<table>
<thead>
<tr>
<th>Application</th>
<th>IBM Xeon Processors</th>
<th>Intel Technologies</th>
<th>IT Solutions</th>
<th>Data Center Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux Hosting: Rackspace</td>
<td>Xeon Processors Packed with Latest Server Technologies</td>
<td>Using new server technology available from Intel, however, IT managers can keep costs in check while running a more efficient operation. Click here.</td>
<td>Applying RFID Technology in High Volume Manufacturing</td>
<td>Building a Real-World Model to Assess Virtualization Platforms</td>
</tr>
<tr>
<td>IT Services Management Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affordable Web Solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive Company Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belzabar Software Design: Custom Software Programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Running Faster Apps with Windows or Linux Case Study: Advanced Micro Devices. In a key benchmark test, the Oracle application ran 58 percent faster on Windows Server 2003 than on Linux. Learn more here.

Enterprise

June 1, 2007
IBM To Hold Cell Developer Conference By Andy Patrizio

IBM and The College of Computing at Georgia Tech will host the first developer conference for building applications using IBM's Cell Broadband Engine (Cell/B.E.), the chip that powers Sony's PlayStation 3.

The two-day workshop is sponsored by Sony Computer Entertainment (SCEI), Toshiba and IBM. The trio jointly developed the Cell chip, which is a derivative of IBM's POWER processor.

Georgia Tech's College of Computing is one of the first universities to deploy the IBM BladeCenter QS20. Click here.
To achieve end-to-end visibility into critical business functions across the company, Intel IT deployed an integrated warehouse solution. The solution employs a consolidated enterprise data warehouse along with business intelligence applications. Today's EDW occupies over 20TB of usable data space, processes 90 billion rows of data per month, and is accessed by over 11,000 users worldwide.

IBM has a set roadmap for the Cell processor to continue its capabilities, according to Hina Y. Shaw, director of the Systems and Technology group at IBM. An update due next year will offer features like double precision (define) processing, improved memory support and tuning for blade center systems.

But, she adds, Cell is not for general-purpose use. "The way we're positioning it today is there will be certain apps, because of its compute intensiveness, like real-time imaging or data crunch, that will utilize Cell as an accelerator," she told internetnews.com. "An application not meant for Cell will run on general SMP systems, either a p series or an x series."

IBM's aim with the conference is to bring together industry leaders, academia, and Cell partners to share ideas on what needs to be done to create new tooling and capabilities that support the growth and
evangelism of the Cell technology.

Shaw said IBM sees much potential in the Cell processor, even if it is used in a videogame console, without eating into its POWER processor business. It just launched the POWER6 processor this month.

"The reality is that it is made of an incredible technology that is cheap, much much cheaper than what we're used to from a supercomputer perspective, but it has the capability to do much of what we're used to doing in the high-performance space," she said.

Developers familiar with the POWER architecture will have a head start, given the Cell's lineage, but it also has a lot of custom technology, such as its eight co-processors, called Synergistic Processing Units, or SPU.

"Certainly the apps that run on POWER can run on the Cell technology," said Shaw. "However, for these compute-intensive apps to truly leverage the SPUs, the app has to change some. We've been working on tooling and programmability that makes it much, much easier to do."

Let's hope so, because that's what the Cell chip needs, said semiconductor analyst Nathan Brookwood of Insight64. "The challenge for IBM and its development partners is the chip is a beast to program," he said. "They need better tools, too. Being able to figure out how to harness all those special engines on the Cell processor is a non-trivial task and a lot of game developers are pulling their hair out over it."

That was made clear in February, when IBM hosted a developer conference for game companies struggling with the complexities of the chip.

But, he added, there are some very compute-intensive markets that could really benefit from the Cell chip. "In some market segments, the kind of performance that Cell offers is highly valued, like medical imaging, signal processing, all sorts of intelligence apps. These are areas of tremendous computation requirements and where Cell might fit," he said.

IBM has already found one use for Cell, in a gaming mainframe that will serve up rich graphics from a System z mainframe.