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Abstract— In this paper we advocate a paradigm of socially
guided machine learning, designing agents that take better
advantage of the situated aspects of learning. We augmented
a standard Reinforcement Learning agent with the social
mechanisms of attention direction and gaze. Experiments with
an interactive computer game, deployed over the World Wide
Web to over 75 players, show the positive impact of these social
aspects. Allowing the human to direct the agent’s attention
creates a more efficient exploration strategy. Additionally, gaze
behavior lets the learning agent improve its own learning envi-
ronment, using transparency to steer the human’s instruction.

I. I NTRODUCTION

Robots that operate in the human environment will need
to be able to learn new skills and tasks ‘on the job’ from
people. It is important to recognize that while the average
consumer is not familiar with machine learning techniques,
they are intimately familiar with various forms of social
learning (e.g., tutelage, imitation). From a Human-Robot
Interaction perspective, this raises two important and related
questions. First, how do people want to teach robots? Second,
how do we design robots that learn effectively from natural
human interaction and instruction? We advocate a paradigm
of socially guided machine learning, exploring the ways in
which machine learning can be designed to more fully take
advantage of natural human interaction and tutelage.

We draw our inspiration from Situated Learning Theory, a
field of study that looks at the social world of children and
how it contributes to their development. A key concept is
scaffolding, where a teacher provides support such that a
learner can achieve something they would not be able to
accomplish independently [14], [11].

In a situated learning interaction, the teaching and learning
processes are intimately coupled. A good instructor maintains
an good mental model of the learner’s state (e.g., what
is understood so far, what remains confusing or unknown)
in order to provide appropriate scaffolding to support the
learner’s current needs. In particular, attention direction is one
of the essential mechanisms that contribute to structuring the
learning process [22]. Other scaffolding acts include provid-
ing feedback, structuring successive experiences, regulating
the complexity of information, and otherwise guiding the
learner’s exploration. In general, this is a complex process
where the teacher dynamically adjusts their support based on
the learner’s demonstrated skill level and success.

The learner, in turn, helps the instructor by making their
learning processtransparentto the teacher through commu-
nicative acts (such as facial expressions, gestures, gaze, or
vocalizations that reveal understanding, confusion, attention),
and by demonstrating their current knowledge and mastery of
the task [13], [1]. Through this reciprocal and tightly coupled
interaction, the learner and instructor cooperate to simplify
the task for the other — making each a more effective partner.

This paper investigates the ways in which the social as-
pects of learning and the dynamics of the teacher-learner
interaction can beneficially impact the performance of a
machine learning agent. We use a computer game platform
as our experimental testbed,Sophie’s Kitchen, where players
interactively train a virtual robot character to perform a task.

We report two interrelated results that show how social
mechanisms can be added to a standard learning process
to improve both sides of the teaching-learning partnership.
Specifically, we report that

• The ability for the teacher to direct the agent’s atten-
tion has significant positive effects on several learning
performance metrics.

• The ability of the agent to use gaze as a transparency
behavior results in measurably better human instruction.

These empirical results illustrate that the ability to use and
leverage social skills is far more than a good interface tech-
nique. It can positively impact the dynamics of the underlying
learning mechanisms to show significant improvements in a
real-time interactive learning session.

II. FRAMEWORK

The situated learning process described above stands in
dramatic contrast to typical machine learning scenarios that
have traditionally ignored “teachability issues” such as how
to make the teaching-learning process interactive or intuitive
for a human partner. We advocate a new perspective that
reframes the machine learning problem as an interaction
between the human and the machine. Fig. 1 sketches this
distinction. Typically, the machine learning community has
focused on Fig. 1(a): a human provides input to the learning
mechanism, which performs its task and provides an output
model or classification function.



Our social learning perspective models the complete human-
machine system, Fig. 1(b). Adding transparency and aug-
menting the human input to include guidance, introduce key
aspects of social learning, highlighting the reciprocal nature
of the teaching-learning partnership. We need a principled
theory of the content and dynamics of this tightly coupled
process in order to design systems that can learn efficiently
and effectively from ordinary users. This approach challenges
the research community to consider many new questions.

A. How can the input channels available to the human
improve the performance of the teaching-learning system?

We can change the input portion of the typical machine
learning process in many ways. Traditionally in supervised
learning, training happens off-line where many examples
are input in batch. However, a situated teaching interaction
may provide benefits over this disembodied, out-of-context
method. For instance, a situated learner can take advantage
of the natural social cues that the human partner will use
(e.g., referencing, attention direction) which may significantly
reduce the size of the input space for the machine.

It is important to understand the many ways that natural
human social cues can frame the input for a standard machine
learning process. This paper explicitly examines the effect of
allowing the human to guide the attention of a learner and
to provide feedback during its exploration process.

B. How can the output channels of the learning agent
improve performance of the teaching-learning system?

The output channels of the learner should also take advantage
of the situated nature of learning. In a tightly coupled
interaction, a “black box” learning process does nothing
to improve the quality and relevance of the instruction.
However, transparency of the internal state of the machine
could greatly improve the learning experience. By revealing
what is known and what is unclear, the machine can guide the
teaching process. To be most effective, the machine should
use cues that will be intuitive for the human partner [5],
[2]. For instance, facial expression, eye gaze, and behavior
choices are a significant part of this output channel.

Understanding how both expression and behavior can com-
municate appropriate levels of the internal state of the learn-
ing process is an important issue at hand. We explicitly
examines a robot’s use of gaze as a transparency behavior.

C. How can the temporal dynamics of input and output
improve performance of the teaching-learning system?

Finally we must recognize that these input and output chan-
nels interact over time. The dynamics of the interaction
can change the nature of the input from the human. An
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Fig. 1. 1(a) is a standard view of a supervised learning process, analyze
input and output a model or classifier, etc. Our approach has the viewpoint
of 1(b), including the human teacher, emphasizing that teaching-learning is a
two-way process. We add transparency, where the machine learner provides
feedback to the human teacher during the learning process; and we augment
the human input with guidance. We aim to enhance the performance of the
tightly coupled partnership of a machine learner with a human teacher.

incremental, on-line learning system creates a very different
experience for the human than a system that must receive a
full set of training examples before its performance can be
evaluated. The ability to gauge the system’s relative level
of knowledge in various situations may help the trainer
pick “better” examples for the system. Further, a transparent
learner may help a non-expert human teacher answer a
difficult question:when is learning finished?

This paper examines how the robot’s gaze as a transparency
behavior interacts with the human’s ability to provide guid-
ance during the exploration process, and together how they
impact learning performance.

III. A PPROACH

In order to investigate these social aspects of machine learn-
ing, we built a computer game platform that allows us to
observe people teaching an interactive game character. We
deployed the game on the World Wide Web and collected data
from over 75 people playing the game. This data allows us to
analyze the effects of two important social modifications: the
ability of the human to direct the agent’s attention, and the
ability of the agent to use gaze as a transparency behavior.

A. Platform

Sophie’s Kitchenis a Java-based web application that enables
the collection of a large amount of human player data.
Sophie’s Kitchenis an object-based State-Action MDP space
for a single agent that uses a fixed set of actions on a fixed
set of objects. The task scenario is a kitchen world (Fig. 2),
where the agent learns to bake a cake; the agent first has to
learn to prepare batter for a cake and then to put the batter
in the oven. This is a fairly complex task with on the order
of 10,000 states and 2 to 7 actions available in each state.



Fig. 2. This isSophie’s Kitchen: a brick oven on the left, table in the
center, shelf on the right, and the five objects used in the cake baking task.

(a) Feedback message. (b) Guidance message.

Fig. 3. 3(a), feedback involves left-clicking and dragging the mouse to
make a green bar (positive) or red bar (negative). 3(b), guidance involves
right-clicking an object of attention, selecting it with the yellow square.

The world has five objects:Flour , Eggs , a Spoon , a
Bowl (with five object states:empty , flour , eggs ,
unstirred , stirred ), and aTray (with three object
states:empty , batter , baked ). The world has four loca-
tions: Shelf , Table , Oven, Agent (i.e., the agent in the
center surrounded by a shelf, table and oven).

Sophie has four base actions with arguments as follows: the
locations are arranged in a ring, the agent canGO left or
right ; she canPICK-UP any object that is in her current
location; she canPUT-DOWNany object in her possession;
and she canUSEany object in her possession on any object
in her current location. Each action advances the world state.
For example, executingPICK-UP <Flour> changes the
state of the world such that theFlour is in locationAgent .
The agent can hold only one object at a time.USEing an
ingredient on theBowl puts that ingredient in it; using the
Spoon on the unstirred Bowl transitions its state to
stirred , etc.

In the initial state, all objects are on theShelf , and the agent
faces theShelf . A successful task completion includes
putting flour and eggs in the bowl, stirring the ingredients
using the spoon, transferring the batter into the tray, and
putting the tray in the oven.

B. Learning algorithm

Our goal with this experimental platform is to show the dif-
ferential effects of social mechanisms on a standard, widely
understood, machine learning algorithm. Our primary interest

is in the on-line scenario of learning via self-generated expe-
rience over time. Thus we choose as our standard algorithm
the Reinforcement Learning (RL) paradigm. The algorithm
we implemented for the experiment presented in this paper
is a standard Q-Learning algorithm (learning rateα = .3 and
discount factorγ = .75) [21].

The goal state (tray in the oven , baked ) has a positive
reward (r = 1), every other state has an inherent small
negative reward (r = −.04). Also, some end states are so-
calleddisasterstates in that there is no way to recover from
them (for example—putting theeggs in the oven ). These
result in a negative reward (r = −1), the termination of the
current trial episode, and a transition to the initial state.

C. Feedback Interface

Sophie’s Kitchenhas an interactive reward interface. Using
the mouse, a human trainer can—at any point in the operation
of the agent—award a scalar reward signalr ∈ [−1,1].
This reward is in addition to the environmental rewards
just described. The user receives visual feedback enabling
them to tune the reward signal before sending it to the
agent. Choosing and sending the reward does not halt the
progress of the agent, which runs asynchronously to the inter-
active human reward. Abstractly, the Q-Learning algorithm
is continually going through the loop:select-action ,
take-action , sense-reward , update-values . We
introduce a delay in thesense-reward step to give the
human time to provide feedback.

D. Guidance Interface

We want to explore the effects of allowing the teacher
to direct the attention of the agent; giving the human the
ability to directly influence the action selection and bias
the exploration strategy. To accomplish this, we added a
separate guidance channel of communication. Clicking the
right mouse button draws an outline of a yellow square.
When the yellow square is administered on top of an object,
this communicates a guidance message to the learning agent
where the content of the message is the object. Figure 3(b)
shows the player guiding Sophie to pay attention to the bowl.

To incorporate guidance, we modify the Q-Learning al-
gorithm, introducing a pre-action phase. In the pre-action
phase, the agent registers guidance communication to bias
action selection; in the post-action phase the agent uses the
reward channel in the standard way to evaluate that action
and update a policy. Thus, the learning process becomes:
sense-guidance , select-action , take-action ,
sense-reward , update-values .

The agent waits for guidance messages during the
sense-guidance step (we introduce a short delay to



allow the teacher time to administer guidance). A guidance
message is in the formguidance[object] ; the agent
saves thisobject as the guidance-object . During
the select-action step, the default behavior (a standard
approach) chooses randomly between the set of actions with
the highest Q-values, within a boundβ . If a guidance mes-
sage was received, the agent willinsteadchoose randomly
between the set of actions that use theguidance-object .

E. Gazing Behavior

We also explore gaze as a means of making the learning
process more transparent to the human teacher. Gaze requires
that the learning agent have a physical/graphical embodiment
that can be understood by the human as having a forward
heading. In general, gaze precedes an action and communi-
cates something about the action that is going to follow.

Recall our guidance Q-Learning loop:sense-guidance ,
select-action , take-action , sense-reward ,
update-values . The gaze behavior executes during the
sense-guidance phase. The learning agent finds the set
of actions, A, with the highest Q-values, within a bound
β . ∀a ∈ A, the learning agent gazes for 1 second at the
object-of-attention of a (if it has one). This gazing
behavior during the pre-action phase communicates a level
of uncertainty through the amount of gazing that precedes
an action. It introduces an additional delay (proportional
to uncertainty) prior toselect-action , both soliciting
and providing the opportunity for guidance messages from
the human. This also communicates overall task certainty
or confidence as the agent will speed up when every
set, A, has a single action. We expect this transparency
to improve the teacher’s model of the learner, creating a
more understandable interaction for the human and a better
learning environment for the agent.

F. Experimental Design

We deployed theSophie’s Kitchengame on the World Wide
Web. Participants were asked to play a computer game,
in which their goal was to get the virtual robot to learn
how to bake a cake on her own. Participants were told
they could not tell Sophie what actions to do, nor could
they do any actions directly. They were only able to send
Sophie various messages with the mouse to help her learn
the task. Depending on their test condition, subjects were
given instructions on administering feedback and guidance.

Each of the 75 participants, played the game once in one of
the following three test conditions:

• Feedback : Players used only the feedback communi-
cation channel.

• Guidance : Players had both the feedback and the
guidance channels of communication.

• Gaze-guide : Players had the feedback and guidance
channels. Additionally, the agent used the gaze behavior.

The system maintained an activity log and recorded time
step and real time of each of the following: state transitions,
actions, human rewards, guidance messages and objects, gaze
actions, disasters, and goals. We then analyzed these game
logs to test the following two hypotheses:

• Hypothesis 1: Teachers can use attention direction as a
form of guidance, to improve a learning interaction.

• Hypothesis 2: Learners can help shape their learning
environment by communicating aspects of the internal
process, particularly that the gaze behavior will improve
a teacher’s guidance instruction.

IV. RESULTS

A. Guidance Improves Learning

To evaluate the effects of the guidance feature we compare
the game logs from players in theguidance condition to
those in thefeedback condition with a series of 1-tailed
t-tests (summary in Table I).

Guidance players were faster thanfeedback . The num-
ber of training trials needed to learn the task was 48.8% less,
t(26) = 2.68, p =< .01; and the number actions needed to
learn the task was 54.9% less,t(26) = 2.91, p< .01. Thus the
ability for the human teacher to guide the agent’s attention to
appropriate objects at appropriate times creates a significantly
more efficient learning interaction.

In theguidance condition the number of unique states vis-
ited was 49.6% less,t(26) = 5.64, p < .001. Thus, attention
direction helps the human teacher keep the exploration of
the agent in the most useful part of the task space. This is a
particularly important result since that the ability to deal with
large state spaces has long been a criticism of RL. A human
partner may let the algorithm overcome this challenge.

And finally the guidance condition provided a more suc-
cessful training experience. The number of trials ending
in failure was 37.5% less,t(26) = 2.61, p < .01; and the
number of failed trials before the first successful trial was
41.2% less,t(26) = 2.82, p< .01. A more successful training
experience is particularly desirable when the learning agent
is a robot that may not be able to withstand very many failure
conditions. Additionally, a successful learning interaction,
especially reaching the first successful attempt sooner, may
help the human teacher feel that progress is being made and
prolong their engagement in the process.



TABLE I

EFFECTS OFGUIDANCE ON THE LEARNING PERFORMANCE. (F = FAILED

TRIALS, G = FIRST SUCCESS).

Measure Mean Mean t(26) p
guidance no guidance

# trials 14.6 28.52 2.68 <.01
# actions 368 816.44 2.91 <.01
# states 62.7 124.44 5.64 <.001

# F 11.8 18.89 2.61 <.01
# F before G 11 18.7 2.82 <.01

B. Gaze Improves Guidance

Our second hypothesis was the gaze behavior serves as a
transparency device to help the human understand when
the agent did (and did not) need their guidance instruction.
To evaluate this, we analyzed the game logs from players
that had theguidance condition versus those that had the
gaze-guide condition. These results are summarized in
Table II. Note that the players that did not have the gaze
behavior still had ample opportunity to administer guidance;
however, the time that the agent waits is uniform throughout.

We look at the timing of each player’s guidance communi-
cation and separate their communication into two segments,
the percentage of guidance that was given when the number
of action choices was>= 3 (high uncertainty), and when
choices were<= 3 (low uncertainty), these are overlapping
classes. The percentage of guidance when the agent had low
uncertainty decreased for players in thegaze-guide condi-
tion, t(51) =−2.22, p= .015. And conversely the percentage
of guidance when the agent had high uncertainty increased
from theguidance to thegaze-guide condition,t(51) =
1.96, p = .027. Thus, when the agent uses the gaze behavior
to indicate which actions it is considering, the human trainers
do a better job matching their instruction to the needs of the
agent throughout the training session.

TABLE II

THE EFFECT OF GAZE ON GUIDANCE. COMPARED TO THE GUIDANCE

DISTRIBUTION WITHOUT GAZE, THE GAZE CONDITION CAUSED A

DECREASE WITH CHOICES<= 3, INCREASE WITH CHOICES>= 3.

Measure Mean % gaze Mean % no gaze t(51) p
guidance when 79 85 -2.22 <.05
# choices<= 3
guidance when 48 36 1.96 <.05
# choices>= 3

V. D ISCUSSION

In this research we are promoting a social learning view of
machine learning, emphasizing theinteractive elements in
teaching. There are inherently two sides to an interaction,
and our approach aims to enhance standard machine learning
algorithms from both perspectives of this interaction.

Allowing the human teacher to administer guidance in ad-
dition to feedback improves learning performance across a
number of dimensions. The agent is able to learn tasks using
fewer actions over fewer trials. It has a more efficient explo-
ration strategy that wasted less time in irrelevant states. We
argue that a less random and more sensible exploration will
lead to more understandable and teachable agents. Guidance
also led to fewer failed trials and less time to the first
successful trial. This is a particularly important improvement
in that it implies a less frustrating teaching experience, which
in turn creates a more engaging interaction for the human.

This work offers a concrete example that thetransparencyof
the agent’s behavior to the human can improve its learning
environment. When the learning agent uses gazing behaviors
to reveal its uncertainties and potential next actions, people
were significantly better at providing more guidance when
it was needed and less when it was not. Gaze is just
one such transparency device, the exploration of various
devices and their relation to the learning process is part of
our future work. Additionally these transparency behaviors
serve to boost the overall believability of the agent. The
issue of believability has been addressed in the animation,
video game, and autonomous agent literature for the purpose
of creating emotionally engaging characters [20], [3]. One
contribution of this work is to show how believability relates
to teachable characters to improve the experience of the
human and the learning performance of the agent.

Numerous prior works have explored learning agents (virtual
or robotic) that can be interactively trained by people. Many
of these works are inspired by animal or human learning. For
instance, game characters that the human player can shape
through interaction have been successfully incorporated into
a few computer games [9], [17], [19]. Breazealet al. have
demonstrated aspects of collaboration and social learning on
a humanoid robot, using social cues to guide instruction [6].
Animal training techniques and human tutelage have been
explored in several robotic agents [12], [16], [18], [15]. As
a software agent example, Blumberg’s virtual dog character
can be taught via clicker training, and behavior can be shaped
by a human teacher [4].

Many of these prior works agree with our situated learning
paradigm for machines, and have emphasized that an artificial
agent should use social techniques to create a better inter-
face for a human partner. This work goes beyond gleaning
inspiration from natural forms of social learning and teaching
to formalize this inspiration and empirically ground it in
observed human teaching behavior through extensive user
studies. Thus, another contribution of this work is empirical
evidence that social guidance and transparency create a good
interface for a human partner,andcan create a better learning
environment and significantly benefit learning performance.



Finally, the scenario of human input has received some
attention in the machine learning community. There has been
work on computational models of teacher/learner pairs [10].
Active learning and algorithms that learn with queries begin
to address interactive aspects of a teacher/learner pair [8].
Queries can be viewed as a type of transparency into the
learning process, but in these approaches this does not steer
subsequent input from a teacher. Instead, through its queries,
the algorithm is in control of the interaction. Cohnet al.
present a semi-supervised clustering algorithm that uses a
human teaching interaction, but the balance of control falls to
the human (i.e., to iteratively provide feedback and examples
to a clustering algorithm which presents revised clusters) [7].

Thus, prior works have addressed how human input can
theoretically impact a learning algorithm. In contrast, this
work addresses the nature ofreal people as teachers; our
ground truth evaluation is the performance of the machine
learner with non-expert human teachers. Whereas prior works
typically lend control either to the machine or the human, our
contribution is the focus on how a machine learner can use
transparency behaviors to steer the instruction it receives from
a human, creating more reciprocal control of the interaction.

VI. CONCLUSION

This work shows that designing for the complete human-
machine learning system creates a more successful robot
learner. We acknowledge that teaching-learning is a recip-
rocal and dynamic process, and have augmented a standard
RL agent with social mechanisms. Our experiments with
an interactive computer game character show significant
improvement in a real-time interactive learning session with
non-expert human teachers. Our results show that allowing
the human to guide the learner’s exploration by directing its
attention creates a more robust and efficient learning strategy.
Second, our results show that the learning agent can improve
its own learning environment by using transparency behav-
iors. Revealing information about the possible next actions
the agent is considering with its gaze behavior significantly
improved the timing of the teacher’s guidance messages.
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