Summary

There are a wealth of graph visualization techniques for accomplishing a variety of analysis tasks. Analysts often rely on a suite of different techniques, and visual graph analysis application builders strive to provide this breadth of techniques. To provide a holistic model for specifying network visualization techniques (as opposed to considering each technique in isolation) we present the Graph-Level Operations (GLO) model. We describe a method for identifying GLOs and apply it to identify five classes of GLOs, which can be flexibly combined to recreate canonical graph visualization techniques.

Examples of Applying GLOs

Results of the GLOs making up the transition from a force-directed layout to semantic substrates to scatterplot.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. IIS-1320537 and the NSF Graduate Research Fellowship Program under Grant No. DGE-1148903. This work has been partially supported by the U.S. Army Research Office (ARO) and Defense Advanced Research Projects Agency (DARPA) under Contract Number W911NF-11-C-0088 and the XDATA program sponsored by the Air Force Research Laboratory (AFRL) and DARPA. The content of the information in this document does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

References


Benefits

Seeing different views onto graph
Discovering new visualization techniques
Easing the engineering challenge

Future Work

Subgraph selections (enables NodeTrix)
Interactions (filtering, etc.)
Dynamic graphs or more complex data

Identifying GLOs

1. Identify as many different graph visualization techniques as possible
2. Form all pairs of techniques
3. For each pair, transition one technique to and from the other, recording each step
4. Each step represents a single GLO

Graph-Level Operations (GLOs):
Atomic operations on some or all graph visualization elements

Five categories of GLOs

Positioning Nodes:
Align Nodes, Evenly Distribute Nodes, ...

Modifying Elements Properties:
Size Nodes by Attr, Display Links as Curved, ...

Cloning Nodes:
Clone Active Generation, Select Gen k

Aggregating Nodes and Edges:
Aggregate by Attr & Attr, Deaggregate Gen k, ...

Modifying Display Properties:
Show Axis, ...

1. Identify as many different graph visualization techniques as possible
2. Form all pairs of techniques
3. For each pair, transition one technique to and from the other, recording each step
4. Each step represents a single GLO