
BioPerf: A Benchmark Suite to Evaluate High-Performance Computer
Architecture on Bioinformatics Applications

David A. Bader

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332
bader@cc.gatech.edu

Yue Li
Department of ECE

University of Florida
Gainesville, FL 32611

yli@ecel.ufl.edu

Tao Li
Department of ECE

University of Florida
Gainesville, FL 32611

taoli@ece.ufl.edu

Vipin Sachdeva
Department of ECE

University of New Mexico
Albuquerque, NM 87131
vipin@ece.unm.edu

Abstract
The exponential growth in the amount of genomic data

has spurred growing interest in large scale analysis of
genetic information. Bioinformatics applications, which
explore computational methods to allow researchers to sift
through the massive biological data and extract useful
information, are becoming increasingly important
computer workloads. This paper presents BioPerf, a
benchmark suite of representative bioinformatics
applications to facilitate the design and evaluation of high-
performance computer architectures for these emerging
workloads. Currently, the BioPerf suite contains codes
from 10 highly popular bioinformatics packages and
covers the major fields of study in computational biology
such as sequence comparison, phylogenetic reconstruction,
protein structure prediction, and sequence homology &
gene finding. We demonstrate the use of BioPerf by
providing simulation points of pre-compiled Alpha
binaries and with a performance study on IBM Power
using IBM Mambo simulations cross-compared with Apple
G5 executions.

The BioPerf suite (available from www.bioperf.org)
includes benchmark source code, input datasets of various
sizes, and information for compiling and using the
benchmarks. Our benchmark suite includes parallel codes
where available.

1. Introduction
In the 50 years since the discovery of the structure of

DNA, and with new techniques for sequencing the entire
genome of organisms, biology is rapidly moving towards a
data-intensive, computational science. Computational
biology has been aided by recent advances in both
technology and algorithms; for instance, the ability to
sequence short contiguous strings of DNA and from these
reconstruct the whole genome [1, 2, 3] and the
proliferation of high-speed micro array, gene, and protein
chips [4] for the study of gene expression and function
determination. These high-throughput techniques have led
to an exponential growth of available genomic data. For
example, the National Center for Biotechnology

Information (NCBI) GenBank, an annotated collection of
all publicly available DNA sequences, has been growing at
an exponential rate. There are 51,674,486,881 bases from
46,947,388 sequences in GenBank as of 15 August 2005
[5].

As genomics moves forward, having accessible
computational methods with which to extract, view, and
analyze genomic information, becomes essential.
Bioinformatics allows researchers to sift through the
massive biological data and identify information of
interest. Today, biologists are in search of bio-molecular
sequence data, for its comparison with other genomes, and
because its structure determines function and leads to the
understanding of biochemical pathways, disease prevention
and cure, and the mechanisms of life itself.

Bioinformatics has become an industry and has gained
popularity among numerous markets including
pharmaceutical, (industrial, agricultural and
environmental) biotechnology and homeland security. A
number of recent market research reports estimate the size
of the bioinformatics market as $176 billion and the market
is projected to grow to $243 billion within the next 5 years
[6]. In August 2000, IBM announced an initial $100
million investment to spur business development in the life
sciences, assuring its prominence as one of the emerging
computing markets.

Algorithms and applications in this new computational
field of biology are now one of the largest consumers of
computational power. Many problems use polynomial time
algorithms (e.g., all-to-all comparisons) but have long
running times due to the large data volume to process; for
example, the assembly of an entire genome or the all-to-all
comparison of gene sequence data. Other problems are
compute-intensive due to their inherent algorithmic
complexity, such as protein folding and reconstructing
evolutionary histories from molecular data, that are known
to be NP-hard (or harder) and often require approximations
that are also complex [13].

Clearly, computer systems that can cost-effectively
deliver high-performance on computational biology
applications play a vital role in the future growth of the

bioinformatics market. Since current high-end architectures
have not been primarily designed with these applications in
mind, we are interested in finding architectural trade-offs
that can benefit computational biology without degrading
performance of other workloads. In order to apply a
quantitative approach in computer architecture design,
optimization and performance evaluation, researchers need
to identify representative workloads from this emerging
application domain first.

This paper presents BioPerf, a benchmark suite
representing a wide variety of bioinformatics applications.
The codes span the heterogeneity of algorithms and
biological problems. Only freely available open-source
codes are included in this suite to ease its portability to
new architectures and systems and its dissemination.
Currently, the BioPerf suite contains 10 packages and
covers the major fields of study in computational biology
such as sequence comparison, phylogenetic reconstruction,
protein structure prediction, and sequence homology &
gene finding. Sequence comparison finds similarities
between two or more DNA or protein sequences.
Phylogeny explores the ancestral relationships among a set
of genes or organisms. Protein structure analysis (a) finds
the similarities between three-dimensional protein
structures and (b) predicts the shape of a protein (e.g.,
primary, secondary, and tertiary structure) given its amino
acid sequence. Gene-finding identifies DNA segments that
encode proteins.

Table 1. BioPerf benchmark suite.

Package Executable Codes

1 Blast blastp, blastn

2 FASTA fasta34, ssearch

3 Clustalw clustalw, clustalw_smp

4 Hmmer hmmsearch, hmmpfam

5 T-Coffee tcoffee

6 Glimmer glimmer2

7 Phylip dnapenny, promlk

8 Grappa grappa

9 CE ce

10 Predator predator

For each of these codes listed in Table 1, we have
assembled benchmark source code, varying sizes of input
datasets, and information for compiling and using the
benchmarks. As algorithms for solving problems from
computational biology often require parallel processing
techniques, we provide parallel versions of 4 benchmarks.
To facilitate computer architecture researchers to run the

BioPerf suite on several popular execution driven
simulators, we also provide little-endian Alpha ISA
binaries and generated simulation points [7] and PowerPC
binaries [11] from the BioPerf web page,
www.bioperf.org.

The rest of this paper is organized as follows. Section 2
discusses previous work on benchmark collection. Section
3 provides an introductory background on biology and a
brief review of bioinformatics study areas. Section 4
describes the BioPerf suite, including benchmark
functionality, input datasets and execution. Section 5
presents the pre-compiled Alpha binaries, and the
generated simulation points. Section 6 discusses our
performance study on IBM Power using IBM Mambo
simulations cross-compared with Apple G5 executions.
Section 7 concludes the paper and outlines our future work.

2. Previous Work
One of the most successful attempts to create

standardized benchmark suites is SPEC (Standard
Performance Evaluation Corporation), which started
initially as an effort to deliver better benchmarks for
workstations. Over the years, SPEC evolved to cover
different application classes, such as the SPECSFS for the
NFS performance and the SPECWeb for performance of
Web servers.

Other examples of domain-specific benchmarks include
transaction-processing benchmarks TPC, benchmarks for
embedded processors such as the EEMBC benchmarks and
many others. One of the important benchmark suites in the
scientific research community is the SPLASH (Stanford
Parallel Applications for Shared Memory) suite, later
updated to SPLASH-2 [8]. SPLASH-2 includes mostly
codes from linear algebra and computational physics, and
is designed to measure the performance of these
applications on centralized and distributed memory-
machines.

Few comprehensive suites of computationally-intensive
life science applications are available to the computer
architecture community. The closest effort to ours is the
development of BioBench [9]. Compared with BioBench,
our independent work covers many more bioinformatics
tools in terms of quantity and diversity. Also, our work
includes parallel codes where available.

3. Background
To help readers understand the BioPerf benchmarks

better, we first provide an introductory background on
biology and illustrate the major areas of bioinformatics.

3.1 Introduction: DNA, Genes and Proteins
One of the fundamental principles of biology is that

within each cell, DNA that comprises the genes encodes
RNA which in turn produces the proteins that regulate all
of the biological processes within an organism.

DNA is a double chain of simpler molecules called
nucleotides, tied together in a double helix helical
structure. The nucleotides are distinguished by a nitrogen
base that can be of four kinds: adenine (A), cytosine (C),
guanine (G) and thymine (T). Adenine (A) always bonds to
thymine (T) whereas cytosine (C) always bonds to guanine
(G), forming base pairs. DNA can be specified uniquely by
listing its sequence of nucleotides, or base pairs. Proteins
are molecules that accomplish most of the functions of a
living cell, determining its shape and structure. A protein is
a linear sequence of molecules called amino acids. Twenty
different amino acids are commonly found in proteins.
Similar to DNA, proteins are conveniently represented as a
string of letters expressing their sequence of amino acids.
A gene is a contiguous stretch of genetic code along the
DNA that encodes a protein. Not all parts of a DNA
molecule encode genes; some segments, called introns,
have no influence on protein synthesis.

As a protein is produced, it folds into a three-
dimensional shape. For example, figure 1 shows the 3-D
structure of human foetal deoxyhaemoglobin. The positions
of the central atoms, called carbon-alpha (C∝), of the
amino acids of a protein define its primary structure. If a
contiguous subsequence of C∝ atoms follows some
predefined pattern, they are classified as a secondary
structure, such as alpha-helix or beta-sheet. The relative
positioning of the secondary structures define the tertiary
structure. The overall shape of all chains of a protein then
defines the quaternary structure.

Figure 1. Three dimensional structure of human foetal
deoxyhaemoglobin (PDB id = 1FDH, produced from
[12]).

As a protein is produced, it folds into a three-
dimensional shape. For example, figure 1 shows the 3-D
structure of human foetal deoxyhaemoglobin. The positions
of the central atoms, called carbon-alpha (C∝), of the
amino acids of a protein define its primary structure. If a
contiguous subsequence of C∝ atoms follows some
predefined pattern, they are classified as a secondary
structure, such as alpha-helix or beta-sheet. The relative
positioning of the secondary structures define the tertiary
structure. The overall shape of all chains of a protein then
defines the quaternary structure.

3.2 Bioinformatics Problems
In this section, we illustrate the major problems in

bioinformatics, including sequence analysis, phylogeny,
sequence homology & gene finding, and protein structure
analysis/prediction.

3.2.1 Sequence Analysis
Sequence analysis is perhaps the most commonly

performed task in bioinformatics. Sequence analysis can be
defined as the problem of finding which parts of the
sequences (nucleotide or amino acid sequences) are similar
and which parts are different. By comparing sequences,
researchers can gain crucial understanding of their
significance and functionality: high sequence similarity
usually implies significant functional or structural
similarity while sequence differences hold the key
information regarding diversity and evolution.

The most commonly used sequence analysis technique
is pairwise sequence comparison. A sequence can be
transformed to another sequence with the help of three edit
operations. Each edit operation can insert a new letter,
delete an existing letter, or replace an existing letter with a
new one. The alignment of two sequences is defined by the
edit operations that transform one into the other. This is
usually represented by writing one on top of the other.
Insertions and deletions (i.e., gaps) are represented by the
dash symbol (“-”). The following example illustrates an
alignment between the sequences S1= “GAATTCAGTA”
and S2= “GGATCGTTA”. The objective is to match
identical subsequences as best as possible (or equivalently
use as few edit operations as possible). In the example, the
aligned sequences match in seven positions.

Sequence S1 GAATTCAGT-A
 |R|D||D||I|
Sequence S2 GGA-TC-GTTA

Figure 2. Alignment of two sequences that match in
seven positions. One replace, two delete, and one insert
operations, shown by letters R, D, and I, are used.

Alignment of sequences is considered in two different
but related classes: If the entire sequences are aligned, then
it is called a global alignment. If subsequences of two

sequences are aligned, then it is called a local alignment.
Multiple sequence alignment compares more than two
sequences: all sequences are aligned on top of each other.
Each column is the alignment of one letter from each
sequence. The following example illustrates a multiple
alignment among the sequences S3=
“AGGTCAGTCTAGGAC”, S4= “GGACTGAGGTC”, and
S5=“GAGGACTGGCTACGGAC”.

Sequence S3 -AGGTCAGTCTA-GGAC
Sequence S4 --GGACTGA----GGTC
Sequence S5 GAGGACTGGCTACGGAC

Figure 3. Multiple alignment of three DNA sequences
S3, S4, and S5.

3.2.2 Molecular Phylogeny Analysis
Molecular phylogeny infers lines of ancestry of genes

or organisms. Phylogeny analysis provides crucial
understanding about the origins of life and the homology
of various species on earth. Phylogenetic trees are
composed of nodes and branches. Each leaf node
corresponds to a gene or an organism. Internal nodes
represent inferred ancestors. The evolutionary distance
between two genes or organisms is computed as a function
of the length of the branches between their nodes and their
common ancestors.

3.2.3 Sequence Homology and Gene Finding
Portions of genomes could be seen as genomic entities

spawned through some dynamic changes in content and
order of the ancestral genome. Certain regions, through
selection, are conserved over time. Such genomic portions
that are related due to their derivation from the same
element in a common ancestral genome are termed
homolog. Sequence homology study aims to infer genome
organization and structure, as well as the evolutionary
mechanisms that shaped present day genomes.

The sizes of biological sequence databases are usually
very large. Not all the sequences are coding, namely are a
template for a protein. For example, in the human genome
only 3%-5% of the sequences are coding. Due to the size
of the database, manual searching of genes who do code
for proteins is not practical. Gene-findings aim to provide
computational methods to automatically identify genes that
encode proteins.

3.2.4 Protein Structure Analysis
Two protein substructures are called similar if their C∝

atoms can be mapped to close-by points after translation
and rotation of one of the proteins. This can also be
considered as a one-to-one mapping of amino acids.
Usually, structural similarity requires that the amino acid
pairs that are considered similar have the same secondary
structure type. Structural similarities among proteins

provide insight regarding their functional relationship.
Figure 4 presents the structural similarity of two proteins.

Three-dimensional structures of only a small subset of
proteins are known as it requires expensive wet-lab
experimentation. Computationally determining the
structure of proteins is an important problem as it
accelerates the experimentation step and reduces expert
analysis. Usually, the relationship among chemical
components of proteins (i.e. their amino acid sequences) is
used in determining their unique three-dimensional native
structures.

Figure 4. The structural similarity between two
proteins. (produced from http://cl.sdsc.edu/)

Three-dimensional structures of only a small subset of
proteins are known as it requires expensive wet-lab
experimentation. Computationally determining the
structure of proteins is an important problem as it
accelerates the experimentation step and reduces expert
analysis. Usually, the relationship among chemical
components of proteins (i.e. their amino acid sequences) is
used in determining their unique three-dimensional native
structures.

3.3 Bioinformatics Databases
A bioinformatics database is an organized body of

persistent data (e.g. nucleotide and amino acid sequences,
three-dimensional structure). Thanks to the human genome
project, there has been a growing interest both in the public
and private sectors towards creating bioinformatics
databases. At the end of 2002, there were more than 300
molecular biology databases available worldwide. This
section provides a brief overview of several popular and
publicly available bioinformatics databases.

An important class of bioinformatics databases is the
sequence database. The largest sequence database is the
NCBI/GenBank [5] which collects all known nucleotide
and protein sequences. Other major data sources are EMBL
(European Molecular Biology Lab) [14] and DDBJ (DNA
Data Bank of Japan) [15]. Two major sources of protein
sequences and structures are PDB (Protein Data Bank)
[12], and SWISS-PROT [16]. PDB contains the protein
structures determined by NMR and X-ray crystallography
techniques. SWISS-PROT is a curated protein sequence
database which provides a high level of annotation such as
description of protein function, its domain structure, post-
translational modification and other useful information.

4. The BioPerf Benchmark Suite
To allow computer architecture researchers to explore

and evaluate their designs on these emerging applications,
we developed BioPerf, a suite of representative
applications assembled from the computational biology
community, where the codes are carefully selected to span
a breadth of algorithms and performance characteristics.

Bioinformatics is a field for which the problems
themselves are not thoroughly categorized, and many of
the computational problems are NP-hard. This has led to
the development of heuristics to solve the problems, giving
sub-optimal results within a reasonable degree of accuracy
quickly. Thus, the field is still in its infancy with problems,
algorithms, applications, and even system architecture
requirements, changing frequently. The present suite of
tools should therefore be treated as a starting point. As the
field evolves, we expect the included codes and inputs to
evolve to encompass important emerging trends. Our
endeavor is to provide a representative set of codes and
sample data that encompass the field of bioinformatics in
terms of the problems it represents and the solutions which
are devised for those problems. We use this set of
bioinformatics applications to drive changes in computer
architecture for high-performance computing systems
specifically targeted towards the computational biology
applications.�

The packages used in BioPerf are handpicked from the
following broad problems identified by the biological
community of interest to computer designers: sequence
alignment (pairwise and multiple), phylogeny
reconstruction, protein structure prediction, and sequence
homology & gene-finding. For each of these codes, we
have assembled input datasets with varying sizes which
can be used in conjunction with the applications included
in this suite. Due to space limitations, this paper details a
moderate-sized class of input that allows each benchmark
code to run for tens of minutes. Other class sizes are
available from the BioPerf web site for smaller and larger
runs. Detailed, quantitative workload characterization of
the BioPerf benchmarks on different platforms can be
found in [10, 11, 29, 30, 35, 36]. This section describes the
selected programs, which can be classified using the
categories we introduced in Section 3.2. Table 2 provides a
summary of BioPerf executables and inputs.

4.1 Sequence Analysis Benchmarks
Blast: The Blast (Basic Local Alignment Search Tool)

programs [17] are a set of heuristic methods that are used
to search sequence databases for local alignments to a
query sequence. The Blast programs are written in C.
BlastP and BlastN are the versions of Blast for searching
protein and nucleotide sequences respectively. The query
file is the file which includes the nucleotide or protein

sequence for search. The database file is the database
which will be searched. The blast implementation provided
by NCBI is multithreaded and contains a parameter to set
the number of threads.

ClustalW: ClustalW [19] is a multiple sequence
alignment program for nucleotides or amino acids. It first
finds a phylogenetic tree for the underlying sequences. It
then progressively aligns them one by one based on their
ancestral relationships. ClustalW is programmed in C and
takes as input multiple DNA or protein sequences and
output the results after alignment. Clustalw_smp is a
symmetric multiprocessor implementation of ClustalW.

Hmmer: Hmmer [20] employs hidden Markov models
(profile HMMs) for aligning multiple sequences. Profile
HMMs are statistical models of multiple sequence
alignments. They capture position-specific information
about how conserved is each column of the alignment, and
which residues are likely. Hmmer is programmed in the C
language. It includes several applications such as
hmmbuild, hmmcalibrate and hmmsearch. Among these
applications, the hmmsearch is widely used to search a
sequence database for matches to an HMM. The
benchmark input is the example HMM built from the
alignment file of 50 aligned globin sequences and a
FASTA file of brine shrimp globin, which contains nine
tandemly repeated globin domains. Hmmpfam [20] another
program of the same family, compares one or more
sequences to a database of profile hidden Markov models,
such as the Pfam library, in order to identify known
domains within a sequence, using either the Viterbi or the
forward algorithm. Hmmpfam is a multithreaded program.
The dataset we have provided for hmmpfam performs the
search of a transcriptional regulatory protein of about 8800
residues against the PFAM database.

T-Coffee: T-Coffee [21] is a sequential multiple
sequence alignment similar to ClustalW, but which has
been proven to be more accurate than ClustalW, though
with a higher time complexity. T-Coffee enhances the
progressive alignment of ClustalW with an internal library
creation, and uses both scores from aligning every
sequence with other sequences and the library for the
alignment. The parameters we provide for running T-
Coffee set the dynamic programming mode to Myers and
Miller, which has linear space and quadratic time
complexity. The option -in specifies methods used for
library making (lalign_id_pair is the local alignment using
FASTA function and clustalw_pair is the global alignment
using the Smith-Waterman algorithm). The option tree
mode = slow implies that similarity matrix construction is
performed by using dynamic programming mode. The
input file is 1yge_1byt (50 sequences of average length
850) extracted from the Prefab database.

Table 2 Summary of BioPerf executables and inputs

Package Executable
Codes Execution Commands Input Instances

Blast
blastp

blastn

blastall –p blastp -i <query file> -d <database file> -o
<output file> -a <number of threads>

blastall –p blastn -i <query file> -d <database file> -o
<output file> -a <number of threads>

Input Sequences: target.txt is the homo sapiens
hereditary haemochromatosis protein
Database: non-redundant protein sequence
database NCBI
Input Sequences: Input dataset of 20 sequences
each of about 7000 residues.
Database: Swiss-Prot

FASTA
fasta34

ssearch

fasta34 <query file> <database file>

ssearch34 t -a <Show entire length in alignment> -b 20
<number of high scores to display> -q -O <Output
Alignment File> < Input Sequence >

Input Sequence: qrhuld.aa is a query file that
contains the human LDL receptor precursor
protein. Database: The nr is the same database
mentioned above.
Input Sequences: Two genomes NC_003903
(Streptomyces_coelicolor) and NC_005824
(Leptospira chromosome II) each of about
360,000 residues as the input dataset

Clustalw
clustalw

clustalw_smp

clustalw -batch -infile= <input file> -outfile= <output
file>

clustalw_smp –infile=<input file> -outfile=<output
file>

Input Sequences: input.ext is a query file that
includes 317 Ureaplasma’s gene sequences from
the NCBI Bacteria genomes database
Input Sequences: 6000.seq (318 sequences with
average length of about 1450 residues) included
with the executable is used as input.

Hmmer
hmmsearch

hmmpfam

hmmsearch <input file> <database file>

hmmpfam < HMM database > < Input sequence >

Database: globin.hmm is the example HMM of
50 aligned globin sequences
Input: Artemia.fa is a FASTA file of brine shrimp
globin,
Database: Pfam
Input: transcriptional regulatory protein of about
8800 residues against the PFAM database

T-Coffee tcoffee
tcoffee < Input sequences file> -dp_mode =
myers_miller_pair_wise -in=lalign_id_pair,
clustalw_pair –tree_mode =slow

Input: The input file is 1yge_1byt (50 sequences
of average length 850) extracted from the Prefab
database.

Glimmer
glimmer2

run_glimmer2

glimmer2 <input sequence> <model file>

run-glimmer2 <input sequence>

Input Sequence: NC_000907.fna is a kind of
bacterium whose name is Haemophilus_influenzae
Model File: glimmer.icm is the collection file of
Markov models
Input Sequence: Bacteria Bradyrhizobium
japonicum genome NC_004463.fna consisting of
about 9200 kilobase pairs

Phylip dnapenny
promlk Execution Script provided with the benchmark

Input: Aligned 92 cyclophilins and cyclophilin-
related proteins from eukaryotes of average length
220

Grappa grappa grappa -f < Input file > -o < Output file > -m, where m
specifies tighten circular lower bound

Input: Input file is 12 sequences of the bluebell
flower species Campanulaceae

CE CE
CE - <protein sequence 1 in PDB> - <protein
sequence 2 in PDB> - <path of directory for storing
temporary results of execution>

Input: 1hba.pdb and 4hhb.pdb are different types
of hemoglobin which is used to transport oxygen

Predator predator predator -a -l <sequence> -f<output>

Input: eukaryota_100.seq includes 100 Eukaryote
protein sequences from NCBI genomes database.
The additional dataset to run Predator is 19
sequences extracted from SWISS-PROT each of
almost 7000 residues

FASTA: Similar to Blast, FASTA [18] is a collection of
local similarity search programs for sequence databases.
While FASTA and Blast both do pairwise local alignment,
their underlying algorithms are different. The query and
database files for FASTA have the same meaning as those
of Blast. With the provided dataset, the FASTA benchmark
performs a query that contains the human LDL receptor
precursor protein. Another program that we have included
from the FASTA package is the ssearch which does an
exact Smith-Waterman alignment on a pair of sequences.

4.2 Sequence Homology and Gene Finding
Glimmer: Glimmer (Gene Locator and Interpolated

Markov Modeler) [22] finds genes in microbial DNA. Its
uses interpolated Markov models (IMMs) to identify
coding and noncoding regions in the DNA. The program
consists of essentially two steps: the first step trains the
IMM from an input set of sequences, the second step uses
this trained IMM for finding putative genes in the input
genome. Glimmer can be used for gene annotation by
inputting its predictions into BLAST and FASTA. The
input we provide for Glimmer is a kind of bacterium whose
name is Haemophilus_influenzae and glimmer.icm is the
collection file of Markov models. Run-glimmer2 is a script
included in the program, which runs programs long-orfs
and extract (extracts all non-overlapping open reading
frames), build-icm (build an interpolated context model)
and finally runs glimmer2 for a particular sequence. The
input sequence used for this script is Bacteria
Bradyrhizobium japonicum genome consisting of about 9200
kilobase pairs.

4.3 Molecular Phylogeny Analysis
Benchmarks

Phylip: Phylip (PHYLogeny Inference Package) [23] is
a package of programs for inferring phylogenies
(evolutionary trees). Methods that are available in the
package include parsimony, distance matrix, maximum
likelihood, bootstrapping, and consensus trees. Data types
that can be handled include molecular sequences, gene
frequencies, restriction sites and fragments, distance
matrices, and discrete characters. Dnapenny and promlk
are the typical applications in Phylip. Dnapenny is a
program that finds all of the most parsimonious trees of the
input data. Promlk implements the maximum likelihood
method for protein amino acid sequences. They both can
run in command line method or interactive method. To
provide deterministic execution, we provide execution
script to invoke the two benchmarks. The additional
dataset available to run promlk is the aligned 92
cyclophilins and cyclophilin-related proteins from
eukaryotes of average length 220.

GRAPPA: GRAPPA (Genome Rearrangements
Analysis under Parsimony and other Phylogenetic
Algorithms) is a program for phylogeny reconstruction

[24]. To date, almost every model of speciation and
genomic evolution used in phylogenetic reconstruction has
given rise to NP-hard optimization problems. GRAPPA is
a reimplementation of the breakpoint analysis [25]
developed by Blanchette and Sankoff, and also provides
the first linear-time implementation of inversion distances
improving upon Hannenhalli and Pevzner’s polynomial
time approach [26]. Currently, GRAPPA also handles
inversion phylogeny and unequal gene content. The input
file is 12 sequences of the bluebell flower species
Campanulaceae.

4.4 Protein Structure Analysis Benchmarks
CE: CE (Combinatorial Extension) [27] finds structural

similarities between the primary structures of pairs of
proteins. CE first aligns small fragments from two proteins.
Later, these fragments are combined and extended to find
larger similar substructures. The inputs we provide for CE
are different types of hemoglobin used to transport oxygen.

Predator: Predator [28] is a tool for finding protein
structures, and is based on the calculated propensities of
every 400 amino-acid pairs to interact inside an α -helix or
one upon three types of β -bridges. It then incorporates
non-local interaction statistics. Predator uses propensities
for α -helix, β -strand and coil derived form a nearest
neighbor approach. Our input for Predator includes 100
Eukaryote protein sequences from NCBI genomes database
and results of the secondary structure prediction. The
additional dataset to run Predator is 19 sequences
extracted from SWISS-PROT each of almost 7000 residues.

5. Pre-Compiled Binaries and Simulation
Points

5.1 BioPerf Alpha Binaries for Simulation
based Studies

To allow computer architecture researchers to simulate
the BioPerf benchmarks using execution-driven and cycle-
accurate architecture research frameworks (such as
SimpleScalar [32], SimAlpha [33], and M5 [34]), we made
an extra effort to produce the Alpha binaries of the
majority of BioPerf benchmarks. We have tested all pre-
compiled Alpha binaries (with static link option) using the
Simplescalar sim-outorder simulator. The pre-compiled
binaries are available in the BioPerf package.

5.2 Simulation Points of BioPerf Workloads
Our earlier study [10, 11, 30] shows that bioinformatics

applications can execution billions of instructions before
completion. Therefore, it is infeasible to simulate entire
benchmark execution using detailed cycle-accurate
simulators. Recently, the computer architecture research
community has widely adopted SimPoint [7] methodology
as an efficient way to simulate the representative workload
execution phases. We used the SimPoint framework
developed by Calder et al. to generate the simulation points
of the BioPerf benchmarks listed in the Table 2. Since the
total number of instructions of different benchmarks varies
significantly, we used the criteria suggested in [34] to
determine the size of interval for each individual
benchmark. Table 2 lists the interval size as well as the
simulation points for each benchmark.

Table 3. Pre-compiled Alpha binaries (all binaries have been successfully tested on

Simplescalar Sim-outorder simulator) and their simulation points

Benchmark Input Dataset Interval
(M)

Simulation Points

fasta34 human LDL receptor precursor protein,
NCBI nr database 400 412,698,242,326,810,961,503,487,354,1051,932,8,832,7

92,459,988,54,107,482,808,136,554,996,588

clustalw
317 Ureaplasma’s gene sequences from
the NCBI Bacteria genomes database 850 24,918,906,701,702,674,793,395,252,845,719,883,857,5

85,858,651,381,817

hmmsearch
a profile HMM built from the alignment
of 50 globin sequences, uniprot_sprot.dat
from SWISS-PROT

680 340,674,330,695,711,75,619,599,54,677,551,672,
794,40,404,682,618,370,457,951

glimmer2 18 bacteria complete genomes from the
NCBI genomes database 20 581,1,45,70,32,13,2,17,1567,8,404,26,84,1572,6,

21,494,1109,40,1240

diffseq nucleic acid database EMBL 35
705,680,444,597,442,255,662,10,3,977,288,443,
1006,827,990,1004,343,927,707,256,98,1054,689,
964,780,958,824,942

megamerger nucleic acid database EMBL 35
703,559,254,596,679,443,377,825,259,1067,3,442,901,2
55,310,593,94,773,976,758,889,781,1058,
818,5,560

shuffleseq nucleic acid database EMBL 300 318,1,718,981,280,115,18,355,261,365,1019,457,194,
1018,196,43,254,406,226,775,842,454,894,986,776

dnapenny ribosomal RNAs from bacteria and
mitochondria 140 95,1048,1043,225,672,1,61,413,185,627,51,1014,1056,2

,110,911,200,1003,777,970,639,1053,40,438,576,597

promlk
protein amino acid sequences of 17
species ranging from a deep branching
bacterium to humans

320
21,911,255,1,320,548,876,713,176,319,813,332,818,
932,445,807,909,773,580,854,224,719,700,969,
472,715,1008,661,375,210

predator 100 Eukaryote protein sequences from
NCBI genomes database 700 272,247,758,195,1143,536,535,166,585,81,233,296,

482,640,429,406,88,343,203,403,479,955,37,971

6. Performance Analysis on PowerPC G5 and
Mambo

We have performed an exhaustive analysis of BioPerf
codes on the cycle-accurate IBM Mambo simulator [37]
and the Apple G5 (IBM PowerPC 970) workstation [38]
(see Figure 5). In addition to reporting the aggregate
performance characteristics at the end of each run, we also
analyze the “live-graph” performance data which show the
variation of the performance exhibited during the
execution of the application. We are using these analyses
to propose architectural features in the design of next
generation computer architectures to optimize their
performance for computational biology workloads.

An advantage of the Mambo and MONster tools is the
“live graph” capabilities that report accumulated data not
only at the end of each run, but also at chosen regular
sampling intervals. Using such data, we correlate the
performance with phases of the application, and suggest
optimizations targeted at separate regions of the
application.

Apple G5
System

IBM Mambo
Simulator

Performance
Charateristics

Simulated

Monitoring

C.H.U.D.
Performance

Machine

Configs

Comparison
Cross−

BioSplash
Life Sciences
Application

Suite

Impact
Analysis

of Machine
Parameters

Figure 5. Dual-platform analysis reveals how cache and
machine organization parameters affect the
performance of life sciences applications.

Figure 6. Instruction profile of Blast.

As an example, we include two live-graphs in this
paper, one from the Mambo simulator runs and the other
from Apple G5 runs. In the first plot (Figure 6), we have
the instruction profiles for Blast from Mambo, and the
second plot (Figure 7) shows the variation in instructions
per cycle (IPC) with the L1 data miss rate. For cumulative
performance analysis, we use the data generated by the
MONster tool, since the Apple G5 codes may be run for
significantly larger input data sets. We summarize the
hardware performance counters for BioPerf runs we used
on the Apple G5. These include:

• Instruction-level analysis: Instructions dispatched,
instructions completed (including and excluding I/O
and load/store), branch mispredictions due to
condition register value and target address predict
were recorded as part of this analysis.

• Memory-level analysis: L1 and L2 cache loads and
stores, L1 and L2 cache load and store misses, TLB
and SLB misses, read/write request bytes, number of
memory transactions and Load Miss Queue (LMQ)
full events were included in this analysis.

Figure 7. Variation in IPC and L1 data cache miss rate

In our research studies, we also compare these codes on
dual-core systems to quantify to what extent computational
biology applications can utilize and benefit from
commodity computer architecture enhancements such as
multi-core processing chips. We are not able to include all
the live-graphs, cumulative data and the analysis in this
document due to space constraints; fully detailed analysis
and all the live-graphs are included in [11].

7. Conclusions
Bioinformatics applications represent increasingly

important computer workloads. In order to apply a
quantitative approach in computer architecture design and
performance evaluation, there is a clear need to develop a
benchmark suite of representative bioinformatics
applications. This paper presents a group of programs
representative of bioinformatics software. These programs
include popular tools used for sequence alignments,
molecular phylogeny analysis, protein structure prediction,
and gene finding. The BioPerf benchmark suite is freely
available from the web site www.bioperf.org. As the field
of bioinformatics evolves, we will extend BioPerf to
encompass important emerging trends. In the future, we
will also explore integrated software/hardware techniques
to optimize the performance of bioinformatics applications.

8. Acknowledgements
Bader’s work was supported in part by DARPA

Contract NBCH30390004; and NSF Grants CAREER
ACI-00-93039, NSF DBI-0420513, ITR ACI-00-81404,
DEB-99-10123, ITR EIA-01-21377, Biocomplexity DEB-
01-20709, and ITR EF/BIO 03-31654. We would like to
thank Ram Rajamony of IBM Austin Research
Laboratories for his help with the Mambo simulator and
the CHUD performance tools and performance metrics.
We also would like to thank Virat Agarwal and Gaurav
Goel for performing several of the simulation runs
included in the paper, Tamer Kahveci and Abhishek
Narain Singh for helping with the selection of the BioPerf
codes.

References
[1] J. L. Weber and E. W. Myers, Human Whole Genome

Shotgun Sequencing, Genome Research, 7(5): 401-
409, 1997.

[2] E. Anson and E. W. Myers, Algorithms for Whole
Genome Shotgun Sequencing, In Proceedings of 3rd
Annual International Conference on Computational
Molecular Biology, 1999.

[3] J. C. Venter et al., The Sequence of the Human
Genome, Science, 291(5507):1304-1351, 2001.

[4] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown.
Quantitative Monitoring of Gene Expression Patterns
with a Complementary DNA Microarray, Science,
270(5235):467-470, 1995.

[5] http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html
[6] Bioinformation Market Study for Washington

Technology Center, Alta Biomedical Group LLC,
www.altabiomedical.com, June 2003.

[7] T. Sherwood, E. Perelman, G. Hamerly and B. Calder,
Automatically Characterizing Large Scale Program

Behavior, In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2002.

[8] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, The SPLASH-2 Programs: Characterization
and Methodological Considerations, In Proceedings of
the International Symposium on Computer
Architecture, 1995.

[9] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B.
Jacob, C.-W. Tseng, and D. Yeung, BioBench: A
Benchmark Suite of Bioinformatics Applications, In
Proceedings of the International Symposium on
Performance Analysis of Software and Systems, 2005.

[10] Y. Li, T. Li, T. Kahveci and J. Fortes, Workload
Characterization of Bioinformatics Applications on
Pentium 4 Architecture, In Proceedings of the
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems, 2005.

[11] D. A. Bader, V. Sachdeva, V. Agarwal, G. Goel, A. N.
Singh, BioSPLASH: A Sample Workload for
Bioinformatics and Computational Biology for
Optimizing Next-Generation Performance Computer
Systems, Technical Report, University of New
Mexico, April 2005.

[12] The RCSB Protein Data Bank,
http://www.rcsb.org/pdb/

[13] D. A. Bader, Computational Biology and High-
Performance Computing, Special Issue on
Bioinformatics, Communications of the ACM,
47(11):34-41, 2004.

[14] European Molecular Biology Laboratory,
http://www.embl-heidelberg.de

[15] DNA Data Bank of Japan, http://www.ddbj.nig.ac.jp/
[16] The UniProt/Swiss-Prot Database,

http://www.ebi.ac.uk/swissprot/
[17] S. Altschul, W. Gish, W. Miller, E. W. Meyers and D.

J. Lipman, Basic Local Alignment Search Tool,
Journal of Molecular Biology, vol. 215, no. 3, pages
403-410, 1990.

[18] W. R. Pearson and D. J. Lipman, Improved Tools for
Biological Sequence Comparison, Proc. Natl. Acad.
Sci., 85 (1988), 3244-3248.

[19] J. D. Thompson, D. G. Higgins, and T. J. Gibson,
Clustal W: Improving the Sensitivity of Progressive
Multiple Sequence Alignment through Sequence
Weighting, Positions-specific Gap Penalties and
Weight Matrix Choice, Nucleic Acids Research, vol.
22, no. 22, pages 4673-4680, 1994.

[20] S. R. Eddy, Profile Hidden Markov Models,
Bioinformatics Review, vol. 14, no. 9, page 755-763,
1998.

[21] C. Notredame, D. Higgins, and J. Heringa. T-Coffee:
A Novel Method for Multiple Sequence Alignments, J.
Molecular Biology, 302:205– 217, 2000.

[22] S. Salzberg, A. Delcher, S. Kasif, and O. White,
Microbial Gene Identification using Interpolated
Markov Models, Nucleic Acids Research, vol. 26, no.
2, page 544-548, 1998.

[23] J. Felsenstein, PHYLIP - Phylogeny Inference
Package (version 3.2), Cladistics, 5: 164-166, 1989.

[24] B. M. E. Moret, D. A. Bader, T. Warnow, S. K.
Wyman, and M. Yan, GRAPPA: A High Performance
Computational Tool for Phylogeny Reconstruction
from Gene-Order Data, In Proc. Botany, Albuquerque,
NM, August 2001.

[25] M. Blanchette, G. Bourque, and D. Sankoff,
Breakpoint Phylogenies, In S. Miyano and T. Takagi,
editors, Genome Informatics, pages 25-34. University
Academy Press, Tokyo, Japan, 1997.

[26] D. A. Bader, B. M. E. Moret, and M. Yan, A Linear-
Time Algorithm for Computing Inversion Distance
between Signed Permutations with an Experimental
Study, Journal of Computational Biology, 8(5):483-
491, 2001.

[27] I. N. Shindyalov, and P. E. Bourne, Protein Structure
Alignment by Incremental Combinatorial Extension
(CE) of the Optimal Path, Protein Engineering, vol.
11, no. 99, page 739-747, 1998.

[28] D. Frishman, and P. Argos, 75% Accuracy in Protein
Secondary Structure Prediction, Proteins, vol. 27, page
329-335, 1997.

[29] Y. Li and T. Li, BioInfoMark: A Bioinformatics
Benchmark Suite for Computer Architecture Research,
Technical Report, IDEAL Research, ECE Dept.,
University of Florida, January 2005.

[30] T. Kahveci, V. Ramaswamy, H. Tao and T. Li,
Approximate Global Alignment of Sequences, IEEE
Symposium on Bioinformatics and Bioengineering,
2005.

[31] Simplescalar, http://www.simplescalar.com/
[32] R. Desikan, D. Burger, and S. W. Keckler. Measuring

Experimental Error in Microprocessor Simulation, In
Proceedings of the International Symposium on
Computer Architecture, 2001.

[33] The M5 Simulator System, http://m5.eecs.umich.edu/
[34] G. Hamerly, E. Perelman and B. Calder, How to Use

SimPoint to Pick Simulation Points, ACM
SIGMETRICS Performance Evaluation Review, 2004.

[35] D. A. Bader, V. Sachdeva, A. Trehan, V. Agarwal, G.
Gupta, and A.N. Singh, BioSPLASH: A Sample
Workload from Bioinformatics and Computational
Biology for Optimizing Next-Generation High-
Performance Computer Systems, (Poster Session),
13th Annual International Conference on Intelligent
Systems for Molecular Biology (ISMB 2005).

[36] D. A. Bader, V. Sachdeva, BioSPLASH: Incorporating
Life Sciences Applications in the Architectural
Optimizations of Next-Generation Petaflop-System,
(Poster Session), The 4th IEEE Computational
Systems 4th IEEE Computational Systems
Bioinformatics Conference (CSB 2005).

[37] P. Bohrer, M. Elnozahy, A. Gheith, C. Lefurgy, T.
Nakra, J. Peterson, R. Rajamony, R. Rockhold, H.
Shafi, R. Simpson, E. Speight, K. Sudeep, E. Van
Hensbergen, and L. Zhang. Mambo - A Full System
Simulator for the PowerPC Architecture, ACM
SIGMETRICS Performance Evaluation Review,
31(4):8-12, 2004.

[38] Apple Computer, Inc. PowerPC G5: White Paper,
images.apple.com/powermac/pdf/PowerPCG5 WP
06092004.pdf.

