
Source-Level IP Packet Bursts: Causes and Effects∗

Hao Jiang
College of Computing

Georgia Institute of Technology

hjiang@cc.gatech.edu

Constantinos Dovrolis
College of Computing

Georgia Institute of Technology

dovrolis@cc.gatech.edu

ABSTRACT
By source-level IP packet burst, we mean several IP packets
sent back-to-back from the source of a flow. We first iden-
tify several causes of source-level bursts, including TCP’s
slow start, idle restart, window advancement after loss re-
covery, and segmentation of application messages into multi-
ple UDP packets. We then show that the presence of packet
bursts in individual flows can have a major impact on ag-
gregate traffic. In particular, such bursts create scaling in
a range of timescales which corresponds to the burst dura-
tion. Uniform “spreading” of bursts in the time axis reduces
the scaling exponent in short timescales (up to 100-200ms)
to almost zero, meaning that the aggregate traffic becomes
practically uncorrelated in that range. This result provides
a plausible explanation for the scaling behavior of Inter-
net traffic in short timescales. We also show that removing
packet bursts from individual flows reduces significantly the
tail of the aggregate marginal distribution, and it improves
queueing performance, especially in moderate utilizations
(50-85%).

Categories and Subject Descriptors: C.2.3 [Network
Operations]: Traffic modeling and analysis

General Terms: Measurement, Performance

Keywords: scaling, network traffic, TCP, packet disper-
sion, packet trains, capacity estimation, correlation struc-
ture

1. INTRODUCTION
By source-level IP packet burst, we mean several IP pack-

ets sent back-to-back, i.e., at the maximum possible rate,
from the source of a flow. Source-level bursts introduce
strong correlations in the packet interarrivals of individual
flows. Which protocol mechanisms create such bursts? Over

∗This work was supported by the “Scientific Discovery
through Advanced Computing” (SciDAC) program of DOE
(DE-FC02-01ER25467), and by an equipment donation from
Intel Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’03, October 27–29, 2003, Miami Beach, Florida, USA.
Copyright 2003 ACM 1-58113-773-7/03/0010 ...$5.00.

which timescales do the corresponding correlations extend?
Significant research efforts have focused recently on the cor-
relation structure, or scaling behavior, of aggregate IP traffic
in short timescales, typically up to a few hundreds of mil-
liseconds [1, 2, 3, 4]. Is the short time scaling behavior of
aggregate traffic related to the presence of packet bursts in
individual flows? How will the correlation structure of ag-
gregate traffic change if flows do not include such bursts?
In terms of network performance, how will the queueing de-
lays decrease if we remove bursts from individual flows, and
in what load conditions is such a decrease most important?
These are some of the questions that we investigate in this
paper.

Background on scaling. The key tool that we rely on is
the wavelet-based multiresolution analysis developed in [5]
and implemented in [6]. This statistical tool allows us to
observe the scaling behavior of a traffic process over a certain
range of timescales. Consider a reference timescale T0, and
let Tj=2jT0 for j=1,2,. . . be increasingly coarser timescales.
These timescales, or simply scales, partition a traffic trace
in consecutive and non-overlapping time intervals. If tj

i is

the i’th time interval at scale j>0, then tj
i consists of the

intervals tj−1
2i and tj−1

2i+1. Let Xj
i be the amount of traffic in

tj
i , with Xj

i = Xj−1
2i + Xj−1

2i+1. The Haar wavelet coefficients

{dj
i} at scale j are defined as

dj
i = 2−j/2(Xj−1

2i − Xj−1
2i+1) (1)

for i = 1, . . . Nj , where Nj is the number of wavelet coeffi-
cients at scale j. The energy function E j is defined as

Ej = E[(dj
i)

2] ≈

�
i(d

j
i)

2

Nj
(2)

An energy plot, such as Figure 1, shows the logarithm of
the energy Ej as a function of the scale j. The magnitude
of Ej increases with the variability of the traffic process
Xj−1 at scale j-1. What is more important is the scaling
behavior of the process, i.e., the variation of E j with j. For
an exactly self-similar process, such as fractional Brownian
motion (fBm) with Hurst parameter H (0.5<H<1), it can

be shown that Ej=E02
j(2H−1), and so the energy plot is a

straight line with positive slope 2H-1. The slope of an en-
ergy plot is referred to as scaling exponent and is denoted
by α. For fBm, α=2H-1 is constant across all timescales,
and so the process is said to show global scaling.

To illustrate the detection of scaling in a traffic process,
Figure 1 shows the energy plots for three synthetic traces,
all of which have the same mean packet interarrival (50ms).

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

j = log
2
(scale)

lo
g 2(E

ne
rg

y)

Exponential source,
Pareto source, α=0.57 (3,12)
Exponential/Periodic source

0.1 0.4 1.6 6.4 25.6 102.4 (sec)

Figure 1: Energy plot examples.

At the top of the graph we show the timescale Tj that corre-
sponds to scale j at the x-axis (T0=25ms). The first trace is
a Poisson process. The signature of uncorrelated exponen-
tial interarrivals in the energy plot is a horizontal straight
line (α=0). The second trace is again a renewal process,
but this time the interarrivals follow the Pareto distribu-
tion with shape parameter β=1.5. The infinite variance of
the interarrivals creates global scaling. The signature of
such global scaling in the energy plot is a straight line seg-
ment with positive slope (α=2-β) across all timescales. The
third trace is again based on exponential interarrivals, but
this time we introduce a strong periodicity at the 400ms
timescale. Specifically, after each exponential interarrival
we generate, with probability 0.75, another packet 400ms
later (scale 4). This periodicity causes a “dip” in the energy
plot at the 800ms timescale (scale 5). This is because a pe-
riodicity reduces the variability of the traffic process at the
corresponding timescale. Note that the dip appears at scale
5, instead of 4, because the energy at scale j depends on the
traffic process variations in scale j-1.

In practice, network traffic can show different scaling be-
havior across different timescales. If the slope of the energy
plot is (roughly) constant over a range of timescales j to
j + k, we say that the traffic process exhibits local scaling in
the timescales Tj to Tj+k. This paper focuses on the scaling
behavior of IP traffic in short timescales, typically extending
up to a few hundreds of milliseconds.

Related work. Our work is mostly related to previous re-
search on the scaling behavior of Internet traffic in short
timescales. One of the first papers that reported scaling in
short timescales at WAN traces was [7]. In [1, 8], Feldmann
et al. used the wavelet-based multiresolution analysis tech-
nique of [5] to detect and characterize the scaling behavior
of Internet traffic. The authors showed that scaling in short
timescales is related to the TCP closed-loop flow control,
and the cutoff between “short” and “long” timescales is,
roughly, the RTT of the TCP transfers. Additionally, [1]
provided empirical evidence that WAN traffic can be mod-
eled using a multifractal model, similar to that developed
in [2]. More recent work, however, argues that the traffic
at a tier-1 ISP is well-modeled as monofractal, rather than
multifractal [3].

[9] showed that IP layer scaling does not depend on the
TCP flow arrival process. In a follow-up work, [4] showed
that the the correlation structure of aggregate traffic in
short timescales can be captured by a Poisson cluster pro-
cess in which the packet interarrivals within individual clus-
ters follow an overdispersed Gamma distribution. [3] intro-
duced the concept of “dense flows” (i.e., flows with bursts of
densely clustered packets), and showed that it is this kind

of flows that create scaling in short timescales. [10] showed
that scaling in fine timescales can have a significant impact
on queueing performance, especially in moderate utiliza-
tions, while scaling in coarser timescales is more important
in heavy utilizations. Our main result, connecting scaling
in short timescales with packet bursts from individual flows,
is in agreement with the results of [3, 9, 4, 10], providing a
more specific explanation for the nature and causes of scal-
ing behavior in aggregate traffic.

The traces that we used in this study are publicly avail-
able at the NLANR-MOAT site [11]. Each trace lasts for
90 seconds. The traces that we include in this paper come
from OC-12 links at the Merit (MRA) and Indiana Uni-
versity (IND) Internet2 GigaPOPs. The rest of this paper
is structured as follows. §2 gives several causes of source-
level bursts in IP traffic. §3 shows that packet bursts create
scaling in a range of timescales which corresponds to the
burst duration. §4 investigates the effect of bursts from
individual flows on aggregate traffic in terms of scaling in
short timescales, marginal distribution, and queueing per-
formance. The Appendix describes a passive capacity esti-
mation methodology, which is required for the detection of
packet bursts from individual flows at a trace.

2. CAUSES OF SOURCE-LEVEL BURSTS
We have analyzed dozens of traces, attempting to identify

the most common causes of source-level bursts. Figure 2
shows nine such causes, one for UDP and eight for TCP
flows. Unfortunately, our analysis is not automated, and
so we cannot make quantitative statements regarding the
relative frequency of each cause. We believe, however, that
Figure 2 shows most, or all, major causes.

UDP message segmentation. When a UDP-based appli-
cation sends a message that is larger than the path’s MTU,
the message is segmented by the application into multiple
UDP packets, and/or it is fragmented by the operating sys-
tem into multiple IP packets. The example shown in Fig-
ure 2 is from a UDP video flow which sends six packets every
40ms.

Slow start. Slow start increases the congestion window by
one MSS for every new ACK. This rapid increase can double
the burst length in each RTT. In the example shown, the
receiver does not use Delayed-ACKs, and so the bursts are
one third longer than normally.

Loss recovery with Fast Retransmit. The recovery of
a lost segment through Fast Retransmit can fill in a “hole”
in the receiving sliding window, and so it can cause a rapid
advancement of the ACK number. The sender can then send
up to CW/2 bytes back-to-back, where CW is the congestion
window before the loss. Note that the connection of our
example did not do Fast Recovery, as new segments were
not sent in response to duplicate ACKs that followed the
retransmission, due to congestion window constraints.1

Unused congestion window increases. Sometimes, mostly
with applications that initially exchange control messages
(such as scp), the congestion window increases with every
ACK, but without being used by the sender. Then, when

1Fast Recovery can reduce the burst size after a retransmis-
sion, if new segments can be sent in response to duplicate
ACKs.

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
Time (second)

0

6

12

18

24

30
Pa

ck
et

 n
um

be
r

UDP packet

UDP message segmentation

18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 19 19.1 19.2 19.3
Time (second)

Se
qu

en
ce

 n
um

be
r

Data packet
ACK packet

Slow start

SYN

5.8 5.9 6 6.1 6.2 6.3
Time (second)

Se
qu

en
ce

 n
um

be
r

Data packet
ACK packet

Loss recovery with fast retransmission

Fast retransmission

0.4 0.6 0.8 1 1.2 1.4 1.6
Time (second)

Se
qu

en
ce

 n
um

be
r

Data packet
ACK packet

Unused congestion window increases

SYN
TCP control segments

0.6 0.8 1 1.2 1.4 1.6 1.8
Time (second)

0

Se
qu

en
ce

 n
um

be
r

Data packet
ACK packet

ACK compression

Compressed ACKs

18.6 18.65 18.7 18.75 18.8 18.85
Time (second)

Se
qu

en
ce

 n
um

be
r

Data packet
ACK packet

Cumulative or lossed ACKs

Ack for 6 MSS packets

8.6 8.65
Time (second)

Se
qu

en
ce

 n
um

be
r

Data packet
ACK packet

ACK reordering

Reordered ACKs

0.5 0.6 0.7 0.8 0.9
Time (second)

Se
qu

en
ce

 n
um

be
r

Data packet
ACK packet

Bursty application

2 3 4 5 6 7
Time (second)

0

Se
qu

en
ce

 n
um

be
r

Data packet
ACK packet

Idle restart timer bug

Figure 2: Major causes of source-layer bursts.

the sender is ready to transfer a large message or file, it can
send a long burst to the network. Our example comes from
the start of an scp session.

ACK compression. Queueing in the reverse path of a
TCP flow, can cause the almost simultaneous arrival of suc-
cessive ACKs at the sender. This can break TCP’s self-
clocking and cause long bursts [12].

Cumulative or lost ACKs. Sometimes the receiver gen-
erates an ACK for multiple received segments. Such a “super-
cumulative” ACK can trigger a burst at the sender. The
same effect can occur if one or more ACKs are lost. In that
case, the first non-lost ACK will trigger a burst.

Idle restart timer bug. A TCP sender is recommended to
use slow start and return to the initial congestion window
after it has not sent anything for the duration of the Idle
Restart timer (typically equal to RTO) [13]. Unfortunately,
several operating systems do not support, or they do not
implement correctly, this feature [14]. As a result, a TCP
sender can send a long burst after an idle time period.

Bursty applications. Even if the Idle Restart timer is
implemented correctly, it is possible that the application
itself is bursty, meaning that it writes bytes to the TCP
send-socket sporadically. If the time between bursts is suf-
ficiently short so that Idle Restart is not activated, TCP’s
self-clocking breaks and TCP can send long bursts.

Packet reordering. Reordering of ACKs scrambles self-
clocking and can trigger a burst at the sender. In the ex-
ample shown, the out-of-order ACK acknowledges ten more

segments, causing a large burst at the sender. Data segment
reordering can also interrupt self-clocking and cause bursts
[15].

3. PACKET BURSTS AND SCALING
In this section, we show the connection between source-

level bursts and scaling, and identify the timescales in which
such bursts create scaling behavior. Consider a source that
generates a sequence of packet trains. A train consists of
N packets, each of length L bytes. If the capacity of the
source is C, the dispersion of each packet in the time axis is
L
C

, while the dispersion of the entire train is NL
C

. Suppose
that the interarrival time Toff between successive trains is
exponentially distributed. We next show that this traffic
process shows local scaling in the timescales between L

C
and

NL
C

.
Figure 3 shows the autocorrelation function and the en-

ergy plot for a synthetic trace that follows the previous
packet train model. In this trace, we have that L

C
=4ms,

N=16, NL
C

=64ms, and E[Toff]=2000ms. Consider first the
discrete-time process of packet arrivals in successive non-
overlapping intervals of length L

C
; this time series takes the

values 0 and 1. The autocorrelation R(τ) of this process, for
τ = 0, 1, 2, . . . , is positive when τ<N , due to the strongly
correlated interarrivals within a packet train. For larger lags
τ>N , R(τ) is almost zero because the correlations between
packets of different trains are weak (Toff�

NL
C

), and the
time interval between successive trains is exponentially dis-
tributed.

Observe now the energy plot of Figure 3. The linearly

0 2 4 6 8 10 12 14 16

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

j = log
2
(scale)

lo
g 2(E

ne
rg

y)

L/C = 4ms, N = 16, NL/C = 64ms

2 8 32 128 512 2048 8192 (ms)

0 8 16 24 32 40 48 56 64 72 80 88 96
Time (ms)

-0.2

0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n

co
ef

fi
ci

en
t

0 2 4 6 8 10 12 14 16 18 20 22 24
Lag

Figure 3: Autocorrelation and energy plot of the

packet train traffic model.

increasing segment, between scales 4 and 8, represents local
scaling in the timescales from 4ms (L

C
) to 64ms (NL

C
).2 The

strong positive correlations in the lags that correspond to
the train duration (τ = 0, . . . 15) are reflected in the energy
plot as local scaling in the corresponding timescales. The
scaling exponent is almost zero in longer timescales (higher
than 64ms), due to the exponential train interarrivals. Also
note that the negative dip at scale-4, which corresponds to
the packet spacing L/C, is due to the periodic arrival of a
new packet every 4ms during packet trains.

The previous model may seem too artificial, as all pack-
ets appear in bursts. Source-level bursts can create scal-
ing even if they occur less frequently however. Consider a
source with two states: the “random” state and the “bursty”
state. In the random state, the source generates exponen-
tial interarrivals with a mean of 100ms. In the bursty state,
the source generates a single train of N=16 packets. The
transition probability from the random state to the bursty
state is 0.05, while the transition probability in the reverse
direction is 1. Figure 4 shows the energy plot for such a
source, when L

C
=1ms. Notice the emerging scaling behavior

between scales 2 and 6, which correspond to the timescales
1ms to 16ms. Even though the scaling exponent is not con-
stant across these timescales, the range in which α is positive
matches the extent of packet bursts, from L

C
to NL

C
.

0 2 4 6 8 10 12 14 16 18 20

−7

−6

−5

−4

−3

−2

−1

0

1

j = log
2
(scale)

lo
g 2(E

ne
rg

y)

Exponential OFF, α=−0.014 (10, 17)
Pareto OFF, α= 0.47 (14, 20)

2 8 32 128 512 2048 8192 32768 131072 (ms)

Figure 4: Bi-scaling behavior.

On the other hand, source-level bursts do not contribute
to the scaling behavior in long timescales. To illustrate this
point, consider the previous two-state model, but now sup-
pose that the random state generates Pareto interarrivals
with β=1.5. Figure 4 shows the resulting energy plot. The
infinite variance of the Pareto interarrivals creates scaling
at large timescales. The scaling exponent above scale 14
is estimated as α≈0.5, which is consistent with the shape

2We remind the reader that the energy E j is computed based
on the variations of the traffic process at scale j-1.

parameter β=1.5. The scaling behavior in short timescales,
on the other hand, is due to packet trains, and it remains
roughly the same as in the case of exponential interarrivals.
This is an example of bi-scaling behavior, i.e., different scal-
ing exponent in short vs. long timescales, which is often
seen in the energy plot of WAN traces [1].

4. EFFECTS OF PACKET BURSTS
In this section, we show the effect of packet bursts from in-

dividual flows in three different, but related, characteristics
of aggregate IP traffic: scaling behavior in short timescales,
marginal distribution, and queueing performance.

Burst identification. First, we describe how to identify
packet bursts from individual flows in a trace of aggregate
traffic. Consider a TCP flow f with source Sf . A packet
trace is collected at the output of a link T in f ’s path. In
the appendix, we give a methodology for the estimation of
the pre-trace capacity C̃f of flow f , i.e., the minimum link
capacity along the path between Sf and T . A packet burst
from flow f is defined as a sequence of packets from f that
arrive at T with a rate that is roughly C̃f . It is important to
note that we cannot determine whether these packets were
sent from Sf back-to-back; we can only determine whether
they arrive at T back-to-back. A source-level burst will
be detected as a packet burst at T , but not every packet
burst at T will be a source-level burst. For this reason, this
section refers to the effects of packet bursts, as opposed to
source-level packet bursts, from individual flows.

In practice, the rate between successive packets in a burst
may fluctuate above or below C̃f because of cross traffic
queueing at links before T . So, we require the following, less
restrictive, condition: a sequence of packets Pf (i), . . . Pf (i+
j) from flow f is a packet burst of length j+1, if j>0 is the
maximum positive number that satisfies the following two
conditions:

� i+j−1
k=i Sf (k)

∆f (i, j)
>

C̃f

a
(3)

Sf (k)

∆f (k, k + 1)
>

C̃f

b
for all k = i, . . . j − 1 (4)

where Sf (k) is the size of packet Pf (k), and ∆f (m, n) is the
dispersion (time distance) between the start of packets Pf (m)
and Pf (n) at T (m < n). If a>1 and b>1, these conditions
require that the burst’s average rate is larger than a fraction
1/a of C̃f , and that the rate between successive packets in

the burst is larger than a fraction 1/b of C̃f .
To illustrate the frequency and length of packet bursts

in real Internet traffic, Figure 5 shows the CDF of burst
lengths for a trace from the OC-12 Merit link (MRA). This
graph is derived based on TCP flows for which we have a
pre-trace capacity estimate (about 83% of the TCP bytes in
the trace). We show three curves for different parameters
a and b. Note that the burst length distribution does not
depend significantly on these two parameters; in the rest of
this paper we use a=2 and b=4. Also note that 40% of the
bytes in this trace are transferred in bursts of at least four
packets, while 10% of the bytes are in bursts of more than
twelve packets.

Burst removal. If we can identify source-level bursts, we
can also modify a trace so that we remove those bursts. We
use this technique to investigate how would the statistical

0 2 4 6 8 10 12 14 16 18
Burst length (packets)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

(a=2, b=4)
(a=3, b=5)
(a=1.5, b=3)

OC12 link: MRA-1028765523 (20:12 EST, 08/07/2002)

Figure 5: Parameter sensitivity of burst identifica-

tion algorithm.

profile of the trace change, if individual flows did not gen-
erate packet bursts. Such a “semi-experimental” approach
has been also followed in [9, 10].

Suppose that a burst Bf (k) of flow f starts at time tf (k),
while the first packet of f after this burst appears at time
tf (k+). We remove the burst Bf (k) by artificially spacing
the packets of the burst uniformly between tf (k) and tf (k+).
Note that the packets of flow f remain in their original or-
der after respacing the bursts. Also note that this burst
removal procedure cannot be performed on-line by a source
or router, as it requires knowledge of tf (k+) when a burst
starts. Also, it is not equivalent to flow shaping or pac-
ing; these latter approaches would transmit the packets of
a burst at a fixed rate. We refer to the resulting trace as
manipulated, to distinguish it from the original trace.

Effect of bursts. Figure 6 compares the original and ma-
nipulated traces, from two OC-12 links, in terms of three
aspects: energy plots and scaling behavior, tail distribution,
and queueing performance. At the left, we show the en-
ergy plot of the traces in timescales that extend from less
than a millisecond to a few seconds. Notice that both traces
show clear bi-scaling behavior, with a scaling exponent of
0.35 for the MRA trace and 0.26 for the IND trace in short
timescales (less than 25 − 200ms). The scaling exponent at
large timescales is 0.99 and 0.90, respectively, but its esti-
mation is less accurate due to the short duration of these
traces. The key observation, however, is the difference be-
tween the original and manipulated traces: the scaling behav-
ior in short timescales has been dramatically reduced, drop-
ping the scaling exponent to almost zero. This implies that
removing packet bursts would lead to almost uncorrelated
packet arrivals over a range of short timescales that extends
up to 100-200ms. As expected, the scaling behavior in longer
timescales has not been affected.

The middle graphs of Figure 6 show the tail distribution of
the amount of bytes in non-overlapping 10ms intervals. The
average of this distribution is 189KB for the MRA trace and
32KB for the IND trace. Note that the removal of packet
bursts from individual flows reduces significantly the prob-
ability of having bursts in the aggregate trace. This was
expected, as most bursts at the aggregate trace are due to
individual flows, instead of different flows. The removal of
bursts from the aggregate trace hints that the queueing per-
formance would also improve significantly. Indeed, the right
graphs of Figure 6 show the maximum queue size that would
develop at a link that services the aggregate traffic, as we
vary the link’s capacity. The reduction in the maximum
queue size, after we remove the source-level bursts, is sig-

nificant especially in moderate utilizations, between 50% to
85%. This result agrees with the findings of [10].

5. SUMMARY AND FUTURE WORK
This paper focused on the causes and effects of packet

bursts from individual flows in IP networks. We showed that
such bursts can create scaling in short timescales, and in-
creased queueing delays in traffic multiplexers. We identified
several causes for source-level bursts, investigating the “mi-
croscopic” behavior of the UDP and TCP protocols. Some of
these causes, such as the implementation of the Idle Restart
timer, can be eliminated with appropriate changes in the
TCP protocol or implementation. Some other causes, how-
ever, such as the segmentation of UDP messages in multiple
IP packets, are more fundamental in nature and they may
not be avoidable.

Even though we identified a plausible explanation for the
presence of scaling in short timescales, we do not claim that
source-level bursts are the only such explanation. In on-
going work, we investigate other important factors, such as
the effect of TCP self-clocking. We also study the effect of
per-flow shaping and TCP pacing on the correlation struc-
ture and marginal distributions of aggregate IP traffic.

6. REFERENCES
[1] A. Feldmann, A.C.Gilbert, and W.Willinger, “Data Networks

as Cascades: Investigating the Multifractal Nature of the
Internet WAN Traffic,” in Proceedings of ACM SIGCOMM,
1998.

[2] R. Riedi, M. S. Crouse, V. Ribeiro, and R. G. Baraniuk, “A
Multifractal Wavelet Model with Application to Network
Traffic,” IEEE Transactions on Information Theory, vol. 45,
no. 3, pp. 992–1019, Apr. 1999.

[3] Z.-L. Zhang, V. Ribeiro, S. Moon, and C. Diot, “Small-Time
Scaling behaviors of Internet backbone traffic: An Empirical
Study,” in Proceedings of IEEE INFOCOM, Apr. 2003.

[4] N. Hohn, D. Veitch, and P. Abry, “Cluster Processes, a Natural
Language for Network Traffic,” IEEE Transactions on Signal
Processing, special issue on “Signal Processing in
Networking”, 2003, Accepted for publication.

[5] P. Abry and D. Veitch, “Wavelet Analysis of Long-Range
Dependent Traffic,” IEEE Transactions on Information
Theory, vol. 44, no. 1, pp. 2–15, Jan. 1998.

[6] D. Veitch, “Code for the Estimation of Scaling Exponents,”
http://www.cubinlab.ee.mu.oz.au/∼darryl, July 2001.

[7] A. Feldmann, A.C.Gilbert, W.Willinger, and T. G. Kurtz, “The
Changing Nature of Network Traffic: Scaling Phenomena,”
ACM Computer Communication Review, Apr. 1998.

[8] A. Feldmann, A.C.Gilbert, P. Huang, and W.Willinger,
“Dynamics of IP Traffic: A Study of the Role of Variability and
The Impact of Control,” in Proceedings of ACM SIGCOMM,
1999.

[9] N. Hohn, D. Veitch, and P. Abry, “Does fractal scaling at the
IP level depend on TCP flow arrival processes?,” in Proceedings
Internet Measurement Workshop (IMW), Nov. 2002.

[10] A. Erramilli, O. Narayan, A. L. Neidhardt, and I. Saniee,
“Performance Impacts of Multi-Scaling in Wide-Area TCP/IP
Traffic,” in Proceedings of IEEE INFOCOM, Apr. 2000.

[11] NLANR MOAT, “Passive Measurement and Analysis,”
http://pma.nlanr.net/PMA/, May 2003.

[12] J. C. Mogul, “Observing TCP dynamics in real networks,” in
Proceedings of ACM SIGCOMM, Aug. 1992.

[13] M. Allman, V. Paxson, and W. Stevens, TCP Congestion
Control, Apr. 1999, IETF RFC 2581.

[14] A. Hughes, J. Touch, and J. Heidemann, Issues in TCP
Slow-Start Restart After Idle, Mar. 1998, IETF Internet Draft,
draft-ietf-tcpimpl-restart-00.txt (expired).

[15] J.C.R. Bennett, C. Partridge, and N. Shectman, “Packet
Reordering is Not Pathological Network Behavior,”
IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp.
789–798, Dec. 1999.

0 2 4 6 8 10 12 14 16

21

22

23

24

25

26

27

28

29

j = log
2
(scale)

log
2(E

ne
rg

y)

Original, α=0.351 (2, 9)
Manipulated, α=0.019 (2, 9)

0.4 1.6 6.4 25.6 102.4 409.6 1638.4 (ms)

MRA−1028765523

20 40 60 80
Traffic in 10ms (KB)

0.001

0.01

0.1

1

P[
X

 >
 x

]

Original
Manipulated

IND-1041854717 (07:05 EST, 01/06/2003)

100 150 200 250 300 350
Traffic in 10ms (KB)

0.001

0.01

0.1

1

P[
X

 >
 x

]

Original
Manipulated

MRA-1028765523 (20:12 EST, 08/07/2002)

0 2 4 6 8 10 12 14 16

19

20

21

22

23

24

j = log
2
(scale)

log
2(E

ne
rg

y)

Original, α=0.262 (4, 10)
Manipulated, α=0.043 (4, 10)

0.4 1.6 6.4 25.6 102.4 409.6 1638.4 (ms)

IND−1041854717

0.5 0.6 0.7 0.8
Utilization

0

50

100

150

200

M
ax

im
um

 q
ue

ue
 le

ng
th

 (
K

B
)

Original
Manipulated

IND-1041854717 (07:05 EST, 01/06/2003)

0.4 0.5 0.6 0.7 0.8
Utilization

0

50

100

150

200

M
ax

im
um

 q
ue

ue
 le

ng
th

 (
K

B
)

Original
Manipulated

MRA-1028765523 (20:12 EST, 08/07/2002)

Figure 6: Effect of source-level bursts on scaling, tail distribution, and queueing performance.

[16] C. Dovrolis, P. Ramanathan, and D. Moore, “What do Packet
Dispersion Techniques Measure?,” in Proceedings of IEEE
INFOCOM, Apr. 2001, pp. 905–914.

Appendix: Passive capacity estimation
The identification of packet bursts from a flow f at a trace
point T requires an estimate of the pre-trace capacity C̃f of
flow f . Here, we summarize a statistical methodology that
estimates C̃f for TCP flows, using the timing of the flow’s
data packets. The methodology is based on the dispersion
(time distance) of packet pairs [16].

For a TCP flow f , let Sf (i) be the size of the i’th data
packet, and ∆f (i) be the dispersion measurement between
data packets i and i+1. When packets i and i+1 are of the
same size, we compute a bandwidth sample bi = Sf (i)/∆f (i).
Packets with different sizes traverse the network with dif-
ferent per-hop transmission latencies, and so they cannot
be used with the packet pair technique [16]. Based on the
delayed-ACK algorithm, TCP receivers typically acknowl-
edge pairs of packets, forcing the sender to respond to every
ACK with at least two back-to-back packets. So, we can
estimate that roughly 50% of the data packets were sent
back-to-back, and thus they can be used for capacity es-
timation. The rest of the packets were sent with a larger
dispersion, and so they will give lower bandwidth measure-
ments. Based on this insight, we sort the bandwidth samples
of flow f , and then drop the lower 50% of them. To esti-
mate the capacity of flow f , we employ a histogram-based
method to identify the strongest mode among the remain-
ing bandwidth samples; the center of the strongest mode
gives the estimate C̃f . The bin width that we use is ω =
2(IRQ)

K1/3
(known as “Freedman-Diaconis rule”), where IRQ

and K is the interquartile range and number, respectively,
of bandwidth samples. We have verified this technique com-
paring its estimates with active measurements. The results
are quite positive, but due to space constraints we do not
include them in this paper.

Figure 7 shows the distribution of capacity estimates in
two traces. Note that the CDF is plotted in terms of TCP
bytes, rather than TCP flows. In the top graph, we see
four dominant capacities at 1.5Mbps, 10Mbps, 40Mbps, and
100Mbps. These values correspond to the following com-
mon link bandwidths: T1, Ethernet, T3, and Fast Ether-
net. The bottom graph shows the capacity distribution for
the outbound direction of the ATM OC-3 link at Univer-
sity of Auckland, New Zealand. This link is rate-limited to
4.048Mbps at layer-2. We observe two modes, at 3.38Mbps
and 3.58Mbps, at layer-3. The former mode corresponds
to 576B IP packets, while the latter mode corresponds to
1500B IP packets. The difference is due to the overhead of
AAL5 encapsulation, which depends on the IP packet size.
We finally note that our capacity estimation methodology
cannot produce an estimate for interactive flows, flows that
consist only pure-ACKs, and flows that carry just a few data
packets. We were able, however, to estimate the capacity for
83% of the TCP bytes in the MRA-1028765523 trace, 92%
of the TCP bytes in the IND-1041854717 trace, and 82% of
the TCP bytes in the Auckland trace.

10 100 1000 10000 1e+05 1e+06
Capacity (Kbps)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 i

n
by

te
s

(%
)

OC12 link: MRA-1028765523 (20:12 EST, 08/07/2002)

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
Capacity (Kbps)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 i

n
by

te
s

(%
)

Univ. of Auckland OC3 link (outbound rate limit = 4.048 Mbps, 2001)

MSS=576

MSS=1500

Figure 7: Capacity distribution in terms of bytes at

two links.

