property of a subtle cue the robot uses to slow down the human’s input 
until the Leo is ready for it. In the future, one could imagine exploiting mutual gaze to elicit additional input 
“just in time.” For instance, the robot might initiate and action, pause and look to the human if confidence is 
low, to elicit a confirmation or additional guidance before it executes the action. 
 
We see additional anecdotal evidence of people shifting their teaching strategies based on the behavior of the 
robot.  In one case, the person misunderstood the instructions and initially tried to demonstrate the task instead 
of guide an exploration.  She would label a state, describe her actions, and then label the new state.  But she 
quickly shifted into the guided exploration (after about four actions) once Leo started doing actions itself.  In 
another case, the teacher’s strategy was to ‘pre-label’ a task.  She would say, “Leo’s let’s make it Blue”, and 
then make the necessary action suggestions. Once Leo got to the desired state she’d say, “Good Job!”  But she 
did not say the name of the state once they got there, so the label never got attached to that task representation.  
Then she would ask Leo to make it blue, and Leo would not know the name of that task.  Finally, she did one 
post-labeling, saying the name of the task “Blue” after it was completed, and Leo demonstrated that he could 
do the blue task soon afterwards.  At this point she stopped pre-labeling, and only did the post-labeling for the 
rest of the learning session. 

7. Conclusion 

This work acknowledges that a robot learning in a social environment needs the ability to both learn on its 
own and to take advantage of the social structure provided by a human partner.  Our Socially Guided 
Exploration learning mechanism has motivations to explore its environment and is able to create goal-oriented 



task representations of novel events.  Additionally this process can be influenced by a human partner through 
attention direction, action suggestion, labeling goal states, and feedback using natural social cues. From our 
experiments, we found beneficial properties of the balance between intrinsically motivated learning and 
socially guided learning. Namely, self-exploration tended to result in a broader task repertoire from 
serendipitous learning opportunities. This broad task set can help to scaffold future learning with a human 
teacher. Guided-exploration with a human teacher tended to be more goal-driven, resulting in fewer tasks that 
were learned faster and generalized better to new starting states.  
 
Our analysis of human teaching behavior revealed some interesting findings. First, we found that there was 
surprisingly little variance among human subjects with respect to how often they used specific types of 
scaffolding (action suggestions being the highest, negative feedback was the least). Our video analysis reveals 
different forms of behavior coupling between human teacher and robot learner through social cues. We found 
that most scaffolding was given to the robot after it made eye contact with the teacher. We also found that 
human teachers tended to mirror the expressive behavior of the robot (an average of 25%), but this varied by 
teaching style (some did not mirror at all, some mirrored more than 40%). In addition, we found that the 
communicative intent behind positive and negative feedback is subtle and varied – it is used in different 
contexts, sometimes before the robot takes action. Hence, it is not simply reinforcement of past actions. We 
also found that different teachers have different styles in how they use feedback – some have a positive bias, 
others are more balanced. Interestingly, none of our subjects had a negative bias.   
 
These findings inform and motivate continued work in how to design robots that learn from human teachers 
with respect to the dynamic social coupling of teacher and learner to coordinate and improve the 
teaching/learning process, designing to support the frequency and kinds of scaffolding, understanding the 
subtlety of intention behind positive/negative feedback, and accommodating different teaching styles.  
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