
Server-Based Traffic Shaping for Stabilizing Oscillating
Adaptive Streaming Players

∗

Saamer Akhshabi,
Lakshmi Anantakrishnan,

Constantine Dovrolis,
College of Computing

Georgia Institute of Technology
s.akhshabi, lakshmi3, constantine@gatech.edu

Ali C. Begen
Video and Content Platforms Research and

Advanced Development
Cisco Systems

abegen@cisco.com

ABSTRACT

Prior work has shown that two or more adaptive streaming

players can be unstable when they compete for bandwidth.

The root cause of the instability problem is that, in Steady-

State, a player goes through an ON-OFF activity pattern in

which it overestimates the available bandwidth. We propose

a server-based traffic shaping method that can significantly

reduce such oscillations at the expense of a small loss in

bandwidth utilization. The shaper is only activated when

oscillations are detected, and it dynamically adjusts the

shaping rate so that the player should ideally receive the

highest available video profile while being stable. We

evaluate the proposed method experimentally in terms of

instability and utilization comparing with the unshaped case,

under several scenarios.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of

Systems

General Terms

Performance, Measurement, Algorithms

Keywords

Adaptive streaming, video streaming over HTTP, player

competition, player oscillation, video shaping, stabilization

1. INTRODUCTION

The recent takeover of adaptive streaming over HTTP

as the dominant technology for video delivery has not

been without drawbacks. Recent studies have found some

important performance issues with this technology [5, 7, 8,

9, 10, 11, 13]. The most alarming problem, in our view,

is that instability can result when multiple players share

the same network bottleneck, causing players to oscillate

between different video profiles [5]. This instability can also

∗This is an extended version of a paper with the same title that
appeared at ACM NOSSDAV 2013 [6].

cause bandwidth underutilization and unfairness between

players. In this paper, we focus on the instability problem

and propose a traffic shaping method to mitigate it.

Next we summarize the root-cause of the problem (see

[5] for a longer discussion). An adaptive streaming player

typically operates in one of two states: the Buffering-State,

during which the player requests a new video chunk when

the previous chunk has been downloaded, and the Steady-

State, during which the player requests a new video chunk

periodically, once per chunk duration (T seconds). During

Steady-State, the player attempts to maintain a constant

playback buffer size. Such periodic requests lead to an

ON-OFF activity pattern in which the player is either ON,

downloading a chunk, or OFF, staying idle. In parallel,

the player estimates the network available bandwidth based

on the per-chunk TCP download throughput, and it relies

on that estimate to select the bitrate (video profile) for

subsequent chunks [7]. If two or more video players

share the same bottleneck link, and depending on the

temporal overlap of their ON-OFF periods, they may

both overestimate the available bandwidth. Consider, for

instance, the case that the ON period of player X overlaps

with the OFF periods of other players; player X will then

overestimate the available bandwidth because its downloads

do not share the bottleneck with other players. Player

X would then decide to switch to a higher video profile,

even though that bitrate may not be sustainable, resulting

in congestion. In that case player X would switch back

to a lower profile, causing oscillations. Fundamentally,

the problem is that player X cannot correctly observe the

available bandwidth when it is in the OFF state.

We propose a server-based traffic shaping method

that aims to eliminate the root cause of the instability

problem, i.e., to avoid the OFF periods during Steady-State.

Specifically, when the server detects that a player oscillates

between different profiles, it activates a shaping module (or

“shaper”) for that player. The shaper limits the throughput

for each chunk to the encoding rate of that chunk; so, as long

as the available bandwidth is higher than the shaping rate,

1

the download duration will be roughly equal to the chunk

duration T . Consequently, the player will remain ON even

when it operates in Steady-State.

Houdaille and Gouache [9] have also proposed a traffic

shaping method, deployed at broadband links, to improve

the stability, fairness, and convergence delay of adaptive

streaming players. That work assumes that the bottleneck is

always the broadband downstream link and so the shaping

rate is determined based on that link’s capacity and the

number of active players. We do not make any assumptions

about the location and capacity of the shared bottleneck

or about the number of competing players. On the other

hand, we assume that a player receives most successive

video chunks from the same video server (so that the

shaping module can maintain the required state for each

player); this may not be true in the presence of caches or

when the player requests different chunks from different

CDNs/servers. Finally, our traffic shaping method is server-

based, not requiring any cooperation from the client, and so

it is entirely different than client-based adaptation methods

such as AdapTech [7] or FESTIVE [11]. A comparison

between the two approaches in terms of stability, efficiency

and fairness is left for future work.

2. STABILIZATION METHOD

In this section, we present the proposed traffic shaping

method. The shaper is not player-specific; it should work

with any HTTP adaptive video streaming player. In the

following, we first outline the basic idea behind the proposed

shaping method and then describe in more detail each

module of the algorithm. A flow chart of the algorithm is

also shown in figure 1.

2.1 Basic Idea

The server’s first task is to detect if a player is oscillating

between different video profiles (See Section 2.3). In

that case, the server activates the shaper for that player.

The proposed scheme is reactive in nature: it reacts to

oscillations instead of trying to prevent them. The reason is

that shaping may have an execution overhead for the server,

and so it should be activated only when necessary.

The shaper has two objectives: (i) to stabilize the player

by eliminating the root cause of the instability problem, i.e.,

to avoid the OFF periods during Steady-State, and (ii) to

allow the player to request the highest available profile that

will not lead to oscillations. Without the second objective, a

simple stabilization method would be to force the player to

request the lowest available profile. That would of course be

detrimental in terms of quality of experience (QoE).

The shaping rate is adjusted for each chunk (See Section

2.2). To eliminate OFF periods (or, in practice, to reduce

them as much as possible) the shaping rate is equal to the

chunk’s encoding rate. For instance, if the chunk duration is

T = 2 s, and the chunk’s size is 2 MB, its average encoding

rate is 8 Mbps. If the shaping rate is also set to 8 Mbps,

and the network available bandwidth is more than that, the

chunk will be delivered to the receiver at the shaping rate,

and the download duration will be (approximately) T . In

other words, there will be no OFF period after the end of

the download. Without shaping though, TCP would attempt

to transfer the chunk as fast as possible, potentially in much

less than T seconds, creating an OFF period after the end of

the download. As previously discussed, such OFF periods

can cause bandwidth overestimation and oscillations, when

the player is sharing the bottleneck with other adaptive

streaming players.

After the shaper has stabilized a player, the available

bandwidth may increase or decrease. New streams may start,

existing streams may end, and other sources of traffic may

appear or disappear. The server needs to allow for such

variations and adjust the shaping rate accordingly. It turns

out that a persistent available bandwidth decrease will cause

congestion, and so it will trigger the player to switch to (and

stay at) a lower profile than the shaping rate (See Section

2.5).

The opposite case is more challenging because a shaped

player cannot detect that the available bandwidth has

increased (its throughput is limited by the shaping rate).

To deal with that possibility, the shaper is occasionally de-

activated, and the server estimates the available bandwidth

based on the TCP throughput of those unshaped chunks. If

the available bandwidth has increased, the shaping rate is

also increased accordingly (See Section 2.6).

The flow chart of the proposed stabilization method is

shown in figure 1. The algorithm is executed upon receiving

each chunk request and before sending the corresponding

chunk.

2.2 Relation between Shaping Rate and Chunk
Encoding Rate

Recall that the server aims to eliminate OFF periods by

shaping each chunk so that its download takes T seconds.

This can be accomplished, in the absence of network

congestion, if the shaping rate is equal to the average

encoding rate for that chunk. The encoding rate for a

chunk can be determined at the server based on the size and

duration of the chunk.

In practice, the shaping rate is set to a slightly higher value

than the encoding rate. The reason is that adaptive streaming

players are conservative, and they request a video profile of

rate r only if the estimated available bandwidth is more than

r/c, where c is slightly less than 1 (e.g., 0.9). Consequently,

if the server shapes chunks exactly at their encoding rates,

the player would keep downshifting over time. We refer to

c as the shaping slack parameter; our earlier work suggests

that commercial players often use a value of c around 0.8 [7].

Also considering TCP’s inefficiency and other sources of

noise, we set c = 0.7. Because of c, the download duration

of shaped chunks is typically less than T , and thus there is a

short OFF period after each download.

2

^

No

Start

Two

changes in the last
direction

W chunks?

Yes

active?

shaping module

Is

No

active?

shaping module

Is
Yes

No

Do nothing

Yes

shaping rate
throughput <

Yes No

No

Yes

Has the

player been

τ

Yes

No

Yes

No

rateshaping

Yes

No

by randomly to the player

Increase shaping rate

Estimate

of player

Decrease shaping rate

Reset detection module

chunks?

leaving a chunk unshaped

Estimate bandwidth available

> nextτ̂

Reset detection module

requesting the

shaping profile

for W consecutive

Shaping Rate Increase Module

Shaping Rate Decrease Module

Set shaping rate to π m−1

Reset detection module

Find candidate
Π profiles

Initial Shaping Rate Selection Module

Is instability
due to

congestion?

Instability detected

Is Abort

Procedure

 applicable?

Decrease shaping rate

Oscillation Detection Module

Send chunk

Chunk request

Figure 1: The flow chart of the stabilization algorithm which is executed upon receiving each request and before the

corresponding chunk is sent.

2.3 Oscillation Detection

In the context of adaptive streaming, an oscillation occurs

when the requested video profiles alternate between periods

of upshifts and downshifts in relatively short time scales [5].

Figure 2 demonstrates this pattern for a typical player. The

oscillation detection module aims to identify such oscillatory

patterns.

The detector checks for changes in the direction of the

player’s requested profiles. A direction change is defined

as a change in the requested profile (upshift or downshift)

that is different than the last such change. Figure 2 shows

two direction changes: from chunks 5 → 6, and from 9 →
10. When two or more direction changes occur within W
successive chunks, an oscillation is detected and the player

is flagged as unstable. These two parameters control the

sensitivity of the oscillation detection module: increasing

the number of required direction changes and/or reducing

W , reduces the sensitivity of the detector. The parameterW
is referred to as the detection window size and its default

value is 30 chunks. The values of these two parameters

were chosen such that we can detect almost all observed

oscillations soon after their starting point.

2.4 Initial Shaping Rate Selection

To find the highest sustainable profile, the server

considers a set of candidate profiles. This set includes

Figure 2: An oscillation in the time series of requested

profiles by a player.

all profiles that have been requested between the last

two direction changes, triggering the oscillation detection

module to flag the player as unstable. Let us denote

this set by Π; suppose that the set includes m profiles,

with the i-th profile denoted as πi. In the example of

Figure 2, the instability is detected at chunk #10 and Π =

{P2, P3, P4, P5}. The highest profile πm is obviously not

sustainable; otherwise the player would not switch to a lower

profile. The shaper starts with a rather aggressive choice,

setting the initial shaping rate to the next highest profile,

πm−1.

3

2.5 Shaping Rate Decrease

While shaping a particular player, the server keeps

checking whether the player is still oscillating. If that is the

case, the server needs to distinguish between oscillations due

to OFF periods (they may still occur because of the shaping

slack parameter) and oscillations due to short-term available

bandwidth reductions (causing a drop in the requested

profile followed by a gradual increase). In the former, the

shaping rate should be decreased, while in the latter there is

no reason to modify the shaping rate. To distinguish between

the two cases, we rely on the following heuristic: The server

identifies the most commonly requested profile Pq in the last

W requested chunks before the last two direction changes. If

those direction changes involve profiles that are less than Pq ,

we infer that the oscillation was due to a short-term drop in

the available bandwidth, and we do not modify the shaping

rate. Otherwise, the shaping rate is decreased to the one

lower profile.

2.6 Shaping Rate Increase

When the available bandwidth increases, a shaped player

would not be able to detect the increase because its

throughput is limited by the shaper. To avoid this important

problem, the server needs to occasionally estimate the

network available bandwidth. To do so, after the player

has been stabilized, the server de-activates the shaper for

randomly chosen chunks (with 20% probability), and it

measures the download throughput for those chunks.

These throughput measurements can be easily accomplished

in an instrumented server. In our testbed, the server is run-

ning on a Linux stack (version 2.6.32-33) that allows appli-

cations to read the congestion window (cwnd) and smoothed

round-trip time (srtt) TCP variables. So, we can estimate the

connection’s throughput as the ratio τ =
cwnd
RTT

. In practice,

we collect multiple samples of this ratio during the transmis-

sion of an unshaped chunk, and the throughput is estimated

as the median of these ratios, denoted by τ̂ . We have con-

firmed experimentally that this estimate closely tracks the

throughput of the corresponding TCP connection.

If the estimated available bandwidth is higher than the

shaping rate, the shaping rate is increased to the next higher

profile (subject to the slack parameter c), as long as that rate

is less than the available bandwidth. Note that an increase

of the shaping rate does not mean that the player will

automatically start requesting that next higher profile. That

transition may take place several chunks later, depending on

the player’s adaptation algorithm.

Until the player makes the previous upwards transition,

the server keeps measuring the per-chunk throughput. If

the player does not switch to the higher profile, while the

throughput of a chunk is less than a fraction ψ of the shaping

rate, the server infers that the player cannot switch to the

profile that corresponds to the current shaping rate. In that

case the server returns to the previous, lower shaping rate.

We refer to this corner-case of the algorithm as the abort-

rate-increase procedure. In order to allow for some slack,

we set ψ = 0.875.

3. TESTBED AND METRICS

The experimental testbed and setup is similar to that

described in [7] and [5]. The competing players run

on the same host. That host also runs a packet sniffer

(Wireshark [14]) and a network emulator (DummyNet [17]).

Wireshark allows us to capture and analyze the traffic

from/to the HTTP server offline. DummyNet allows us to

control the downstream available bandwidth (also referred

to as avail-bw below). The client-host is connected to

the Gigabit Georgia Tech campus network through a Fast

Ethernet interface.

We use two different players in our experiments. The

first is the Simpler Player introduced in [5], which is based

on the open-source Adobe OSMF player [15]. We have

instrumented that player to log internal variables such as

playback buffer size, requested bitrate, chunk download

time, and chunk throughput over time. The second player

is the commercial Smooth Streaming player [16]. We infer

the same variables for that player using packet captures, as

described in [7].

The testbed includes a machine hosting the server. This

host runs an Apache2 server running on a Ubuntu 10.04 LTS

system, and is also connected to the Georgia Tech campus

network through a Fast Ethernet interface. The traffic shaper

is installed as an Apache2 output filter module. We modified

the open-source mod-bw module to implement our shaping

method. We use two different content generator modules

in the Apache2 server: one for handling Adobe Dynamic

Streaming requests (mod-f4fhttp [2]) and another for

Microsoft Smooth Streaming requests (mod-smoothstr-

eaming [4]).

For Adobe OSMF, the video content is obtained from a

DASH dataset published by Lederer et al. [12] and packaged

using Adobe’s File Packager [1]. For Smooth Streaming,

we use the “Big Buck Bunny” 720p content provided by

Microsoft [3]. In the following, Pr represents a profile of

r Mbps available for a given video stream at the server (e.g.,

P2.75).

We define the following two performance metrics: (i)
the instability metric is defined as the fraction of successive

chunk requests by a player in which the requested bitrate

does not remain constant, (ii) the utilization metric is

defined as the aggregate throughput during an experiment

(measured using Wireshark), divided by the avail-bw in that

experiment.

4. DEMONSTRATION

In this section, we illustrate the function of every

component of the proposed method with two simple

experiments. We have performed many such experiments

with the Simpler Player introduced in [5], and to a smaller

degree, with the Smooth Streaming player. Due to space

4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500 600

M
b
p
s

Time(secs)

Server estimated throughput
Shaping rate

Client chunk download throughput
Requested bitrate

Figure 3: Requested bitrate, chunk throughput, and

shaping rate for Player-1.

constraints, we only show here two of these experiments

that highlight the most important aspects of the proposed

shaping method: one with the Simpler Player and another

using Smooth Streaming.

In the first experiment, the server provides six video

profiles between 0.7 Mbps and 5 Mbps. The bottleneck

capacity is set to 10 Mbps. Player-1 starts streaming first.

After about 50 seconds, three more players start at about the

same time. Two of these players terminate after 220 seconds.

The remaining two players continue until they complete their

streaming session six minutes later. We focus on Player-1.

Figure 3 shows time series for the requested bitrate, chunk

throughput, and shaping rate for Player-1. During the

first 50 seconds the player does not face any competition;

it quickly switches to the highest available profile (P5.0)

and remains stable. After the three additional players

join, the available bandwidth for Player-1 drops. This

forces the player to decrease its requested bitrate. Even

worse, the player becomes unstable because of the available

bandwidth overestimation associated with OFF periods [5].

The instability results in two direction changes occurring

at t = 82 s and t = 99 s, which fall within the detection

window size W of 30 chunks. This is detected by the server,

which activates the shaper. The set of candidate profiles is

determined as Π = {P2.0, P3.0}. The server starts shaping

the stream to the lower of these two profiles, P2.0.

When two players terminate at t = 279 s, the available

bandwidth for Player-1 suddenly increases from 2.5 Mbps to

5 Mbps. The opportunistic shaping rate increase mechanism

becomes active at around the same time. The shaper leaves

a chunk unshaped, estimates the new available bandwidth,

and increases the shaping rate by one profile. The player

reacts by increasing its requested profile toP3.0 a few chunks

later. A similar event takes place at t = 349 s when Player-1

switches to P4.0.

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500

M
b
p
s

Time(secs)

Server estimated throughput
Shaping rate

Client chunk download throughput
Requested bitrate

Figure 4: Requested bitrate, chunk throughput, and

shaping rate for a Smooth Streaming player in an

experiment with two competing Smooth Streaming

players.

There are two more interesting points in this experiment.

First, at t = 135 s and t = 205 s there are two

direction changes that are ignored by the shaper because

they are recognized as short-term available bandwidth drops.

Second, at t = 420 s, the abort-rate-increase procedure

becomes activated after the shaper attempts to increase the

shaping rate from P4.0 to P5.0 because the player is not able

to receive the throughput that corresponds to the new higher

shaping rate.

Note that Player-1 is in fact quite stable during this

experiment and it does not show the frequent oscillations

observed in earlier work with unshaped players [5]. Overall,

this experiment’s instability metric is 4.9%.

Next, we present an experiment with two competing

Smooth Streaming players. Figure 4 shows similar time

series for the requested bitrate, chunk throughput, and

shaping rate for one player. The two players share a

2 Mbps bottleneck link. There are eight video profiles

between 0.23 Mbps and 2.96 Mbps. After the streaming

session starts, each player quickly switches to the highest

sustainable profile P0.68, given its fair share of the available

bandwidth. However, due to OFF periods and the associated

overestimation, the players occasionally switch to the next

profile (P0.99), which is not sustainable (considering the

HTTP/TCP/IP headers overhead). The server detects this

instability at around t = 99 s and shapes both players

to P0.68. The two players remain stable afterwards. We

have repeated the same experiment without the stabilization

module; in that case the players keep oscillating between the

previous two profiles throughout the experiment.

5

5. RESULTS

In this section, we compare the performance of adaptive

video players in terms of instability and utilization, between

two cases: without traffic shaping and with the proposed

traffic shaping method. We refer to the former as the

unshaped case and the the latter as the shaped case.

The comparisons are done under three scenarios. First,

we examine how the number of competing players affects

stability and utilization, under a fixed bottleneck capacity.

Second, we examine how a persistent TCP transfer affects

the oscillations of multiple adaptive streaming players, and

how effective the traffic shaper is in that case. Third,

we examine how a mix of shaped and unshaped players

compete for the same bottleneck. In all three scenarios, the

experiments are performed using the Simpler OSMF-based

player.

5.1 Number of Competing Players

Assuming that the capacity of the bottleneck link is fixed,

how do the instability and utilization change as we vary the

number of competing players?

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16

P
e
rc

e
n
ta

g
e

Number of players

Instability metric with shaping
Instability metric without shaping

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

P
e
rc

e
n
ta

g
e

Number of players

Utilization with shaping
Utilization without shaping

Figure 5: The instability and utilization metrics as a

function of the number of competing players N for

shaped and unshaped players.

Figure 5 shows the instability and utilization metrics as

a function of the number of competing players, denoted by

N , with shaped and unshaped players. The link capacity

is 10 Mbps. Each point is obtained by repeating the same

experiment between two to eight times. We show 95%

confidence intervals.

In the case of unshaped players, we observe a similar

instability pattern with the earlier work [5]. The instability

metric peaks at some mid-rangeN value; the reason for this

pattern has been discussed in detail in [5]. In the case of

shaped players, the instability metric is significantly lower

(See Table 1 for p-values using the t-test). Specifically, the

instability metric drops to around 5%. It is hard to reduce

this metric even more because the shaper is reactive: it is

activated only after some oscillation is detected.

The results for the shaped case do not show the same trend

as in the case of unshaped players. In particular, we cannot

reject the hypothesis that the mean instability is constant

as N is increased. This demonstrates that the effective

operation of the proposed stabilization mechanism does not

have a strong dependence on the number of competing

players.

For most values of N , the utilization metric shows

a statistically significant difference between shaped and

unshaped players (See table 1 for p-values). However the

difference in the actual utilization is not large. This implies

that stabilization does not come at a big cost of utilization.

We certainly do not need to stabilize the players by forcing

them to use an overly low profile.

Metric N=2 N=4 N=6 N=8

Instability < 10
−4 < 10

−6 < 10
−16 < 10

−9

Utilization 0.09 < 10
−3 < 10

−8 < 10
−7

Metric N=10 N=12 N=14 N=16

Instability < 10
−16 < 10

−16 < 10
−16 < 10

−4

Utilization < 10
−6 < 10

−9 < 10
−12 0.92

Table 1: P-values for the hypothesis tests (“equality-of-

means” between shaped and unshaped players, using the

t-test) of Figure 5.

5.2 In the Presence of a TCP Bulk Transfer

What happens when adaptive streaming players share

the same bottleneck with a persistent TCP transfer? Does

the performance of the adaptive streaming players improve

when the stabilization mechanism is deployed at the server?

We perform two sets of experiments, one with three shaped

and another with three unshaped players. In both cases, they

compete with a persistent TCP transfer, and the bottleneck

link capacity is 10 Mbps. The TCP connection starts three

seconds after the players start streaming. Each experiment

is repeated four times.

Table 2 shows 95% confidence intervals for the instability

and utilization metrics. The instability metric is much less

in the shaped case (3.4% versus 10.7%). The aggregate

6

Metric Shaped Unshaped p-value

Instability 3.4± 0.6 10.7± 1.3 < 10
−14

Utilization 84.9± 1 89± 1.4 < 10
−4

Players’ bw share 36.9± 1 43.2± 1.1 < 10
−9

Table 2: The instability and utilization metrics, as well as

the players’ bandwidth share, in the presence of a bulk

TCP transfer. P-values for an equality-of-means test are

shown in the rightmost column.

utilization is quite high in both cases because the TCP flow

tends to fill up the bottleneck. The players’ bandwidth share

(the aggregate bandwidth consumed by the three players) is

slightly less in the case of shaped players, but the magnitude

of the difference is small. The TCP connection takes up

the largest share of the bottleneck’s capacity. DOUBLE

CHECK: As a result, the average throughput of the TCP

connection is 4.7 ± 0.3 Mbps and 4.4 ± 0.1 Mbps in the

shaped and unshaped cases, respectively.

5.3 Mix of Players

What happens when a mix of shaped and unshaped

players compete at the same bottleneck? How does

the stability and throughput of these two sets of players

compare? Does the presence of shaped players help to

reduce the instability even of the unshaped players? Do

unshaped players get higher throughput?

We examine these questions by performing a set of mixed-

player experiments where two shaped and two unshaped

players compete at a 12 Mbps bottleneck link. We also

perform a set of base experiments where all players are

unshaped. Each experiment is repeated four times.

Table 3 shows the instability and utilization metrics (95%

confidence intervals) for three types of players: shaped

players in mixed-player experiments, unshaped players in

mixed-player experiments, and unshaped players in base

experiments. P-values for an equality-of-means test between

the mixed-player and base experiments are also shown.

Shaped players have the lowest instability. However in

the set of mixed-player experiments, their presence does

not seem to help stabilize the competing unshaped players

(These results are in contrast with the ones reported in

[6]. In the future, we plan to repeat these experiments

under different scenarios and understand the conditions

under which the existence of shaped players can mitigate the

instability in unshaped ones.)

The bandwidth share of the shaped players is less than

the bandwidth share of the unshaped players. However, the

utilization is not significantly less in the case of the shaped

players and the corresponding p-value is 0.21.

6. CONCLUSIONS

We proposed a shaping mechanism that can be used

to mitigate the instability problem of adaptive streaming

Metric Shaped Unshaped All-Unshaped p-value

Instability 3.7± 0.7 12.7± 1.3 12.7± 1.3 < 10
−5

Utilization 67.5± 1.9 69± 2.9 0.21

BW share 27.7± 0.6 39.3± 1.7 - < 10
−10

Table 3: The instability and utilization metrics for a mix

of shaped and unshaped players.

players when they share a network bottleneck and compete

for bandwidth. The stabilization mechanism aims to

eliminate the root cause of the problem, i.e., the ON-

OFF download pattern of adaptive streaming players in

Steady-State. The proposed mechanism does not require

the players’ cooperation and it is entirely implemented at

the server. We conducted experiments with real adaptive

streaming players and showed that the proposed mechanism

works as expected in practice. We have also compared the

performance (in terms of instability, utilization) of adaptive

streaming with and without shaping. The proposed shaping

mechanism results in a major reduction in the instability

metric, practically stabilizing the competing players, at the

expense of a small loss in utilization.

7. REFERENCES

[1] Adobe HTTP Dynamic Streaming File Packager.

http://help.adobe.com/en_US/

HTTPStreaming/1.0/Using/

WS9463dbe8dbe45c4c-c126f3b1260533756d-7ffc.

html.

[2] Adobe HTTP Origin Module.

http://help.adobe.com/en_US/

HTTPStreaming/1.0/Using/

WS7b362c044b7dd076-735e76121260080a90e-8000.

html.

[3] IIS Smooth Streaming HD Sample Content.

http://www.microsoft.com/en-us/

download/details.aspx?id=18199.

[4] Smooth Streaming Module for Apache.

http://h264.code-shop.com/trac/wiki/

Mod-Smooth-Streaming-Apache-Version1.

[5] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and

A.C. Begen. What happens when http adaptive

streaming players compete for bandwidth? In ACM

NOSSDAV, 2012.

[6] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and

A.C. Begen. Server-based traffic shaping for

stabilizing oscillating adaptive streaming players? In

ACM NOSSDAV, 2013.

[7] S. Akhshabi, S. Narayanaswamy, A.C. Begen, and

C. Dovrolis. An experimental evaluation of

rate-adaptive video players over http. Signal

Processing: Image Communication, 27:271–287,

2012.

7

[8] A. Balachandran, V. Sekar, A. Akella, S. Seshan,

I. Stoica, and H. Zhang. A quest for an internet video

quality-of-experience metric. In ACM HotNets

Workshop, 2012.

[9] R. Houdaille and S. Gouache. Shaping http adaptive

streams for a better user experience. ACM MMSys,

2012.

[10] T.Y. Huang, N. Handigol, B. Heller, N. McKeown, and

R. Johari. Confused, timid, and unstable: picking a

video streaming rate is hard. In ACM IMC, 2012.

[11] J. Jiang, V. Sekar, and H. Zhang. Improving fairness,

efficiency, and stability in http-based adaptive video

streaming with festive. ACM CoNEXT, 2012.

[12] S. Lederer, M. Christopher, and T. Christian. Dynamic

adaptive streaming over http dataset. ACM MMSys,

2012.

[13] A. Mansy, B. Ver Steeg, and M. Ammar. Sabre: A

client based technique for mitigating the buffer bloat

effect of adaptive video flows. Technical report,

Georgia Tech, 2012.

[14] A. Orebaugh, G. Ramirez, J. Burke, and J. Beale.

Wireshark and Ethereal network protocol analyzer

toolkit. Syngress Media Inc, 2007.

[15] OSMF Player. http://www.osmf.org.

[16] Smooth Streaming Player. http:

//www.iis.net/download/SmoothClient.

[17] L. Rizzo. Dummynet: a simple approach to the

evaluation of network protocols. SIGCOMM CCR,

27(1):31–41, 1997.

8

