The economics of the Internet

Andrew Odlyzko
School of Mathematics and Digital Technology Center
University of Minnesota
http://www.dtc.umn.edu/~odlyzko
Main points:

• Revenue minnow (Internet) is in the process of swallowing the revenue whale (voice)

• Economics, user preferences, and regulation will be more important than technology

• Many tricky transition issues:
 – high uncertainty
 – stubborn adherence to misleading myths
 – struggles for control
 – …
Frequent reluctance to face reality:

Number of papers per year with ATM or Ethernet in the abstract, data from IEEE Xplore (2004) (estimated values for 2004).

A few macro issues:

• what are the costs and incentives?
• who is being served?
• what is the service?

• giant disparities in volume, value, and revenue
4 dimensions of communications technology:

• volume: How much data can it transmit?

• transaction latency: How long does it take to do something?

• reach: Where can the service be provided?

• price: How much does it cost?

• reliability, …
Network technologies and architectures:

- irrelevant to users
- cannot compensate completely for weaknesses of applications
Size of telecom industry:

- world GDP: approx. $70,000 B
- world telecom service revenues almost $2,000 B
- world advertising: approx. $500 B

- Google worldwide 2011 revenues: $38 B
Revenue per MB (v. approximate):

- SMS: $1,000.00
- cellular calls: 1.00
- wireline voice: 0.10
- residential Internet: 0.01
- backbone Internet traffic: 0.0001
Telecom Costs

Traditional

Future

- Long Distance
- Switching
- Access
Where are the money and the traffic?

- world revenues: more than half from wireless
- world revenues: mostly from voice, texting second
- traffic: about 40,000 PB/month at year-end 2012, around 5% from wireless, under 1% from voice
- Level 3 (incl Global Crossing and CDN arm): around 10% of world traffic, 2011 revenues of $6 B
- Akamai: 2011 revenues of $1.2 B
Huge potential sources of additional Internet traffic:

- storage
 - hard disk content would take several years to transmit over the Internet
- broadcast TV (incl cable)

- but how much are people willing to pay for it?
<table>
<thead>
<tr>
<th>year</th>
<th>voice minutes</th>
<th>texts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>1,495</td>
<td>81</td>
</tr>
<tr>
<td>2006</td>
<td>1,798</td>
<td>159</td>
</tr>
<tr>
<td>2007</td>
<td>2,119</td>
<td>363</td>
</tr>
<tr>
<td>2008</td>
<td>2,203</td>
<td>1,005</td>
</tr>
<tr>
<td>2009</td>
<td>2,275</td>
<td>1,563</td>
</tr>
<tr>
<td>2010</td>
<td>2,241</td>
<td>2,052</td>
</tr>
<tr>
<td>2011</td>
<td>2,296</td>
<td>2,304</td>
</tr>
</tbody>
</table>
Two key delusions in one phrase:

Net neutrality “is about streaming movies.”

Jim Cicconi, AT&T, 2006
Dreaming of streaming:

Vacuum Cat
Key misleading myth: streaming real-time traffic

- little demand for truly real-time traffic
- for most traffic, faster-than-real-time progressive transfer wins:
 - far simpler network
 - enables new services
 - takes advantage of growing storage
Function of data networks:

To satisfy human impatience
Utilization of a T1 link to the Internet

Sunday

Monday

Percentage utilization

Time in hours

24 6 12 18 24 6 12 18 24
Function of data networks:

To satisfy human impatience: average US wireline customer downloads about 50 GB/month, which is about 150 Kbps over that period, about 1.5% of 10 Mbps link
Quantitative measures:

- Sarnoff’s Law: Value of content distribution network grows like \(n \)
- Metcalfe’s Law: Value of connectivity network grows like \(n^2 \)
- Briscoe, Odlyzko & Tilly: Metcalfe’s Law wrong, value of general connectivity network grows like \(n \times \log(n) \)

\(n \times \log(n) \) grows faster than \(n \), but difference is sufficiently slow to enable the “content is king” dogma to persist

\(n = \text{number of participants} \)
Other quantitative heuristics:

- Value of bandwidth (or computing, or storage) as proportional to log of raw capacity: 10 bps, 1 Kbps, 1 Mbps, and 1 Gbps links have approximate values 1, 3, 6, and 9

- Locality: gravity models, with intensity of interaction between populations of sizes X and Y at distance d proportional to X*Y/d
Implications of current growth rates:

- Wireline requires continued innovation and investment.
- Wireline does not require big capex increases.
- "Muddling through" appears feasible and likely: can get to "natural evolution" state.
- Wireless may well be different.
Implications of wireless data growth:

- old issues (QoS, net neutrality) to be revisited, with possibly different outcomes
- expectations of seamless transition from wireline to wireless unrealistic
- innovation seeks profits, so may shift to wireless, and to low-bandwidth access
- future traffic levels result of interaction of complex feedback loops
Conclusions:

• Communications extremely important

• Natural evolution: ‘dumb pipes,’ ‘waste that which is plentiful’

• Continuing tussles over money and control

• Wireless may go counter to general trend, with QoS finally making major inroads

• future of industry result of interaction of complex feedback loops
Further data, discussions, and speculations in papers and presentation decks at:

http://www.dtc.umn.edu/~odlyzko