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Abstract—In this paper we advocate a paradigm of socially The learner, in turn, helps the instructor by making their
guided machine learning, designing agents that take better |earning processransparentto the teacher through commu-
advantage of the situated aspects of learning. We augmented i~ative acts (such as facial expressions, gestures, gaze, or

a standard Reinforcement Learning agent with the social - . . .
mechanisms of attention direction and gaze. Experiments with vocalizations that reveal understanding, confusion, attention),

an interactive computer game, deployed over the World Wide —and by demonstrating their current knowledge and mastery of
Web to over 75 players, show the positive impact of these social the task [13], [1]. Through this reciprocal and tightly coupled
aspects. Allowing the human to direct the agent's attention interaction, the learner and instructor cooperate to simplify

creates a more efficient exploration strategy. Additionally, gaze 6 ta5k for the other — making each a more effective partner.
behavior lets the learning agent improve its own learning envi-

ronment, using transparency to steer the human's instruction.  This paper investigates the ways in which the social as-
pects of learning and the dynamics of the teacher-learner
interaction can beneficially impact the performance of a
Robots that operate in the human environment will nee&nachme 'eaf”'”g agent. We us.e,a c.omputer game platform

as our experimental testbeBlophie’s Kitchenwhere players

to be able to learn new skills and tasks ‘on the job’ from. ¢ ively trai itual robot ch rer t ; task
people. It is important to recognize that while the averagén eractively frain a virtual robot character to perform a tasx.

consumer is not familiar with machine learning techniques\ve report two interrelated results that show how social
they are intimately familiar with various forms of social mechanisms can be added to a standard learning process
learning (e.g., tutelage, imitation). From a Human-Roboto improve both sides of the teaching-learning partnership.
Interaction perspective, this raises two important and relategpecifically, we report that

guestions. First, how do people want to teach robots? Second,

how do we design robots that learn effectively from natural « The ability for the teacher to direct the agent's atten-
human interaction and instruction? We advocate a paradigm tion has significant positive effects on several learning

I. INTRODUCTION

of socially guided machine learningxploring the ways in performance metrics.
which machine learning can be designed to more fully take « The ability of the agent to use gaze as a transparency
advantage of natural human interaction and tutelage. behavior results in measurably better human instruction.

We draw our inspiration from Situated Learning Theory, aThese empirical results illustrate that the ability to use and
field Qf study that looks at the social world of children andleverage social skills is far more than a good interface tech-
how it contributes to their development. A key concept isnique. It can positively impact the dynamics of the underlying

scaffolding where a teacher provides support such that @earning mechanisms to show significant improvements in a
learner can achieve something they would not be able tgeal-time interactive learning session.

accomplish independently [14], [11].

In a situated learning interaction, the teaching and learning Il. FRAMEWORK

processes are intimately coupled. A good instructor maintains

an good mental model of the learner's state (e.g., whatThe situated learning process described above stands in
is understood so far, what remains confusing or unknowndiramatic contrast to typical machine learning scenarios that
in order to provide appropriate scaffolding to support thehave traditionally ignored “teachability issues” such as how
learner’s current needs. In particular, attention direction is onto make the teaching-learning process interactive or intuitive
of the essential mechanisms that contribute to structuring thier a human partner. We advocate a new perspective that
learning process [22]. Other scaffolding acts include provid+eframes the machine learning problem as an interaction
ing feedback, structuring successive experiences, regulatingetween the human and the machine. Fig. 1 sketches this
the complexity of information, and otherwise guiding thedistinction. Typically, the machine learning community has
learner’'s exploration. In general, this is a complex procesfocused on Fig. 1(a): a human provides input to the learning
where the teacher dynamically adjusts their support based anechanism, which performs its task and provides an output
the learner's demonstrated skill level and success. model or classification function.



Our social learning perspective models the complete human-

X i . - Traditional Supervised Learning ---, ————— Socially Guided ML Theory ------ y
machine system, Fig. 1(b). Adding transparency and aug- | o 1
menting the human input to include guidance, introduce key | ML Theory 3 B ML Theory -
aspects of social learning, highlighting the reciprocal nature — -_— Ve - |
of the teaching-learning partnership. We need a principled | L | Leming _/ Learing §ompu«§
theory of the content and dynamics of this tightly coupled | R ; - Transpareney T P

process in order to design systems that can learn efficiently |
and effectively from ordinary users. This approach challenges
the research community to consider many new questions.

@ (b)
A. How can the input channels available to the human

improve the performance of the teaching-learning system? Fig. 1. 1(a) is a standard view of a supervised learning process, analyze
" input and output a model or classifier, etc. Our approach has the viewpoint

. . . . of 1(b), including the human teacher, emphasizing that teaching-learning is a
We can change the input portion of the typical machin@wo-way process. We add transparency, where the machine learner provides
Iearning process in many ways. Traditionally in supervisedeedback to the human teacher during the learning process; and we augment
; o i he human input with guidance. We aim to enhance the performance of the
Iearmng, Fralnmg happens off “r_]e where ma_my 'exampl_e ightly coupled partnership of a machine learner with a human teacher.
are input in batch. However, a situated teaching interaction

may provide benefits over this disembodied, out-of-context

method. For instance, a situated learner can take advantagfremental, on-line learning system creates a very different
of the natural social cues that the human partner will us@xperience for the human than a system that must receive a
(e.g., referencing, attention direction) which may significantlyfy| set of training examples before its performance can be
reduce the size of the input space for the machine. evaluated. The ability to gauge the system’s relative level

It is important to understand the many ways that naturaPf knowledge in various situations may help the trainer
human social cues can frame the input for a standard machirfick “better” examples for the system. Further, a transparent
learning process. This paper explicitly examines the effect of¢@rmer may help a non-expert human teacher answer a
allowing the human to guide the attention of a learner andlifficult question:when is learning finished?

to provide feedback during its exploration process. This paper examines how the robot’s gaze as a transparency
behavior interacts with the human’s ability to provide guid-

B. How can the output channels of the learning agentance during the exploration process, and together how they
improve performance of the teaching-learning system? impact learning performance.

The output channels of the learner should also take advantage
of the situated nature of learning. In a tightly coupled

mteracﬂon, a “black'box” learning process dqes nothmgln order to investigate these social aspects of machine learn-
to improve the quality and re_zlevance of the mstructlo_n.ing, we built a computer game platform that allows us to
However, tran_sparency of the |_nternal st_ate of the macthbserve people teaching an interactive game character. We
could greatly improve the learning experience. By revealingye | eq the game on the World Wide Web and collected data
what is known and what is unclear, thg machine can guide th@:m over 75 people playing the game. This data allows us to
teaching prﬁcess..”Tt()) be most efffectkllve,hthe machine shoulgl, /e the effects of two important social modifications: the
use cues that will be intuitive for the human partner [5]’ability of the human to direct the agent’s attention, and the

[2]. _For mstanc_e, f_a_mal expression, €ye gaze, and behav'%fbility of the agent to use gaze as a transparency behavior.
choices are a significant part of this output channel.

I1l. APPROACH

Understanding how both expression and behavior can conmi. Platform

municate appropriate levels of the internal state of the learn-

ing process is an important issue at hand. We exp"ciﬂysophie's Kitchens a Java-based web application that enables

examines a robot's use of gaze as a transparency behaviothe collection of a large amount of human player data.
Sophie’s Kitcheris an object-based State-Action MDP space

C. How can the temporal dynamics of input and output©r @ single agent that uses a fixed set of actions on a fixed

improve performance of the teaching-learning system? set of objects. The task scenario is a kitchen world (Fig. 2),
where the agent learns to bake a cake; the agent first has to

Finally we must recognize that these input and output chanlearn to prepare batter for a cake and then to put the batter
nels interact over time. The dynamics of the interactionin the oven. This is a fairly complex task with on the order
can change the nature of the input from the human. Arof 10,000 states and 2 to 7 actions available in each state.



is in the on-line scenario of learning via self-generated expe-
rience over time. Thus we choose as our standard algorithm
the Reinforcement Learning (RL) paradigm. The algorithm
we implemented for the experiment presented in this paper
is a standard Q-Learning algorithm (learning rete- .3 and
discount factory = .75) [21].

Gonter, shelf on the ight, and the five objects used in he cake baking tasf 16 908 Stalet@y i the oven, baked ) has a positive
reward ¢( = 1), every other state has an inherent small
negative rewardr(= —.04). Also, some end states are so-
calleddisasterstates in that there is no way to recover from
them (for example—putting theggs in the oven). These
result in a negative reward & —1), the termination of the

current trial episode, and a transition to the initial state.

C. Feedback Interface

(a) Feedback message. (b) Guidance message. Sophie’s Kitcherhas an interactive reward interface. Using
the mouse, a human trainer can—at any point in the operation
Fig. 3. 3(a), feedback involves left-clicking and dragging the mouse toof the agent—award a scalar reward sigmaE [—1,1].
make a green bar (positive) or red bar (negative). 3(b), guidance involveghjs reward is in addition to the environmental rewards
right-clicking an object of attention, selecting it with the yellow square. . . . . .
just described. The user receives visual feedback enabling
them to tune the reward signal before sending it to the
agent. Choosing and sending the reward does not halt the
progress of the agent, which runs asynchronously to the inter-
active human reward. Abstractly, the Q-Learning algorithm
is continually going through the loogselect-action ,
take-action , sense-reward , update-values . We
introduce a delay in theense-reward step to give the
human time to provide feedback.
Sophie has four base actions with arguments as follows: the
locations are arranged in a ring, the agent left or D. Guidance Interface
right ; she canPICK-UP any object that is in her current
location; she calPUT-DOWNMany object in her possession; We want to explore the effects of allowing the teacher
and she catySEany object in her possession on any objectto direct the attention of the agent; giving the human the
in her current location. Each action advances the world stat@bility to directly influence the action selection and bias
For example, executingICK-UP <Flour> changes the the exploration strategy. To accomplish this, we added a
state of the world such that thour is in locationAgent .  separate guidance channel of communication. Clicking the
The agent can hold only one object at a tinSEng an  right mouse button draws an outline of a yellow square.
ingredient on theBowl puts that ingredient in it; using the When the yellow square is administered on top of an object,
Spoon on the unstirred Bowl transitions its state to this communicates a guidance message to the learning agent
stirred , etc. where the content of the message is the object. Figure 3(b)
shows the player guiding Sophie to pay attention to the bowl.

The world has five objectsFlour , Eggs, a Spoon, a
Bowl (with five object states:empty, flour , eggs,
unstirred , stirred ), and aTray (with three object
states:empty , batter , baked ). The world has four loca-
tions: Shelf , Table , Oven, Agent (i.e., the agent in the
center surrounded by a shelf, table and oven).

In the initial state, all objects are on tB&elf , and the agent
faces theShelf . A successful task completion includes To incorporate guidance, we modify the Q-Learning al-
putting flour and eggs in the bowl, stirring the ingredientsgorithm, introducing a pre-action phase. In the pre-action
using the spoon, transferring the batter into the tray, ang@hase, the agent registers guidance communication to bias
putting the tray in the oven. action selection; in the post-action phase the agent uses the
reward channel in the standard way to evaluate that action
and update a policy. Thus, the learning process becomes:
sense-guidance , select-action , take-action
sense-reward , update-values

B. Learning algorithm

Our goal with this experimental platform is to show the dif-
ferential effects of social mechanisms on a standard, widelfhe agent waits for guidance messages during the
understood, machine learning algorithm. Our primary interessense-guidance step (we introduce a short delay to



allow the teacher time to administer guidance). A guidance « Guidance : Players had both the feedback and the

message is in the fornguidance[object] ; the agent guidance channels of communication.
saves thisobject as the guidance-object . During « Gaze-guide : Players had the feedback and guidance
the select-action step, the default behavior (a standard channels. Additionally, the agent used the gaze behavior.

approach) chooses randomly between the set of actions with o o _
the highest Q-values, within a bour If a guidance mes- The system maintained an activity log and recorded time
sage was received, the agent wiltead choose randomly step and real time of each of the following: state transitions,

between the set of actions that use gnédance-object . actions, human rewards, guidance messages and objects, gaze
actions, disasters, and goals. We then analyzed these game

E. Gazing Behavior logs to test the following two hypotheses:

. .« Hypothesis 1 Teachers can use attention direction as a
We also explore gaze as a means of making the learning

¢ t1o the h teacher. G . form of guidance, to improve a learning interaction.
{Jhrotctehsslmore_ ranspa:ehn 0 eh “T“al"/‘ each_er.l azbe (rquum:-% Hypothesis 2 Learners can help shape their learning
that enebarmrr\%arge::n dat\)/e ;p r)I/SIriangraphlc\?inem cf) rlvrcerr:j environment by communicating aspects of the internal
at can be understood by the human as having a forwara process, particularly that the gaze behavior will improve
heading. In general, gaze precedes an action and communi- , : ; .
. ; . ) a teacher’s guidance instruction.
cates something about the action that is going to follow.

Recall our guidance Q-Learning loopense-guidance
select-action , take-action , sense-reward
update-values . The gaze behavior executes during the ] )
sense-guidance  phase. The learning agent finds the set™ Guidance Improves Learning

of actions, A, with the highest Q-values, within a bound ]

B. Va € A, the learing agent gazes for 1 second at thd©o evaluate the effects of the_z gmdz_ince feature we compare
object-of-attention of a (if it has one). This gazing the game logs from players in tigiidance  condition to
behavior during the pre-action phase communicates a levéfose in thefeedback condition with a series of 1-tailed

of uncertainty through the amount of gazing that precedektests (summary in Table ).

an action. It introduces an additional delay (proportionaIGuidance players were faster thaieedback . The num-

to uncertainty) prior toselect-action ~, both soliciting oy of training trials needed to learn the task was 48.8% less,
and providing the opportunity for guidance messages fronil 26) — 2.68,p =< .01; and the number actions needed to

the human. This also communicates overall task certainty, .o ihe task was 54.9% le$626) = 2.91, p < .01. Thus the

or confidence as the agent will speed up when ever>élbility for the human teacher to guide the agent’s attention to

set, A, has a single action. We expect this transparency o qriate objects at appropriate times creates a significantly
to improve the teacher's model of the learner, creating Aore efficient learning interaction

more understandable interaction for the human and a better

learning environment for the agent. In theguidance condition the number of unique states vis-
ited was 49.6% lesg(26) = 5.64, p < .001. Thus, attention
direction helps the human teacher keep the exploration of
the agent in the most useful part of the task space. This is a

We deployed theSophie’s Kitchergame on the World Wide Particularly important result since that the ability to deal with
Web. Participants were asked to play a computer gaméarge state spaces has long been a criticism of RL. A human
in which their goal was to get the virtual robot to learn Partner may let the algorithm overcome this challenge.

how to bake a cake on her own. Participants were t0lthnq finally the guidance condition provided a more suc-
they could not tell Sophie what actions to do, nor couldegef| training experience. The number of trials ending
they QO any actions dlrectly.. They were only able to senq, f4ijure was 37.5% lesst(26) = 2.61,p < .01; and the
Sophie various messages with the mouse to help her leagy,mper of failed trials before the first successful trial was

the task. Depending on their test condition, subjects werg@; o4 jessf(26) = 2.82, p < .01. A more successful training
given instructions on administering feedback and guidance g, perience is particularly desirable when the learning agent

the following three test conditions: conditions. Additionally, a successful learning interaction,

especially reaching the first successful attempt sooner, may
« Feedback : Players used only the feedback communi-help the human teacher feel that progress is being made and
cation channel. prolong their engagement in the process.

IV. RESULTS

F. Experimental Design



TABLE |
EFFECTS OFGUIDANCE ON THE LEARNING PERFORMANCE (F =FAILED
TRIALS, G =FIRST SUCCES}.

Allowing the human teacher to administer guidance in ad-
dition to feedback improves learning performance across a
number of dimensions. The agent is able to learn tasks using

Measure Mean Mean t(26) p : : s
guidance | no guidance fevyer actions over fewer trials. It has a more efficient explo-
#inals 14.6 2852 568 | <.01 ration strategy that wasted less time in irrelevant states. We
# actions 368 816.44 291 | <01 argue that a less random and more sensible exploration will
i States 62.7 12444 | 5.64 | <001 lead to more understandable and teachable agents. Guidance
#F 11.8 18.89 261 | <01 ! . ; )
ZE before G 1 187 580 [ <01 also led to fewer failed trials and less time to the first

successful trial. This is a particularly important improvement
in that it implies a less frustrating teaching experience, which
B. Gaze Improves Guidance in turn creates a more engaging interaction for the human.
Our second hypothesis was the gaze behavior serves asThis work offers a concrete example that thensparencyof
transparency device to help the human understand whdfe agent's behavior to the human can improve its learning
the agent did (and did not) need their guidance instruction€nvironment. When the learning agent uses gazing behaviors
To evaluate this, we analyzed the game logs from playert9 reveal its uncertainties and potential next actions, people
that had theguidance ~condition versus those that had the Were significantly better at providing more guidance when
gaze-guide  condition. These results are summarized init wWas needed and less when it was not. Gaze is just
Table Il. Note that the players that did not have the gaz&ne such transparency device, the exploration of various
behavior still had ample opportunity to administer guidancedevices and their relation to the learning process is part of

however, the time that the agent waits is uniform throughoutour future work. Additionally these transparency behaviors
o , ] _serve to boost the overall believability of the agent. The
We look at the timing of each player's guidance communisigge of believability has been addressed in the animation,

cation and separate their communication into two segmenty;geq game, and autonomous agent literature for the purpose
the percentage of guidance that was given when the numbgt reating emotionally engaging characters [20], [3]. One
of action choices was>= 3 (high uncertainty), and when cqntribution of this work is to show how believability relates
choices were<= 3 (low uncertainty), these are overlapping {4 teachable characters to improve the experience of the
classes. The percentage of guidance when the agent had 19¢man and the learning performance of the agent.
uncertainty decreased for players in feze-guide  condi-

tion, t(51) = —2.22, p=.015. And conversely the percentage Numerous prior works have explored learning agents (virtual
of guidance when the agent had high uncertainty increasest robotic) that can be interactively trained by people. Many
from theguidance to thegaze-guide condition,t(51)=  of these works are inspired by animal or human learning. For
1.96,p=.027. Thus, when the agent uses the gaze behavigfistance, game characters that the human player can shape
to indicate which actions it is considering, the human trainershrough interaction have been successfully incorporated into
do a better job matching their instruction to the needs of the, few computer games [9], [17], [19]. Breazesil al. have
agent throughout the training session. demonstrated aspects of collaboration and social learning on
a humanoid robot, using social cues to guide instruction [6].
Animal training techniques and human tutelage have been
explored in several robotic agents [12], [16], [18], [15]. As

a software agent example, Blumberg’s virtual dog character
can be taught via clicker training, and behavior can be shaped

TABLE I
THE EFFECT OF GAZE ON GUIDANCE COMPARED TO THE GUIDANCE
DISTRIBUTION WITHOUT GAZE, THE GAZE CONDITION CAUSED A
DECREASE WITH CHOICES<= 3, INCREASE WITH CHOICES>= 3.

by a human teacher [4].

Measure Mean % gaze | Mean % no gaze | t(51) p
guidance when 79 85 -2.22 | <.05 . . . .
# choices<= 3 Many of these prior works agree with our situated learning
guﬁa_nce Wh%n 48 36 196 | <05| paradigm for machines, and have emphasized that an artificial
choices>=

V. DISCUSSION

agent should use social techniques to create a better inter-
face for a human partner. This work goes beyond gleaning
inspiration from natural forms of social learning and teaching
to formalize this inspiration and empirically ground it in

In this research we are promoting a social learning view obbserved human teaching behavior through extensive user

machine learning, emphasizing tlteractive elements in

studies. Thus, another contribution of this work is empirical

teaching. There are inherently two sides to an interactiorgvidence that social guidance and transparency create a good
and our approach aims to enhance standard machine learniimgerface for a human partnemdcan create a better learning
algorithms from both perspectives of this interaction.

environment and significantly benefit learning performance.



Finally, the scenario of human input has received some[3] J. Bates. The role of emotion in believable agerGammunications

attention in the machine learning community. There has been  ©f the ACM 37(7):122-125, 1997.

work on computational models of teacher/learner pairs [10].[4] B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M.P. Johnson, and

Active Iearning and algorithms that learn with queries begin B. Tomlinson. Integrated learning for interactive synthetic characters.
. . . In Proceedings of the ACM SIGGRAPRO02.

to address interactive aspects of a teacher/learner pair [8]. o . _

Queries can be viewed as a type of transparency into thd®l (23(.)082reazeal.DeS|gn|ng Sociable RobotMIT Press, Cambridge, MA,

learning process, but in these approaches this does not steer ’

subsequent input from a teacher. Instead, through its queried®] C. Breazeal, A. Brooks, J. Gray, G. Hoffman, J. Lieberman, H. Lee,

h | ithm is | | of the i . Colat al A. Lockerd, and D. Mulanda. Tutelage and collaboration for humanoid

the algorithm is in control of the interaction. Cofet al. robots. International Journal of Humanoid Robotic&(2), 2004.

present a semi-supervised clustering algorithm that uses %]

human teaching interaction, but the balance of control falls to

the human (i.e., to iteratively provide feedback and examples

. . . . [8] D. Cohn, Z. Ghahramani, and M. Jordan. Active learning with
to a clustering algorithm which presents revised clusters) [7]."" giatistical models. In G. Tesauro, D. Touretzky, and J. Alspector,

. . editors, Advances in Neural Information Processjmglume 7. Morgan
Thus, prior works have addressed how human input can  kafmann, 1995. "o 9

theoretically impact a learning algorithm. In contrast, thi

eoretically pact a lea g algo co as_, S [9] R. Evans. Varieties of learning. In S. Rabin, editatf, Game Pro-
work addresses the_nat_ure mal people as teachers; our gramming Wisdompages 567-578. Charles River Media, Hingham,
ground truth evaluation is the performance of the machine  MA, 2002.
Iea_rner with non'eXper.t human teaCherS.- Whereas prior W0”@0] Sally A. Goldman and H. David Mathias. Teaching a smarter learner.
typically lend control either to the machine or the human, our ~ Journal of Computer and System Sciend(2):255-267, 1996.
contribution is the f_OCUS on how a _maChm_e Ie_amer_can USR1] P. M. Greenfield. Theory of the teacher in learning activities of
transparency behaviors to steer the instruction it receives from  everyday life. In B. Rogoff and J. Lave, editoBeryday cognition: its

a human, creating more reciprocal control of the interaction. develogpsment in social contextlarvard University Press, Cambridge,
’ MA, 1984,

[12] F. Kaplan, P-Y. Oudeyer, E. Kubinyi, and A. Miklosi. Robotic clicker
VI. CONCLUSION training. Robotics and Autonomous SysteB’(3-4):197-206, 2002.

. P [13] R. M. Krauss, Y. Chen, and P. Chawla. Nonverbal behavior and
This work shows that deSIQnmg for the complete human nonverbal communication: What do conversational hand gestures tell

machine learning system creates a more successful robot us? in M. zanna, editodvances in experimental social psychology
learner. We acknowledge that teaching-learning is a recip- Pages 389-450. Tampa: Academic Press, 1996.

rocal and dynamic process, and have augmented a standaf@] Ed. M. Cole L. S. Vygotsky. Mind in society: the development of
RL agent with social mechanisms. Our experiments with  higher psychological processearvard University Press, Cambridge,
an interactive computer game character show significant MA, 1978.

improvement in a real-time interactive learning session witH15] A. Lockerd and C. Breazeal. Tutelage and socially guided robot
non-expert human teachers. Our results show that allowing fﬁé”é’;gs't;mfﬁEgg]ogfma“ona' Conference on Intelligent Robots
the human to guide the learner’'s exploration by directing its _ _
attention creates a more robust and efficient learning s_trateg[;}. 1 té&vi?kj's?ﬁé Sp'rinMC'iS:g Tr%r;?’ir?;?u%eﬁiarocugﬁézigghiﬁggﬂ'gﬁc?bm
Second, our results show that the learning agent can improve and Autonomous Systen®2(3/4):231, 1998.

!tS own Iearplng_ enVIron_mem by using tran.SparenCy behav[':L?] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Evolving neural
iors. Revealing information about the possible next actions ~ network agents in the nero video game.Froceedings of IEEE 2005
the agent is considering with its gaze behavior significantly =~ Symposium on Computational Intelligence and Games (CIGZIEH)S.

improved the timing of the teacher’s guidance messages. [18] L. Steels and F. Kaplan. Aibo’s first words: The social learning of
language and meaningvolution of Communicatiqri(1):3-32, 2001.

D. Cohn, R. Caruana, and A. McCallum. Semi-supervised clustering
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