Summary

We tackle the crucial problem of comment spam and propose **EDOCS**, a graph-based approach that quantifies how much effort a user exerted over his or her comments, to detect if the user is a comment spammer or not. EDOCS is effective in detecting comment spammers accurately with 95% true positive rate at 3% false positive rate as well as preemptively.

Who are Comment Spammers?

Comment spammers use comment threads to post irrelevant content (spam). A recent study showed that over 75% of the one million blog comments collected were indeed spam, some with links to malware sites.

Spammers are Smart!

Spam comments are often short and carefully crafted. **Even human experts have a hard time differentiating some spam comments from legitimate ones.**

A Real-World Example

Original post:
Recently I signed up with walters alerts “Google em” they sounded pretty good in there emails about there picks, so I decided to give them a shot and bought there last pick VISN at $2.40 boy, was I amazed I ended up selling for 300% profit.

Several replies labeled as “clean” by human editors:
Re: Great, i got some shares yesterday. Good luck.
Re: Re: FACTS!!! I love it ! I agree.
Re: Re: Re: good posts need to be at the top ...

Why Quantify Effort to Detect Spammers?

Intuitively, spammers would only exert limited time and money when preparing and disseminating comments.

Our **Effort-based Detection of Comment Spammers (EDOCS)** algorithm captures this intuition, by analyzing a bipartite graph of users and effort-related feature values to quantify how much effort a user exerted over his or her comments.

Effort scores of comment spammers should be lower than those of the legitimate users.

A Graph-based Algorithm: EDOCS

EDOCS operates on a bipartite graph of users and effort-related feature values and performs iterative message propagation on this graph.

A user is connected to all the feature values that apply to her (e.g., connecting a user with her IP address).

We currently consider two features:
1. Effort to write comment text
2. Effort to obtain IP addresses

Yahoo Finance Dataset

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#users</td>
<td>197,464 (20.03% spammers)</td>
</tr>
<tr>
<td>#comments</td>
<td>1,201,277</td>
</tr>
<tr>
<td>Mean/Median #comments per user</td>
<td>6.08/1</td>
</tr>
<tr>
<td>Dataset duration</td>
<td>May 1-31, 2014</td>
</tr>
<tr>
<td>Duration of follow-up period</td>
<td>June 1-August 5, 2014</td>
</tr>
</tbody>
</table>

A user is assumed to be a spammer if she posted at least one comment labelled as spam by human experts.

Experiments: Labelling Spammers

(over 197k users)

Experiments: Follow-up on false alarms

Conversion trend of users from “clean” to spammer based on the date of their first spam comment messages during the follow-up period. EDOCS preemptively detected these 95 users (top right corner) as spammers using data from May 2014.