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Abstract 
The exponential growth in the amount of genomic data 

has spurred growing interest in large scale analysis of 
genetic information. Bioinformatics applications, which 
explore computational methods to allow researchers to sift 
through the massive biological data and extract useful 
information, are becoming increasingly important 
computer workloads. This paper presents BioPerf, a 
benchmark suite of representative bioinformatics 
applications to facilitate the design and evaluation of high-
performance computer architectures for these emerging 
workloads. Currently, the BioPerf suite contains codes 
from 10 highly popular bioinformatics packages and 
covers the major fields of study in computational biology 
such as sequence comparison, phylogenetic reconstruction, 
protein structure prediction, and sequence homology & 
gene finding. We demonstrate the use of BioPerf by 
providing simulation points of  pre-compiled Alpha 
binaries and with a performance study on IBM Power 
using IBM Mambo simulations cross-compared with Apple 
G5 executions.  

The BioPerf suite (available from www.bioperf.org) 
includes benchmark source code, input datasets of various 
sizes, and information for compiling and using the 
benchmarks. Our benchmark suite includes parallel codes 
where available. 

1. Introduction 
In the 50 years since the discovery of the structure of 

DNA, and with new techniques for sequencing the entire 
genome of organisms, biology is rapidly moving towards a 
data-intensive, computational science. Computational 
biology has been aided by recent advances in both 
technology and algorithms; for instance, the ability to 
sequence short contiguous strings of DNA and from these 
reconstruct the whole genome [1, 2, 3] and the 
proliferation of high-speed micro array, gene, and protein 
chips [4] for the study of gene expression and function 
determination. These high-throughput techniques have led 
to an exponential growth of available genomic data. For 
example, the National Center for Biotechnology 

Information (NCBI) GenBank, an annotated collection of 
all publicly available DNA sequences, has been growing at 
an exponential rate. There are 51,674,486,881 bases from 
46,947,388 sequences in GenBank as of 15 August 2005 
[5]. 

As genomics moves forward, having accessible 
computational methods with which to extract, view, and 
analyze genomic information, becomes essential. 
Bioinformatics allows researchers to sift through the 
massive biological data and identify information of 
interest. Today, biologists are in search of bio-molecular 
sequence data, for its comparison with other genomes, and 
because its structure determines function and leads to the 
understanding of biochemical pathways, disease prevention 
and cure, and the mechanisms of life itself. 

Bioinformatics has become an industry and has gained 
popularity among numerous markets including 
pharmaceutical, (industrial, agricultural and 
environmental) biotechnology and homeland security. A 
number of recent market research reports estimate the size 
of the bioinformatics market as $176 billion and the market 
is projected to grow to $243 billion within the next 5 years 
[6]. In August 2000, IBM announced an initial $100 
million investment to spur business development in the life 
sciences, assuring its prominence as one of the emerging 
computing markets. 

Algorithms and applications in this new computational 
field of biology are now one of the largest consumers of 
computational power. Many problems use polynomial time 
algorithms (e.g., all-to-all comparisons) but have long 
running times due to the large data volume to process; for 
example, the assembly of an entire genome or the all-to-all 
comparison of gene sequence data. Other problems are 
compute-intensive due to their inherent algorithmic 
complexity, such as protein folding and reconstructing 
evolutionary histories from molecular data, that are known 
to be NP-hard (or harder) and often require approximations 
that are also complex [13]. 

Clearly, computer systems that can cost-effectively 
deliver high-performance on computational biology 
applications play a vital role in the future growth of the 



bioinformatics market. Since current high-end architectures 
have not been primarily designed with these applications in 
mind, we are interested in finding architectural trade-offs 
that can benefit computational biology without degrading 
performance of other workloads. In order to apply a 
quantitative approach in computer architecture design, 
optimization and performance evaluation, researchers need 
to identify representative workloads from this emerging 
application domain first. 

This paper presents BioPerf, a benchmark suite 
representing a wide variety of bioinformatics applications. 
The codes span the heterogeneity of algorithms and 
biological problems. Only freely available open-source 
codes are included in this suite to ease its portability to 
new architectures and systems and its dissemination. 
Currently, the BioPerf suite contains 10 packages and 
covers the major fields of study in computational biology 
such as sequence comparison, phylogenetic reconstruction, 
protein structure prediction, and sequence homology & 
gene finding. Sequence comparison finds similarities 
between two or more DNA or protein sequences. 
Phylogeny explores the ancestral relationships among a set 
of genes or organisms. Protein structure analysis (a) finds 
the similarities between three-dimensional protein 
structures and (b) predicts the shape of a protein (e.g., 
primary, secondary, and tertiary structure) given its amino 
acid sequence. Gene-finding identifies DNA segments that 
encode proteins. 

Table 1. BioPerf benchmark suite. 

# Package  Executable Codes 

1 Blast blastp, blastn 

2 FASTA fasta34, ssearch 

3 Clustalw clustalw, clustalw_smp 

4 Hmmer hmmsearch, hmmpfam 

5 T-Coffee tcoffee 

6 Glimmer glimmer2 

7 Phylip dnapenny, promlk 

8 Grappa grappa 

9 CE ce 

10 Predator predator 

For each of these codes listed in Table 1, we have 
assembled benchmark source code, varying sizes of input 
datasets, and information for compiling and using the 
benchmarks. As algorithms for solving problems from 
computational biology often require parallel processing 
techniques, we provide parallel versions of 4 benchmarks. 
To facilitate computer architecture researchers to run the 

BioPerf suite on several popular execution driven 
simulators, we also provide little-endian Alpha ISA 
binaries and generated simulation points [7] and PowerPC 
binaries [11] from the BioPerf web page, 
www.bioperf.org. 

The rest of this paper is organized as follows. Section 2 
discusses previous work on benchmark collection. Section 
3 provides an introductory background on biology and a 
brief review of bioinformatics study areas. Section 4 
describes the BioPerf suite, including benchmark 
functionality, input datasets and execution. Section 5 
presents the pre-compiled Alpha binaries, and the 
generated simulation points. Section 6 discusses our 
performance study on IBM Power using IBM Mambo 
simulations cross-compared with Apple G5 executions. 
Section 7 concludes the paper and outlines our future work. 

2. Previous Work 
One of the most successful attempts to create 

standardized benchmark suites is SPEC (Standard 
Performance Evaluation Corporation), which started 
initially as an effort to deliver better benchmarks for 
workstations. Over the years, SPEC evolved to cover 
different application classes, such as the SPECSFS for the 
NFS performance and the SPECWeb for performance of 
Web servers. 

Other examples of domain-specific benchmarks include 
transaction-processing benchmarks TPC, benchmarks for 
embedded processors such as the EEMBC benchmarks and 
many others. One of the important benchmark suites in the 
scientific research community is the SPLASH (Stanford 
Parallel Applications for Shared Memory) suite, later 
updated to SPLASH-2 [8]. SPLASH-2 includes mostly 
codes from linear algebra and computational physics, and 
is designed to measure the performance of these 
applications on centralized and distributed memory-
machines. 

Few comprehensive suites of computationally-intensive 
life science applications are available to the computer 
architecture community. The closest effort to ours is the 
development of BioBench [9]. Compared with BioBench, 
our independent work covers many more bioinformatics 
tools in terms of quantity and diversity. Also, our work 
includes parallel codes where available. 



3. Background 
To help readers understand the BioPerf benchmarks 

better, we first provide an introductory background on 
biology and illustrate the major areas of bioinformatics. 

3.1 Introduction: DNA, Genes and Proteins 
One of the fundamental principles of biology is that 

within each cell, DNA that comprises the genes encodes 
RNA which in turn produces the proteins that regulate all 
of the biological processes within an organism. 

DNA is a double chain of simpler molecules called 
nucleotides, tied together in a double helix helical 
structure. The nucleotides are distinguished by a nitrogen 
base that can be of four kinds: adenine (A), cytosine (C), 
guanine (G) and thymine (T). Adenine (A) always bonds to 
thymine (T) whereas cytosine (C) always bonds to guanine 
(G), forming base pairs. DNA can be specified uniquely by 
listing its sequence of nucleotides, or base pairs. Proteins 
are molecules that accomplish most of the functions of a 
living cell, determining its shape and structure. A protein is 
a linear sequence of molecules called amino acids. Twenty 
different amino acids are commonly found in proteins. 
Similar to DNA, proteins are conveniently represented as a 
string of letters expressing their sequence of amino acids. 
A gene is a contiguous stretch of genetic code along the 
DNA that encodes a protein. Not all parts of a DNA 
molecule encode genes; some segments, called introns, 
have no influence on protein synthesis. 

As a protein is produced, it folds into a three-
dimensional shape. For example, figure 1 shows the 3-D 
structure of human foetal deoxyhaemoglobin. The positions 
of the central atoms, called carbon-alpha (C∝), of the 
amino acids of a protein define its primary structure. If a 
contiguous subsequence of C∝ atoms follows some 
predefined pattern, they are classified as a secondary 
structure, such as alpha-helix or beta-sheet. The relative 
positioning of the secondary structures define the tertiary 
structure. The overall shape of all chains of a protein then 
defines the quaternary structure. 

 

 
Figure 1. Three dimensional structure of human foetal 
deoxyhaemoglobin (PDB id = 1FDH, produced from 
[12]). 

As a protein is produced, it folds into a three-
dimensional shape. For example, figure 1 shows the 3-D 
structure of human foetal deoxyhaemoglobin. The positions 
of the central atoms, called carbon-alpha (C∝), of the 
amino acids of a protein define its primary structure. If a 
contiguous subsequence of C∝ atoms follows some 
predefined pattern, they are classified as a secondary 
structure, such as alpha-helix or beta-sheet. The relative 
positioning of the secondary structures define the tertiary 
structure. The overall shape of all chains of a protein then 
defines the quaternary structure. 

3.2 Bioinformatics Problems 
In this section, we illustrate the major problems in 

bioinformatics, including sequence analysis, phylogeny, 
sequence homology & gene finding, and protein structure 
analysis/prediction. 

3.2.1 Sequence Analysis 
Sequence analysis is perhaps the most commonly 

performed task in bioinformatics. Sequence analysis can be 
defined as the problem of finding which parts of the 
sequences (nucleotide or amino acid sequences) are similar 
and which parts are different. By comparing sequences, 
researchers can gain crucial understanding of their 
significance and functionality: high sequence similarity 
usually implies significant functional or structural 
similarity while sequence differences hold the key 
information regarding diversity and evolution. 

The most commonly used sequence analysis technique 
is pairwise sequence comparison. A sequence can be 
transformed to another sequence with the help of three edit 
operations. Each edit operation can insert a new letter, 
delete an existing letter, or replace an existing letter with a 
new one. The alignment of two sequences is defined by the 
edit operations that transform one into the other. This is 
usually represented by writing one on top of the other. 
Insertions and deletions (i.e., gaps) are represented by the 
dash symbol (“-”). The following example illustrates an 
alignment between the sequences S1= “GAATTCAGTA” 
and S2= “GGATCGTTA”. The objective is to match 
identical subsequences as best as possible (or equivalently 
use as few edit operations as possible). In the example, the 
aligned sequences match in seven positions. 

 
Sequence S1 GAATTCAGT-A 
            |R|D||D||I| 
Sequence S2 GGA-TC-GTTA 

 

Figure 2. Alignment of two sequences that match in 
seven positions. One replace, two delete, and one insert 
operations, shown by letters R, D, and I, are used. 

Alignment of sequences is considered in two different 
but related classes: If the entire sequences are aligned, then 
it is called a global alignment. If subsequences of two 



sequences are aligned, then it is called a local alignment. 
Multiple sequence alignment compares more than two 
sequences: all sequences are aligned on top of each other. 
Each column is the alignment of one letter from each 
sequence. The following example illustrates a multiple 
alignment among the sequences S3= 
“AGGTCAGTCTAGGAC”, S4= “GGACTGAGGTC”, and 
S5=“GAGGACTGGCTACGGAC”. 

 
Sequence S3      -AGGTCAGTCTA-GGAC 
Sequence S4      --GGACTGA----GGTC 
Sequence S5      GAGGACTGGCTACGGAC 

 

Figure 3. Multiple alignment of three DNA sequences 
S3,  S4, and S5. 

3.2.2 Molecular Phylogeny Analysis 
Molecular phylogeny infers lines of ancestry of genes 

or organisms. Phylogeny analysis provides crucial 
understanding about the origins of life and the homology 
of various species on earth. Phylogenetic trees are 
composed of nodes and branches. Each leaf node 
corresponds to a gene or an organism. Internal nodes 
represent inferred ancestors. The evolutionary distance 
between two genes or organisms is computed as a function 
of the length of the branches between their nodes and their 
common ancestors. 

3.2.3 Sequence Homology and Gene Finding 
Portions of genomes could be seen as genomic entities 

spawned through some dynamic changes in content and 
order of the ancestral genome. Certain regions, through 
selection, are conserved over time. Such genomic portions 
that are related due to their derivation from the same 
element in a common ancestral genome are termed 
homolog. Sequence homology study aims to infer genome 
organization and structure, as well as the evolutionary 
mechanisms that shaped present day genomes. 

The sizes of biological sequence databases are usually 
very large. Not all the sequences are coding, namely are a 
template for a protein. For example, in the human genome 
only 3%-5% of the sequences are coding. Due to the size 
of the database, manual searching of genes who do code 
for proteins is not practical. Gene-findings aim to provide 
computational methods to automatically identify genes that 
encode proteins. 

3.2.4 Protein Structure Analysis  
Two protein substructures are called similar if their C∝ 

atoms can be mapped to close-by points after translation 
and rotation of one of the proteins. This can also be 
considered as a one-to-one mapping of amino acids. 
Usually, structural similarity requires that the amino acid 
pairs that are considered similar have the same secondary 
structure type. Structural similarities among proteins 

provide insight regarding their functional relationship. 
Figure 4 presents the structural similarity of two proteins. 

Three-dimensional structures of only a small subset of 
proteins are known as it requires expensive wet-lab 
experimentation. Computationally determining the 
structure of proteins is an important problem as it 
accelerates the experimentation step and reduces expert 
analysis. Usually, the relationship among chemical 
components of proteins (i.e. their amino acid sequences) is 
used in determining their unique three-dimensional native 
structures. 

Figure 4. The structural similarity between two 
proteins. (produced from  http://cl.sdsc.edu/) 

Three-dimensional structures of only a small subset of 
proteins are known as it requires expensive wet-lab 
experimentation. Computationally determining the 
structure of proteins is an important problem as it 
accelerates the experimentation step and reduces expert 
analysis. Usually, the relationship among chemical 
components of proteins (i.e. their amino acid sequences) is 
used in determining their unique three-dimensional native 
structures. 

3.3 Bioinformatics Databases 
A bioinformatics database is an organized body of 

persistent data (e.g. nucleotide and amino acid sequences, 
three-dimensional structure). Thanks to the human genome 
project, there has been a growing interest both in the public 
and private sectors towards creating bioinformatics 
databases. At the end of 2002, there were more than 300 
molecular biology databases available worldwide. This 
section provides a brief overview of several popular and 
publicly available bioinformatics databases. 

An important class of bioinformatics databases is the 
sequence database. The largest sequence database is the 
NCBI/GenBank [5] which collects all known nucleotide 
and protein sequences. Other major data sources are EMBL 
(European Molecular Biology Lab) [14] and DDBJ (DNA 
Data Bank of Japan) [15]. Two major sources of protein 
sequences and structures are PDB (Protein Data Bank) 
[12], and SWISS-PROT [16]. PDB contains the protein 
structures determined by NMR and X-ray crystallography 
techniques. SWISS-PROT is a curated protein sequence 
database which provides a high level of annotation such as 
description of protein function, its domain structure, post-
translational modification and other useful information. 



4. The BioPerf Benchmark Suite 
To allow computer architecture researchers to explore 

and evaluate their designs on these emerging applications, 
we developed BioPerf, a suite of representative 
applications assembled from the computational biology 
community, where the codes are carefully selected to span 
a breadth of algorithms and performance characteristics. 

Bioinformatics is a field for which the problems 
themselves are not thoroughly categorized, and many of 
the computational problems are NP-hard. This has led to 
the development of heuristics to solve the problems, giving 
sub-optimal results within a reasonable degree of accuracy 
quickly. Thus, the field is still in its infancy with problems, 
algorithms, applications, and even system architecture 
requirements, changing frequently. The present suite of 
tools should therefore be treated as a starting point. As the 
field evolves, we expect the included codes and inputs to 
evolve to encompass important emerging trends. Our 
endeavor is to provide a representative set of codes and 
sample data that encompass the field of bioinformatics in 
terms of the problems it represents and the solutions which 
are devised for those problems. We use this set of 
bioinformatics applications to drive changes in computer 
architecture for high-performance computing systems 
specifically targeted towards the computational biology 
applications.�

The packages used in BioPerf are handpicked from the 
following broad problems identified by the biological 
community of interest to computer designers: sequence 
alignment (pairwise and multiple), phylogeny 
reconstruction, protein structure prediction, and sequence 
homology & gene-finding. For each of these codes, we 
have assembled input datasets with varying sizes which 
can be used in conjunction with the applications included 
in this suite. Due to space limitations, this paper details a 
moderate-sized class of input that allows each benchmark 
code to run for tens of minutes. Other class sizes are 
available from the BioPerf web site for smaller and larger 
runs. Detailed, quantitative workload characterization of 
the BioPerf benchmarks on different platforms can be 
found in [10, 11, 29, 30, 35, 36]. This section describes the 
selected programs, which can be classified using the 
categories we introduced in Section 3.2. Table 2 provides a 
summary of BioPerf executables and inputs. 

4.1 Sequence Analysis Benchmarks 
Blast: The Blast (Basic Local Alignment Search Tool) 

programs [17] are a set of heuristic methods that are used 
to search sequence databases for local alignments to a 
query sequence. The Blast programs are written in C. 
BlastP and BlastN are the versions of Blast for searching 
protein and nucleotide sequences respectively. The query 
file is the file which includes the nucleotide or protein 

sequence for search. The database file is the database 
which will be searched. The blast implementation provided 
by NCBI is multithreaded and contains a parameter to set 
the number of threads.   

ClustalW: ClustalW [19] is a multiple sequence 
alignment program for nucleotides or amino acids. It first 
finds a phylogenetic tree for the underlying sequences. It 
then progressively aligns them one by one based on their 
ancestral relationships. ClustalW is programmed in C and 
takes as input multiple DNA or protein sequences and 
output the results after alignment. Clustalw_smp is a 
symmetric multiprocessor implementation of ClustalW.  

Hmmer: Hmmer [20] employs hidden Markov models 
(profile HMMs) for aligning multiple sequences. Profile 
HMMs are statistical models of multiple sequence 
alignments. They capture position-specific information 
about how conserved is each column of the alignment, and 
which residues are likely. Hmmer is programmed in the C 
language. It includes several applications such as 
hmmbuild, hmmcalibrate and hmmsearch. Among these 
applications, the hmmsearch is widely used to search a 
sequence database for matches to an HMM. The 
benchmark input is the example HMM built from the 
alignment file of 50 aligned globin sequences and a 
FASTA file of brine shrimp globin, which contains nine 
tandemly repeated globin domains. Hmmpfam [20] another 
program of the same family, compares one or more 
sequences to a database of profile hidden Markov models, 
such as the Pfam library, in order to identify known 
domains within a sequence, using either the Viterbi or the 
forward algorithm. Hmmpfam is a multithreaded program. 
The dataset we have provided for hmmpfam performs the 
search of a transcriptional regulatory protein of about 8800 
residues against the PFAM database. 

T-Coffee: T-Coffee [21] is a sequential multiple 
sequence alignment similar to ClustalW, but which has 
been proven to be more accurate than ClustalW, though 
with a higher time complexity. T-Coffee enhances the 
progressive alignment of ClustalW with an internal library 
creation, and uses both scores from aligning every 
sequence with other sequences and the library for the 
alignment. The parameters we provide for running T-
Coffee set the dynamic programming mode to Myers and 
Miller, which has linear space and quadratic time 
complexity. The option -in specifies methods used for 
library making (lalign_id_pair is the local alignment using 
FASTA function and clustalw_pair is the global alignment 
using the Smith-Waterman algorithm). The option tree 
mode = slow implies that similarity matrix construction is 
performed by using dynamic programming mode. The 
input file is 1yge_1byt (50 sequences of average length 
850) extracted from the Prefab database. 



Table 2 Summary of BioPerf executables and inputs 

Package Executable 
Codes Execution Commands Input Instances 

Blast 
blastp 
 
blastn 

blastall –p blastp -i <query file> -d <database file> -o 
<output file> -a <number of threads> 
 
blastall –p blastn -i <query file> -d <database file> -o 
<output file> -a <number of threads> 

Input Sequences: target.txt is the homo sapiens 
hereditary haemochromatosis protein 
Database: non-redundant protein sequence 
database NCBI 
Input Sequences: Input dataset of 20 sequences 
each of about 7000 residues. 
Database: Swiss-Prot 

FASTA 
fasta34 
 
ssearch 

fasta34 <query file> <database file> 
 
ssearch34 t -a <Show entire length in alignment> -b 20 
<number of high scores to display> -q -O <Output 
Alignment File> < Input Sequence > 

Input Sequence: qrhuld.aa is a query file that 
contains the human LDL receptor precursor 
protein. Database: The nr is the same database 
mentioned above. 
Input Sequences: Two genomes NC_003903 
(Streptomyces_coelicolor) and NC_005824 
(Leptospira chromosome II) each of about 
360,000 residues as the input dataset 

Clustalw 
clustalw 
 
clustalw_smp 

clustalw -batch -infile= <input file> -outfile= <output 
file> 
 
clustalw_smp  –infile=<input file> -outfile=<output 
file> 

Input Sequences: input.ext is a query file that 
includes 317 Ureaplasma’s gene sequences from 
the NCBI Bacteria genomes database 
Input Sequences: 6000.seq (318 sequences with 
average length of about 1450 residues) included 
with the executable is used as input. 

Hmmer 
hmmsearch 
 
hmmpfam 

hmmsearch <input file> <database file> 
 
hmmpfam < HMM database > < Input sequence > 

Database: globin.hmm is the example HMM of 
50 aligned globin sequences  
Input: Artemia.fa is a FASTA file of brine shrimp 
globin,  
Database: Pfam 
Input: transcriptional regulatory protein of about 
8800 residues against the PFAM database 

T-Coffee tcoffee 
tcoffee < Input sequences file> -dp_mode = 
myers_miller_pair_wise -in=lalign_id_pair, 
clustalw_pair –tree_mode =slow 

Input: The input file is 1yge_1byt (50 sequences 
of average length 850) extracted from the Prefab 
database. 

Glimmer 
glimmer2 
 
run_glimmer2 

glimmer2 <input sequence> <model file> 
 
run-glimmer2 <input sequence> 

Input Sequence: NC_000907.fna is a kind of 
bacterium whose name is Haemophilus_influenzae 
Model File: glimmer.icm is the collection file of 
Markov models 
Input Sequence: Bacteria Bradyrhizobium 
japonicum genome NC_004463.fna consisting of 
about 9200 kilobase pairs 

Phylip dnapenny 
promlk Execution Script provided with the benchmark 

Input: Aligned 92 cyclophilins and cyclophilin-
related proteins from eukaryotes of average length 
220 

Grappa grappa grappa -f < Input file > -o < Output file > -m, where m 
specifies tighten circular lower bound 

Input: Input file is 12 sequences of the bluebell 
flower species Campanulaceae 

CE CE 
CE - <protein sequence 1 in PDB>  - <protein 
sequence 2 in PDB>  - <path of directory for storing 
temporary results of execution> 

Input: 1hba.pdb and 4hhb.pdb are different types 
of hemoglobin which is used to transport oxygen 

Predator predator predator -a -l <sequence> -f<output> 

Input: eukaryota_100.seq includes 100 Eukaryote 
protein sequences from NCBI genomes database.  
The additional dataset to run Predator is 19 
sequences extracted from SWISS-PROT each of 
almost 7000 residues 

 



FASTA: Similar to Blast, FASTA [18] is a collection of 
local similarity search programs for sequence databases. 
While FASTA and Blast both do pairwise local alignment, 
their underlying algorithms are different. The query and 
database files for FASTA have the same meaning as those 
of Blast. With the provided dataset, the FASTA benchmark 
performs a query that contains the human LDL receptor 
precursor protein. Another program that we have included 
from the FASTA package is the ssearch which does an 
exact Smith-Waterman alignment on a pair of sequences.  

4.2 Sequence Homology and Gene Finding 
Glimmer: Glimmer (Gene Locator and Interpolated 

Markov Modeler) [22] finds genes in microbial DNA. Its 
uses interpolated Markov models (IMMs) to identify 
coding and noncoding regions in the DNA. The program 
consists of essentially two steps: the first step trains the 
IMM from an input set of sequences, the second step uses 
this trained IMM for finding putative genes in the input 
genome. Glimmer can be used for gene annotation by 
inputting its predictions into BLAST and FASTA. The 
input we provide for Glimmer is a kind of bacterium whose 
name is Haemophilus_influenzae and glimmer.icm is the 
collection file of Markov models. Run-glimmer2 is a script 
included in the program, which runs programs long-orfs 
and extract (extracts all non-overlapping open reading 
frames), build-icm (build an interpolated context model) 
and finally runs glimmer2 for a particular sequence. The 
input sequence used for this script is Bacteria 
Bradyrhizobium japonicum genome consisting of  about  9200 
kilobase pairs. 

4.3 Molecular Phylogeny Analysis 
Benchmarks 

Phylip: Phylip (PHYLogeny Inference Package) [23] is 
a package of programs for inferring phylogenies 
(evolutionary trees). Methods that are available in the 
package include parsimony, distance matrix, maximum 
likelihood, bootstrapping, and consensus trees. Data types 
that can be handled include molecular sequences, gene 
frequencies, restriction sites and fragments, distance 
matrices, and discrete characters. Dnapenny and promlk 
are the typical applications in Phylip. Dnapenny is a 
program that finds all of the most parsimonious trees of the 
input data. Promlk implements the maximum likelihood 
method for protein amino acid sequences. They both can 
run in command line method or interactive method. To 
provide deterministic execution, we provide execution 
script to invoke the two benchmarks. The additional 
dataset available to run promlk is the aligned 92 
cyclophilins and cyclophilin-related proteins from 
eukaryotes of average length 220. 

GRAPPA: GRAPPA (Genome Rearrangements 
Analysis under Parsimony and other Phylogenetic 
Algorithms) is a program for phylogeny reconstruction 

[24]. To date, almost every model of speciation and 
genomic evolution used in phylogenetic reconstruction has 
given rise to NP-hard optimization problems. GRAPPA is 
a reimplementation of the breakpoint analysis [25] 
developed by Blanchette and Sankoff, and also provides 
the first linear-time implementation of inversion distances 
improving upon Hannenhalli and Pevzner’s polynomial 
time approach [26]. Currently, GRAPPA also handles 
inversion phylogeny and unequal gene content. The input 
file is 12 sequences of the bluebell flower species 
Campanulaceae. 

4.4 Protein Structure Analysis Benchmarks 
CE: CE (Combinatorial Extension) [27] finds structural 

similarities between the primary structures of pairs of 
proteins. CE first aligns small fragments from two proteins. 
Later, these fragments are combined and extended to find 
larger similar substructures. The inputs we provide for CE 
are different types of hemoglobin used to transport oxygen.  

Predator: Predator [28] is a tool for finding protein 
structures, and is based on the calculated propensities of 
every 400 amino-acid pairs to interact inside an α -helix or 
one upon three types of β -bridges. It then incorporates 
non-local interaction statistics. Predator uses propensities 
for α -helix, β -strand and coil derived form a nearest 
neighbor approach. Our input for Predator includes 100 
Eukaryote protein sequences from NCBI genomes database 
and results of the secondary structure prediction. The 
additional dataset to run Predator is 19 sequences 
extracted from SWISS-PROT each of almost 7000 residues. 



5. Pre-Compiled Binaries and Simulation 
Points 

5.1 BioPerf Alpha Binaries for Simulation 
based Studies 

To allow computer architecture researchers to simulate 
the BioPerf benchmarks using execution-driven and cycle-
accurate architecture research frameworks (such as 
SimpleScalar [32], SimAlpha [33], and M5 [34]), we made 
an extra effort to produce the Alpha binaries of the 
majority of BioPerf benchmarks. We have tested all pre-
compiled Alpha binaries (with static link option) using the 
Simplescalar sim-outorder simulator. The pre-compiled 
binaries are available in the BioPerf package. 

 

5.2 Simulation Points of BioPerf Workloads 
Our earlier study [10, 11, 30] shows that bioinformatics 

applications can execution billions of instructions before 
completion. Therefore, it is infeasible to simulate entire 
benchmark execution using detailed cycle-accurate 
simulators. Recently, the computer architecture research 
community has widely adopted SimPoint [7] methodology 
as an efficient way to simulate the representative workload 
execution phases. We used the SimPoint framework 
developed by Calder et al. to generate the simulation points 
of the BioPerf benchmarks listed in the Table 2. Since the 
total number of instructions of different benchmarks varies 
significantly, we used the criteria suggested in [34] to 
determine the size of interval for each individual 
benchmark. Table 2 lists the interval size as well as the 
simulation points for each benchmark. 

 
Table 3. Pre-compiled Alpha binaries (all binaries have been successfully tested on  

Simplescalar Sim-outorder simulator) and their simulation points 
 

Benchmark Input Dataset Interval 
(M) 

Simulation Points 

fasta34 human LDL receptor precursor protein, 
NCBI nr database 400 412,698,242,326,810,961,503,487,354,1051,932,8,832,7

92,459,988,54,107,482,808,136,554,996,588 

clustalw 
317 Ureaplasma’s gene sequences  from 
the NCBI Bacteria genomes database 850 24,918,906,701,702,674,793,395,252,845,719,883,857,5

85,858,651,381,817 

hmmsearch 
a profile HMM built from the alignment 
of 50 globin sequences, uniprot_sprot.dat 
from SWISS-PROT 

680 340,674,330,695,711,75,619,599,54,677,551,672, 
794,40,404,682,618,370,457,951 

glimmer2 18 bacteria complete genomes from the 
NCBI genomes database 20 581,1,45,70,32,13,2,17,1567,8,404,26,84,1572,6, 

21,494,1109,40,1240 

diffseq nucleic acid database EMBL 35 
705,680,444,597,442,255,662,10,3,977,288,443, 
1006,827,990,1004,343,927,707,256,98,1054,689, 
964,780,958,824,942 

megamerger nucleic acid database EMBL 35 
703,559,254,596,679,443,377,825,259,1067,3,442,901,2
55,310,593,94,773,976,758,889,781,1058, 
818,5,560 

shuffleseq nucleic acid database EMBL 300 318,1,718,981,280,115,18,355,261,365,1019,457,194, 
1018,196,43,254,406,226,775,842,454,894,986,776 

dnapenny ribosomal RNAs from bacteria and 
mitochondria 140 95,1048,1043,225,672,1,61,413,185,627,51,1014,1056,2

,110,911,200,1003,777,970,639,1053,40,438,576,597 

promlk 
protein amino acid sequences of 17 
species ranging from a deep branching 
bacterium to humans 

320 
21,911,255,1,320,548,876,713,176,319,813,332,818, 
932,445,807,909,773,580,854,224,719,700,969, 
472,715,1008,661,375,210 

predator  100 Eukaryote protein sequences from 
NCBI genomes database 700 272,247,758,195,1143,536,535,166,585,81,233,296, 

482,640,429,406,88,343,203,403,479,955,37,971 

 



 

6. Performance Analysis on PowerPC G5 and 
Mambo 

We have performed an exhaustive analysis of BioPerf 
codes on the cycle-accurate IBM Mambo simulator [37] 
and the Apple G5 (IBM PowerPC 970) workstation [38] 
(see Figure 5). In addition to reporting the aggregate 
performance characteristics at the end of each run, we also 
analyze the “live-graph” performance data which show the 
variation of the performance exhibited during the 
execution of the application. We are using these analyses 
to propose architectural features in the design of next 
generation computer architectures to optimize their 
performance for computational biology workloads.  

An advantage of the Mambo and MONster tools is the 
“live graph” capabilities that report accumulated data not 
only at the end of each run, but also at chosen regular 
sampling intervals. Using such data, we correlate the 
performance with phases of the application, and suggest 
optimizations targeted at separate regions of the 
application. 

 

Apple G5
System

IBM Mambo
Simulator

Performance
Charateristics

Simulated

Monitoring

C.H.U.D.
Performance

Machine

Configs

Comparison
Cross−

BioSplash
Life Sciences
Application

Suite

Impact
Analysis

of Machine
Parameters

Figure 5. Dual-platform analysis reveals how cache and 
machine organization parameters affect the 
performance of life sciences applications. 

 

 

Figure 6. Instruction profile of Blast. 

As an example, we include two live-graphs in this 
paper, one from the Mambo simulator runs and the other 
from Apple G5 runs. In the first plot (Figure 6), we have 
the instruction profiles for Blast from Mambo, and the 
second plot (Figure 7) shows the variation in instructions 
per cycle (IPC) with the L1 data miss rate. For cumulative 
performance analysis, we use the data generated by the 
MONster tool, since the Apple G5 codes may be run for 
significantly larger input data sets. We summarize the 
hardware performance counters for BioPerf runs we used 
on the Apple G5. These include: 

• Instruction-level analysis: Instructions dispatched, 
instructions completed (including and excluding I/O 
and load/store), branch mispredictions due to 
condition register value and target address predict 
were recorded as part of this analysis. 

• Memory-level analysis: L1 and L2 cache loads and 
stores, L1 and L2 cache load and store misses, TLB 
and SLB misses, read/write request bytes, number of 
memory transactions and Load Miss Queue (LMQ) 
full events were included in this analysis.  
 

 

 

Figure 7. Variation in IPC and L1 data cache miss rate 
 

In our research studies, we also compare these codes on 
dual-core systems to quantify to what extent computational 
biology applications can utilize and benefit from 
commodity computer architecture enhancements such as 
multi-core processing chips.  We are not able to include all 
the live-graphs, cumulative data and the analysis in this 
document due to space constraints; fully detailed analysis 
and all the live-graphs are included in [11]. 



7. Conclusions 
Bioinformatics applications represent increasingly 

important computer workloads. In order to apply a 
quantitative approach in computer architecture design and 
performance evaluation, there is a clear need to develop a 
benchmark suite of representative bioinformatics 
applications. This paper presents a group of programs 
representative of bioinformatics software. These programs 
include popular tools used for sequence alignments, 
molecular phylogeny analysis, protein structure prediction, 
and gene finding. The BioPerf benchmark suite is freely 
available from the web site www.bioperf.org. As the field 
of bioinformatics evolves, we will extend BioPerf to 
encompass important emerging trends. In the future, we 
will also explore integrated software/hardware techniques 
to optimize the performance of bioinformatics applications. 
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