
Implementing Asynchronous Jacobi Iteration
on GPUs

Yu-Hsiang Mike Tsai[0000-0001-5229-3739]∗, Pratik Nayak[0000-0002-7961-1159]∗,
Edmond Chow[0000-0003-0474-3752]†, and Hartwig Anzt[0000-0003-2177-952X]‡∗

∗Steinbuch Centre for Computing, Karlsruhe Institute of Technology
†School of Computational Science and Engineering, Georgia Institute of Technology

‡Innovative Computing Laboratory, University of Tennessee

Abstract—Computation on architectures that feature fine-
grained parallelism requires algorithms that overcome load
imbalance, inefficient memory access, serialization, and excessive
synchronization. In this paper, we explore an algorithm for
iteratively solving systems of linear equations that allows for
asynchronous updates by different execution units and completely
removes the need for synchronization. Methods of this type have
been identified as potentially competitive for computations on
Exascale machines, but practical implementations for GPU plat-
forms have scarcely been studied. We present an asynchronous
Jacobi iteration optimized for high-end GPUs, demonstrate the
superiority of the algorithm over a highly tuned synchronous
Jacobi iteration, and deploy the algorithm as production-ready
implementation in the Ginkgo open source library. The ideas
presented here on the algorithm design, implementation and
performance can help guide the design of other asynchronous
iterative methods on GPUs.

Index Terms—asynchronous, Jacobi, GPUs, iterative methods

I. INTRODUCTION

Alleviating synchronization bottlenecks has been one of
the core objectives in preparing algorithms for exascale [1].
With hardware becoming more and more hierarchical, it has
become crucial to avoid paying the cost of synchronization
between the different levels of parallelization and between
execution units on the same level, as these synchronizations
can significantly hamper the scalability of algorithms [2], [3].
For example, GPUs, which form the workhorse of a node
in many of the current and the upcoming exascale systems,
have multiple levels of memory (L3, L2 and L1 caches) and
execution parallelism (thread blocks, (sub)warps, and threads).
The efficient use of these memory and compute hierarchies
requires algorithms that minimize both the data transfers
between the different levels of the memory hierarchies and
the synchronizations between the parallel execution instances.

The performance of iterative solvers for solving sparse
linear systems is typically limited by the main memory
bandwidth. Thus, minimizing the data movement is crucial
to the execution time. Various techniques such as merging
kernels [4], incorporating lower precision [5] etc., have shown
promise in reducing the data access volume. Tackling the syn-
chronization problem on the other hand is more challenging. It
is well known that traditional algorithms for solving linear sys-
tems such as Krylov methods require global synchronizations

for orthonormalizing the Kyrlov basis vectors [6], [7]. With
hundreds of thousands of parallel computing units, these global
synchronizations become detrimental to runtime performance.
While task-based approaches can help hide global synchro-
nizations behind other operations [8], the potential of task-
based execution is limited by the data dependencies within
a single iteration: Krylov solvers do not allow for thread-
asynchronous execution of the complete iteration process.

Although as a stand-alone solver it is less popular than
Krylov methods, Jacobi and other stationary iterations are
often used as a building block for complex algorithms such
as Multigrid methods [9]. In this work, we present an asyn-
chronous version of the Jacobi iteration on GPUs that can
be used as plug-in replacement for synchronous Jacobi, while
outperforming it in the time-to-solution metric.

1) After discussing related work in Section II and mathe-
matical background in Section III, we present two strate-
gies in Section IV for realizing asynchronous Jacobi on
GPUs.

2) In Section IV, we also provide a few different strategies
to record the behaviour of the asynchronous updates
without affecting the overall performance.

3) We deploy the asynchronous Jacobi iteration as a
production-ready algorithm in the open-source Ginkgo
math library [10].

4) In Section V, we provide an in-depth analysis of the
convergence and performance characteristics of asyn-
chronous Jacobi when executing on the Summit super-
computer.

5) We discuss the findings that translate to the design of
other asynchronous algorithms in Section VI.

II. RELATED WORK

The seminal work of Chazan and Miranker [11] introduced
the idea of chaotic relaxation for solving systems of linear
equations, where each parallel computation unit is completely
asynchronous, with the drawback of computing on possibly
stale data. For these types of methods, they proved necessary
and sufficient conditions for convergence. Baudet [12] gen-
eralized these methods slightly, and for general (nonlinear)
contracting operators, proved sufficient conditions for conver-
gence.

https://orcid.org/0000-0001-5229-3739
https://orcid.org/0000-0002-7961-1159
https://orcid.org/0000-0003-0474-3752
https://orcid.org/0000-0003-2177-952X
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

In the context of block and domain decomposition methods,
Frommer et al. [13] considered the Schwarz methods and
evaluated the algebraic Schwarz and some multi-splitting
methods. The benefits of the Schwarz methods from a practical
standpoint were shown here with the asynchronous version
being up to 50% faster in the presence of load imbalance.
Other multi-stage and multi-level methods have also been
explored [6], [14], [15].

There has also been some effort in modeling the asyn-
chronous iteration. In particular, Wolfson-Pou and Chow [16]
modeled the asynchronous version of the Jacobi method aim-
ing to study the transient behavior of the method where they
showed that the asynchronous method continues to converge
in cases of process imbalance and even in cases where
the synchronous version does not converge. These models
were also extended to other methods such as the Multigrid
methods [17], where sampling the delays from a probabilistic
distribution, they studied the convergence behavior of asyn-
chronous versions of additive multigrid methods.

Chow et al. [18] considered the asynchronous version of
first and second order Richardson iterations. For both these
methods, they studied the effects of the scalar parameter on
asynchronous convergence. They showed that the convergence
of the first order asynchronous Richardson can be better than
that of the synchronous version, while convergence for the
second order asynchronous version was very sensitive to the
amount of asynchrony.

Anzt et al. [19] developed a block asynchronous relaxation
method, where each block relaxation was a separate kernel
launch and the values were updated asynchronously. They
compared the performance of this block relaxation method on
the GPU to Gauss-Seidel on the CPU and a GPU based Jacobi
relaxation. They also observed significant speedups compared
to a GPU based CG solver.

III. BACKGROUND

We aim to solve the linear system

Ax = b, A ∈ Rn×n, b ∈ Rn. (1)

Let a nonsingular matrix M define the splitting A = M −N ,
and taking the iteration matrix T = M−1N and c = M−1b,
we can write the stationary iteration

xk+1 = Txk + c (2)

where k = 0, 1, 2, . . ., and x0 is the initial guess [20].
In general, stationary iterations have the form xn+1 =

G(xn). Asynchronous iterative methods for solving systems
of the form x = G(x), where G : Rn → Rn, can be defined
as the sequence of updates [11], [12], [18]

xk
i =

{
xk−1
i if i /∈ Jk

gi(x
s1(k)
1 , x

s2(k)
2 , · · · , xsn(k)

n) if i ∈ Jk
(3)

where xk
i denotes the ith component of x at time k. Jk is the

set of indices which have been updated at k and sj(k) ≤ k−1
is the last time the component j of x was updated before
evaluating gi at k.

For linear systems of the form G(x) = Tx+ c, T ∈ Rn×n,
c ∈ Rn, any asynchronous iteration converges for any initial
condition if and only if the spectral radius, ρ of the (compo-
nentwise) absolute value of iteration matrix is less than 1, i.e.,
ρ(|T |) < 1. Additionally, the set of delays, Jk and the delay
sequences sj(k) need to satisfy the following conditions:

lim
k→∞

sj(k) = ∞ for j = 1, ..., n (4)

Jk is infinitely filled with each of i ∈ 1, · · · , n. (5)

An additional aspect to note is that the condition for
convergence of the asynchronous iterations, ρ(|T |) is stricter
than that for the synchronous version, ρ(T). As observed from
a practical standpoint by others, for example in [18], [21], this
gives a pessimistic view of asynchronous iterative methods,
although in practice the asynchronous method can converge
even when the synchronous version does not converge.

IV. IMPLEMENTATION

The hierarchical parallelism available on the GPUs
through thread blocks, (sub-)warps, and threads allows for
asynchronous execution on multiple hierarchy levels. This
suggests different strategies for realizing asynchronous algo-
rithms. We evaluate the effect of the different strategies for
the asynchronous Jacobi iteration.

A. The Laplacian problem

The target problem in all experimental evaluations is the
Laplace problem in 2D discretized with the 5-point stencil,
[−1,−1, 4,−1,−1] and the Laplacian problem in 3D with the
7-pt stencil, [−1,−1,−1, 6,−1,−1,−1]. We use a symmetri-
cally scaled version of the matrix such that its diagonal is all
ones. This problem has been well analyzed and it has been
shown that the optimal value of α for this problem is equal to
1 [18], which represents the inverse of the constant diagonal
elements. Therefore, we use α = 1 for our experiments.

B. Synchronous Jacobi iteration

The classical synchronous Jacobi iteration first computes the
residual(error correction) and then updates the solution vector
with the scaled residual. This process is repeated for the pre-
scribed number of iterations. The computation of the residual
involves a matrix vector product and is computationally the
most expensive part of the algorithm. The computational cost
is of the order O(nnz), where nnz is the number of non-
zeros in the matrix. We store our matrix in a Compressed
Sparse row (CSR) format, which is a versatile storage format
for sparse matrices [22]. We note that steps 3 and 5 involve an
explicit device-wide synchronization as each iteration requires
all the elements of the solution vector to be updated before
proceeding with the next iteration.

Algorithm 1 Synchronous Jacobi iteration
1: for i = 0 .. max_iterations-1 do
2: Compute Residual: r = b - Ax
3: Synchronize
4: Update: x += α * r
5: Synchronize
6: end for

C. Implementation 1: Static subwarp-to-rows

Subwarps are a concept featured in the cooperative group
functionality of CUDA that allows splitting CUDA warps into
smaller execution entities [23]. A subwarp can be as small as a
single thread and as large as a complete warp (32 threads). In
this implementation, every row of the iteration vector is han-
dled by one subwarp, and the number of subwarps launched
matches the number of rows in the solution vector. For a
subwarp size of 1, this implementation (shown in Algorithm 2)
assigns one thread to one row of the linear system, x[i] +=
α*(b[i] - A(i, :)*x). The scheduling of the subwarps
on the compute units is handled by the CUDA runtime. To
ensure the consistency of the memory reads and writes across
different threads, we use __threadfence() and demon-
strate the need for this in Section V. __threadfence()
only guarantees that the memory is up-to-date when other
threads update the memory not a synchronous barrier between
threads like __syncwarp() or __syncthreads(). Using
the static subwarp-to-row strategy, only one subwarp updates
an entry of the iteration vector, so all the updates are incre-
mental.

Algorithm 2 Static: assign subwarp to the same row
1: for all row in [0, #rows) in parallel do
2: Accumulate: temp = A(row, :) * x
3: Update: x[row] += α * (b[row]-temp)
4: Enforce memory updated: __threadfence();
5: end for

D. Implementation 2: Dynamic subwarp-to-row assignment

An alternative strategy is to reduce the number of launched
thread blocks and require the subwarps to handle multiple
rows in each iteration, see Algorithm 3. This implies that the
subwarp-to-row assignment after the first cycle is handled by
the runtime, which potentially allows for better load balancing
and allows different subwarps to update different rows. The
NVIDIA V100 GPU contains 80 Streaming Multiprocessors
(SMs) and each SM has 4 warp schedulers. One SM can
concurrently execute 4 warps (128 threads). Scheduling on
each SM a single thread block of size 128 prevents the GPU
from doing context switching, a concept that is fundamental
to hiding latency in the absence of deep cache hierarchies.
To allow for context switching, we oversubscribe the SMs by
launching more thread blocks than multiprocessors available.
Specifically, we launch oscb×80 thread blocks of size 128
where oscb is the oversubscription factor ranging from 1

to 16. Using the dynamic subwarp-to-row strategy, multiple
subwarps may update a row at a time.

Algorithm 3 Dynamic: Allow subwarps to handle the different
rows
Require: num_subwarps ≤ num_rows

1: for all id in [0, #subwarps) parallel do
2: Compute the number of available subwarps:
num_subwarps

3: Initialize: iter=0
4: Initialize: row=id
5: while iter < max_iterations do
6: Accumulate: temp = A(row, :) * x
7: Update: x[row] += α * (b[row] -
temp)

8: __threadfence();
9: Get next working row: row +=
num_subwarps

10: if row ≥ num_rows then
11: Modulo: row -= num_rows
12: Increment: iter += 1
13: end if
14: end while
15: end for

Figure 1 visualizes the update process of the two implemen-
tations. The y-axis represents the distinct rows of the iteration
vector, the columns represent the distinct iterations. The color
code represents updates that happen in the same update cycle.
The square represents the first subwarp, the circle represents
the last subwarp of all the subwarps launched. The static
subwarp-to-row implementation (left in Figure 1) launches
enough subwarps to update all rows in the first update cycle.
The dynamic subwarp-to-row assignment (right in Figure 1)
usually uses fewer subwarps than rows present. Thus, more
update cycles, k > n, are needed to complete n updates.

Fig. 1: Visualization of the update process of the static
subwarp-to-row assignment (left) and the dynamic subwarp-
to-row assignment (right).

E. Reproducibility of results and measurement strategies

In the experimental evaluation, we fix the relaxation factor
α = 1 ((1 − α) == 0) for all implementations of the Jacobi
iteration, both synchronous and asynchronous variants. This
parameter selection allows for smooth convergence of the

Jacobi iteration for the 5-point stencil discretization of the
Laplace problem, and prevents the compiler from employing
unwanted memory optimizations.

Reproducibility of experimental results using asynchronous
algorithms can be challenging or even impossible. For bench-
marking purposes, it is thus necessary to rely on statistical
data. As the CUDA runtime scheduling the thread blocks
and orchestrating the execution is not reproducible, we report
statistical information. To obtain any insight into the execution
process, we need logging mechanisms for:

1) Time measurement: Records the start and completion
time of a thread (all updates done by this thread).

2) Final update value age: Records the age of all values
used for the last update of a vector value.

3) Midway update value age: Records the age of all values
used for the vector value update midway through the
iteration process.

It is important that the logging mechanism does not affect
the CUDA scheduling or runtime performance. We achieve
this by replacing the algorithm output in the iteration vector
with the logging information (instead of accessing additional
memory locations). This way, the logging functionality will
not affect the performance of the memory-bound Jacobi itera-
tion.1 However, using the memory space of the iteration vector
for logging mechanisms implies that when investigating the
algorithm execution process with the logging mechanisms, no
actual algorithm output is generated.

The iteration vector stores a 64-bit (IEEE754 double pre-
cision) value for each row. For the time measurement, every
subwarp writes the timestamp of every row update into its row
position.

For the value age analysis, we encode the age information
in a customized 64-bit datatype that is then stored as the
IEEE-754 double precision iteration vector, see Figure 2. The
age of each of the row values itself and its four neighbors is
encoded with 12 bits each. It can be decoded after applying
the appropriate bit shift and the mask 0xFFF. For example,
as the row value age is always placed in the center, it can be
decoded with (pos >> (2*12)) & 0xFFF.

The shifts that need to be applied for accessing the correct
part of the customized data type are replacing the numeric
values in the system matrix so that the 5-point stencil is instead

stored as

 0
1 2 3

4

.

Fig. 2: Visualization of the customized 64-bit datatype that
encodes the age of the row value and the neighboring elements.

1The time measurement has some overhead associated with accessing the
system time.

V. RESULTS

For all our experiments, we use the normalized version
of the 5-pt stencil for the Laplacian problem. The right hand
side is sampled from a uniform distribution from the interval
(−0.125, 0.125), and the initial guess is a zero vector. Each
experiment consists of 10 warm-up runs and 100 runs for per-
formance or logging measurements. We run these experiments
for three grid sizes 100 × 100, 200 × 200, and 300 × 300,
giving us matrices of sizes 10000×10000, 40000×40000, and
90000× 90000 respectively. The overall time, backward error
and some additional details are also computed a posteriori.
All experiments use IEEE-754 double precision arithmetic and
are run on the Summit supercomputer with a V100 GPU with
CUDA-11.4.2 and gcc-9.3.0. The value of “update” in figure
is the number of update times for each entry of solution.

Initially, we compare the synchronous Jacobi iteration with
the static subwarp-per-row asynchronous Jacobi iteration (la-
beled “async”), which uses subwarp size of 1. Figure 3
visualizes how the median update time decreases for higher
update counts. Each data point on the figure is a standalone
experiment from 100 runs. We only collect the measurement
after completion, so there is no overhead associated with the
performance measurement. We observe that after a ramp-up
phase, the cost of an update is constant for both synchronous
and asynchronous Jacobi Iteration. An asynchronous update is
3 to 10× faster than a synchronous update. Figure 4 visualizes
the median convergence of the synchronous and asynchronous
Jacobi iteration over the update counts and indicates that the
synchronous version has slightly superior convergence charac-
teristics compared to the base asynchronous version. Figure 5
reveals that the higher update rate of the asynchronous Jacobi
(more updates per second) results in superior convergence
characteristics in the runtime metric.

Finally, Figure 5 shows the residual norm history over
time with the synchronous and asynchronous versions both
running for 1,000 updates. Here we see the clear advantage
of the asynchronous version. However, we also see that the
base asynchronous version stagnates for larger cases (grid size
300× 300).

To further improve the GPU occupancy when running the
asynchronous version, we increase the subwarp size. Figure 7
visualizes different versions of the async (= static(subwarp 1))
implementation with different subwarp sizes. Using larger sub-
warps reduces the update time2, but the convergence degrades,
see Figure 6. Figure 5 relating the convergence to the runtime
reveals that choosing the subwarp size 1 is indeed the best
choice. The analysis also reveals that __threadfence()
is necessary for convergence of the Jacobi iteration: As
mentioned in Section IV, __threadfence() is neces-
sary to enforce consistency between reads and writes of
the different threads for the asynchronous version. With-
out __threadfence(), the updates are much faster (see
Figure 7), but the convergence can not be guaranteed be-
cause the updated values may no longer be immediately

2except for the case of subwarp size 32, that we investigate in detail later

10 5

2 × 10 6
3 × 10 64 × 10 6
6 × 10 6

2 × 10 5
3 × 10 5

tim
e

pe
r u

pd
at

e
grid100 time (median) - update

grid100 sync
grid100 async

10 5

4 × 10 6
6 × 10 6

2 × 10 5
3 × 10 5

tim
e

pe
r u

pd
at

e

grid200 time (median) - update

grid200 sync
grid200 async

0 200 400 600 800 1000
update

10 5

2 × 10 5

3 × 10 5

tim
e

pe
r u

pd
at

e

grid300 time (median) - update

grid300 sync
grid300 async

Fig. 3: The median time per update.

10 1

2 × 10 2
3 × 10 24 × 10 2
6 × 10 2

re
la

tiv
e

re
sid

ua
l_n

or
m grid100 relative residual norm (median) - update

grid100 sync
grid100 async

10 1

2 × 10 2
3 × 10 2
4 × 10 2
6 × 10 2

re
la

tiv
e

re
sid

ua
l_n

or
m grid200 relative residual norm (median) - update

grid200 sync
grid200 async

0 200 400 600 800 1000
update

10 1

2 × 10 2
3 × 10 2
4 × 10 2
6 × 10 2

2 × 10 1

re
la

tiv
e

re
sid

ua
l_n

or
m grid300 relative residual norm (median) - update

grid300 sync
grid300 async

Fig. 4: The median relative residual norm related to the update
count.

visible to other threads. As Figure 6 reveals that without
__threadfence(), the asynchronous Jacobi iteration fails
to converge for this test problem.

The analysis includes also the asynchronous Jacobi iteration
using the dynamic subwarp-to-row strategy introduced in
Algorithm 3. The dynamic assignment of subwarps to rows
enables load balance and allows for faster execution. Further-

10 1

2 × 10 2
3 × 10 24 × 10 2
6 × 10 2

re
la

tiv
e

re
sid

ua
l_n

or
m grid100 relative residual norm (median) - time (median)

grid100 sync
grid100 async

10 1

2 × 10 2
3 × 10 2
4 × 10 2
6 × 10 2

re
la

tiv
e

re
sid

ua
l_n

or
m grid200 relative residual norm (median) - time (median)

grid200 sync
grid200 async

0.000 0.005 0.010 0.015 0.020 0.025
time

10 1

2 × 10 2
3 × 10 2
4 × 10 2
6 × 10 2

2 × 10 1

re
la

tiv
e

re
sid

ua
l_n

or
m grid300 relative residual norm (median) - time (median)

grid300 sync
grid300 async

Fig. 5: the median relative residual norm with the median of
time

more, the oversubscription parameter oscb can be used for
context switching to hide the latency. The analysis reveals
that moderate oversubscription (oscb of 4, 8) gives the best
results in both the convergence and performance metric, see
Figure 8 and Figure 6. We note that for these oversubscription
factors, the asynchronous Jacobi iteration exhibits convergence
characteristics competitive with the synchronous variant, while
processing the updates significantly faster.

We instantiate more threads than the maximum number
of threads which the device can launch simultaneously. On
a V100, the limit is equal to 80 × 2048 threads without
accounting for other factors such as the number of registers
or shared memory pressure. From Figure 9, we see that the
second half of the result vector gets updated only after the first
half of the vector has finished its updates. This demarcation
(at (80∗2048)/32 = 5120) in the updates can adversely affect
the convergence rate.

For a deeper understanding of the execution of the asyn-
chronous algorithm, we record the age (number of updates
a value has seen) of the values used in an update. We
classify the information propagation by the number of neigh-
bors a node has and use the encoding {#connection of tar-
get} {#connection of source} for a connection, see Figure 10.
For example, 2 3 is the connection between a corner grid
point, which has two connections, and the side grid point
having three connections. When the age of each neighboring
value is collected in the last update (final update value age
measurement), no neighboring value can have seen more
updates than the iteration limit. In the midway update value
age collection, neighbors can have ages smaller or larger than

0 200 400 600 800 1000
update

10 2

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

re
la

tiv
e

re
sid

ua
l_n

or
m

relative residual norm (median) - update
sync
async = static(subwarp 1)
async(nothreadfence)
static(subwarp 2)
static(subwarp 32)
dynamic(oscb. 4)
dynamic(oscb. 8)
dynamic(oscb. 16)

Fig. 6: The median of relative residual norm against update
from different implementations with different configurations
on the grid 300 x 300

0 200 400 600 800 1000
update

10 5

2 × 10 6

3 × 10 6

4 × 10 6

6 × 10 6

2 × 10 5

3 × 10 5

4 × 10 5

tim
e

pe
r u

pd
at

e

time (median) - update

sync
async = static(subwarp 1)
async(nothreadfence)
static(subwarp 2)
static(subwarp 32)
dynamic(oscb. 4)
dynamic(oscb. 8)
dynamic(oscb. 16)

Fig. 7: The median of time per update against update from
different implementations with different configurations on the
grid 300 x 300

the current update.
To ensure logging the age does not incur significant over-

head, we perform this analysis for a grid size 300 × 300.
For this setting we note an overall execution overhead related
to the age logging of 3.9% for the midway update value
analysis and 6.4% for the final update value age measurement,
respectively. In comparison, recording detailed runtime traces
of the updates incurs about 20% overhead.

Figure 11 groups the age of the value communicated in
the midway update according to the connection type. The

0.000 0.005 0.010 0.015 0.020 0.025 0.030
time

10 2

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

re
la

tiv
e

re
sid

ua
l_n

or
m

relative residual norm (median) - time (median)
sync
async = static(subwarp 1)
async(nothreadfence)
static(subwarp 2)
static(subwarp 32)
dynamic(oscb. 4)
dynamic(oscb. 8)
dynamic(oscb. 16)

Fig. 8: The median of relative residual norm against time from
different implementations with different configurations on the
grid 300 x 300

0 2000 4000 6000 8000 10000
position

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

tim
e

no
rm

al
ize

d
by

 th
e

fir
st

 p
os

iti
on

grid100_32: thread time of 1000 iteration
start
finish

Fig. 9: Update schedule for each result index, for the
static(subwarp 32) on grid size of 100× 100

blue boxplot represents the statistics for the async static
(subwarp size = 1) implementation. The iteration limit is set
to 1,000, the midway value age snapshot is taken for update
500. We observe that the median is close to 500, which is
expected. For the async dynamic implementation with oscb =
4 (purple), we observe much less variation, which may explain
the convergence characteristics similar to the synchronous
version. On the other hand, for the async implementation
without a threadfence (in green), we see that due to a lack
of consistency in reads and writes between different threads,
the updates are stale, leading to stagnation and the solver not
converging.

Interesting variations in the value ages communicated across
the connection types, in particular for static(subwarp 1). For
connection type 3 3 and 4 4, updating the source or target
grid points is equally expensive, and they are updated at the
same rate (small variance in the boxplot). The connection type

Fig. 10: Different types of the connections for each grid point.
We classify them into 6 types. The number in the circle
represents the number of connections. The arrow indicates
the direction of the update. The name on the edge denotes
{#connection of target} {#connection of source} for the con-
nection.

4 3 tends to communicate values from grid points that have
seen more updates than the target grid point as updating the
source grid point with 3 connections is faster than updating
the target grid point with 4 connections. The connection type
3 4 has a reversed trend against 4 3. Interestingly, we do not
observe the same trend for connection types 3 2 and 2 3.
Likely, the reason is that there exist only 4 grid points with 2
connections, and the updates from and to those are processed
in warps containing different workload, which is not optimal
for GPU.

In Figure 12 we increase the grid size from 300x300 to
2800x2800 and observe that the overall time taken increases
unlike for smaller grid sizes 1002 3002 in Fig. 8. For smaller
problems, due to the low the GPU utilization, increasing
problem size does not increase the time to solution. We also
see a similar trend for the 3D 7-point stencil in Figure 13.
For the 7 point stencil, we also implement two more different
variants. A syncwarp and a syncthreads version, in
which the synchronization is varied at different granularity
levels: at the warp level and the thread-block level. Compared
to the dynamic versions, these implementations allow for
better cache re-usability. The syncthreads version takes overall
less time due to better cache reusability as we see in Figure 13.

VI. CONCLUSION

We have presented different implementations of algorithms
for the asynchronous Jacobi iteration. We investigated the
convergence and performance of asynchronous execution and
streaming multiprocessor oversubscription. We demonstrate

Fig. 11: The boxplot of the midway update value age for
grid size 300 × 300 with 1000 iterations for the three Jacobi
implementations: async(static), async(nothreadfence), and dy-
namic(oscb. 4).

2 × 10 2
3 × 10 2
4 × 10 2
6 × 10 2

re
la

tiv
e

re
sid

ua
l_n

or
m grid300 relative residual norm (median) - time (median)

sync
dynamic(oscb. 4)
dynamic(oscb. 4 - syncwarp)
dynamic(oscb. 4 - syncthreads)

2 × 10 2

3 × 10 2
4 × 10 2

6 × 10 2

re
la

tiv
e

re
sid

ua
l_n

or
m grid1000 relative residual norm (median) - time (median)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
time

2 × 10 2

3 × 10 2
4 × 10 2

6 × 10 2

re
la

tiv
e

re
sid

ua
l_n

or
m grid2800 relative residual norm (median) - time (median)

Fig. 12: Laplacian 2D problem (3002, 10002 and 28002).

that by choosing suitable parameters, the asynchronous Ja-
cobi iteration can outperform the synchronous Jacobi in both
convergence and runtime metrics. When the problem is large
enough such that the GPU is fully utilized, the asynchronous
version gives the following benefit of reducing the launch
overhead and the fusion of kernels. For small problem sizes,
the asynchronous version can better utilize the GPU due to
several steps running asynchronously. Additionally, we also

10 3

10 2

2 × 10 3
3 × 10 34 × 10 3
6 × 10 3

2 × 10 2
re

la
tiv

e
re

sid
ua

l_n
or

m grid100_3d relative residual norm (median) - time (median)
sync
dynamic(oscb. 4)
dynamic(oscb. 4 - syncwarp)
dynamic(oscb. 4 - syncthreads)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

10 2

2 × 10 3
3 × 10 3
4 × 10 3
6 × 10 3

2 × 10 2

re
la

tiv
e

re
sid

ua
l_n

or
m grid200_3d relative residual norm (median) - time (median)

Fig. 13: Laplacian 3D problem (1003 and 2003).

provided a few methods to record the asynchronous updates,
the runtime schedule and analyzed the observations to gain a
better understanding of the different implementations. Finally,
we note that the implementation is available to the community
as free open-source software within the Ginkgo software
framework.

ACKNOWLEDGMENTS

This work was supported by the “Impuls und Vernetzungs-
fond” of the Helmholtz Association under grant VH-NG-1241,
and the US Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration.

REFERENCES

[1] S. Sachs and K. Yelick, “Exascale programming challenges. report of
the 2011 workshop on exascale programming challenges, marina del rey,
july 27–29, 2011,” 2011.

[2] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,
D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello,
B. Chapman, X. Chi, A. Choudhary, S. Dosanjh, T. Dunning, S. Fiore,
A. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,
K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway,
D. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas,
B. Maccabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S.
Mueller, W. E. Nagel, H. Nakashima, M. E. Papka, D. Reed, M. Sato,
E. Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz,
B. Sugar, S. Sumimoto, W. Tang, J. Taylor, R. Thakur, A. Trefethen,
M. Valero, A. van der Steen, J. Vetter, P. Williams, R. Wisniewski, and
K. Yelick, “The international exascale software project roadmap,” The
International Journal of High Performance Computing Applications,
vol. 25, no. 1, pp. 3–60, Feb. 2011, publisher: SAGE Publications Ltd
STM. [Online]. Available: https://doi.org/10.1177/1094342010391989

[3] S. Heldens, P. Hijma, B. V. Werkhoven, J. Maassen, A. S. Z.
Belloum, and R. V. Van Nieuwpoort, “The landscape of exascale
research: a data-driven literature analysis,” ACM Computing Surveys,
vol. 53, no. 2, pp. 23:1–23:43, Mar. 2020. [Online]. Available:
https://doi.org/10.1145/3372390

[4] J. I. Aliaga, J. Pérez, and E. S. Quintana-Ortı́, “Systematic Fusion of
CUDA Kernels for Iterative Sparse Linear System Solvers,” in Euro-
Par 2015: Parallel Processing, ser. Lecture Notes in Computer Science,
J. L. Träff, S. Hunold, and F. Versaci, Eds. Berlin, Heidelberg: Springer,
2015, pp. 675–686.

[5] A. Abdelfattah, H. Anzt, A. Ayala, E. Boman, E. Carson, S. Cayrols,
T. Cojean, J. Dongarra, R. Falgout, M. Gates, N. J. Higham, S. E.
Kruger, S. Li, N. Lindquist, Y. Liu, J. Loe, P. Nayak, D. Osei-Kuffuor,
S. Pranesh, S. Rajamanickam, T. Ribizel, B. Smith, K. Swirydowicz,
S. Thomas, S. Tomov, I. Yamazaki, and U. M. Yang, “Advances
in Mixed Precision Algorithms: 2021 Edition.” Sandia National Lab.

(SNL-NM), Albuquerque, NM (United States), Tech. Rep. SAND2021-
10227R, Aug. 2021. [Online]. Available: https://www.osti.gov/biblio/
1814447-advances-mixed-precision-algorithms-edition

[6] P. Nayak, T. Cojean, and H. Anzt, “Two-stage Asynchronous Iterative
Solvers for multi-GPU Clusters,” in 2020 IEEE/ACM 11th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA), Nov. 2020, pp. 9–18. [Online]. Available: 10/gphfs2

[7] E. Carson, “Communication-Avoiding Krylov Subspace
Methods in Theory and Practice,” Ph.D. dissertation,
University of California, Berkeley, 2015. [Online].
Available: https://aspire.eecs.berkeley.edu/publication/
communication-avoiding-krylov-subspace-methods-in-theory-and-practice/

[8] A. Roussel, “Parallelization of iterative methods to solve sparse linear
systems using task based runtime systems on multi and many-core ar-
chitectures: application to multi-level domain decomposition methods,”
Ph.D. dissertation, Université Grenoble Alpes, 2018.

[9] W. Hackbusch, “Multigrid Iterations,” in Iterative Solution
of Large Sparse Systems of Equations, ser. Applied
Mathematical Sciences, W. Hackbusch, Ed. Cham: Springer
International Publishing, 2016, pp. 265–324. [Online]. Available:
https://doi.org/10.1007/978-3-319-28483-5 11

[10] H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak,
T. Ribizel, Y. M. Tsai, and E. S. Quintana-Ortı́, “Ginkgo: A Modern
Linear Operator Algebra Framework for High Performance Computing,”
ACM Transactions on Mathematical Software, vol. 48, no. 1, pp. 2:1–
2:33, Feb. 2022. [Online]. Available: https://doi.org/10.1145/3480935

[11] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra and
Its Applications, 1969.

[12] G. M. Baudet, “Asynchronous Iterative Methods for Multiprocessors,”
Journal of the ACM (JACM), 1978. [Online]. Available: 10.1145/
322063.322067

[13] A. Frommer, H. Schwandt, and D. B. Szyld, “Asynchronous weighted
additive Schwarz methods,” Electronic Transactions on Numerical Anal-
ysis, vol. 5, no. June, pp. 48–61, 1997.

[14] A. Frommer and D. B. Szyld, “Asynchronous two-stage iterative
methods,” Numerische Mathematik, pp. 1–18, 1994. [Online]. Available:
10.1007/s002110050085

[15] C. Glusa, E. G. Boman, E. Chow, S. Rajamanickam, and P. Ra-
manan, “Asynchronous one-level and two-level domain decomposition
solvers,” in International Conference on Domain Decomposition Meth-
ods. Springer, 2018, pp. 134–142.

[16] J. Wolfson-Pou and E. Chow, “Modeling the asynchronous Jacobi
method without communication delays,” Journal of Parallel and
Distributed Computing, vol. 128, pp. 84–98, 2019, publisher: Elsevier
Inc. [Online]. Available: https://doi.org/10.1016/j.jpdc.2019.02.002

[17] ——, “Asynchronous multigrid methods,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2019, pp. 101–
110.

[18] E. Chow, A. Frommer, and D. B. Szyld, “Asynchronous Richardson
iterations: theory and practice,” Numerical Algorithms, vol. 87,
no. 4, pp. 1635–1651, Aug. 2021. [Online]. Available: https:
//link.springer.com/10.1007/s11075-020-01023-3

[19] H. Anzt, “Asynchronous and multiprecision linear solvers-scalable and
fault-tolerant numerics for energy efficient high performance comput-
ing,” Ph.D. dissertation, 2012.

[20] Y. Saad, “Iterative methods for linear systems of equations: A brief
historical journey,” Brenner, SC, Shparlinski, I., Shu, C.-W., Szyld, DB
(eds.), vol. 75, pp. 197–216, 2020.

[21] E. Chow, E. Boman, J. J. Dongarra, and D. B. Szyld, “Asynchronous
Iterative Solvers and Optimal Schwarz Domain Decomposition,” 2017.

[22] H. Anzt, T. Cojean, C. Yen-Chen, J. Dongarra, G. Flegar,
P. Nayak, S. Tomov, Y. M. Tsai, and W. Wang, “Load-
balancing Sparse Matrix Vector Product Kernels on GPUs,” ACM
Transactions on Parallel Computing, 2020, iSBN: 23294957 23294949.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-85083216197&partnerID=MN8TOARS

[23] Y. M. Tsai, T. Cojean, T. Ribizel, and H. Anzt, “Preparing Ginkgo
for AMD GPUs – A Testimonial on Porting CUDA Code to HIP,”
in Euro-Par 2020: Parallel Processing Workshops, ser. Lecture Notes
in Computer Science, B. Balis, D. B. Heras, L. Antonelli, A. Brac-
ciali, T. Gruber, J. Hyun-Wook, M. Kuhn, S. L. Scott, D. Unat, and
R. Wyrzykowski, Eds. Cham: Springer International Publishing, 2021,
pp. 109–121.

https://doi.org/10.1177/1094342010391989
https://doi.org/10.1145/3372390
https://www.osti.gov/biblio/1814447-advances-mixed-precision-algorithms-edition
https://www.osti.gov/biblio/1814447-advances-mixed-precision-algorithms-edition
10/gphfs2
https://aspire.eecs.berkeley.edu/publication/communication-avoiding-krylov-subspace-methods-in-theory-and-practice/
https://aspire.eecs.berkeley.edu/publication/communication-avoiding-krylov-subspace-methods-in-theory-and-practice/
https://doi.org/10.1007/978-3-319-28483-5_11
https://doi.org/10.1145/3480935
10.1145/322063.322067
10.1145/322063.322067
10.1007/s002110050085
https://doi.org/10.1016/j.jpdc.2019.02.002
https://link.springer.com/10.1007/s11075-020-01023-3
https://link.springer.com/10.1007/s11075-020-01023-3
http://www.scopus.com/inward/record.url?eid=2-s2.0-85083216197&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-85083216197&partnerID=MN8TOARS

Reproducibility Appendix
In order to ensure reproducibility of results, we provide the

code as a Zenodo archive and elaborate on the settings and
parameters used to produce these results.

Obtaining the source code
The source code is open-source and available on Zenodo

(https://doi.org/10.5281/zenodo.7130225).

Building and installing Ginkgo
To build GINKGO, the following components are necessary:
1) The CMake (≥ 3.13) build platform.
2) A C++-14 compiler, gcc-9.3.0 was used in this paper.
3) A CUDA (≥ 9.2) installation, CUDA 11.4.2 was used

in this paper.
The Ginkgo library and the source codes for this pa-

per use the same canonical CMake setup as elaborated in
the Ginkgo documentation (https://ginkgo-project.github.io/
ginkgo/doc/develop/install ginkgo.html).

Benchmarking
1) Set the desired kernel by macro in cuda/-

solver/async jacobi kernels.cu of the source folder
a) Set the parameters USE_DYNAMIC,

DYNAMIC_OSCB, SUBWARP_SIZE,
APPLY_SYNC to choose the configuration
i) USE_DYNAMIC: 1 for dynamic implementa-

tion or 0 for static implmentation
ii) DYNAMIC_OSCB: the number for oversub-

scription (only for dynamic)
iii) SUBWARP_SIZE: the size of subwarp
iv) USE_THREADFENCE: 1 for using

__threadfence(); or 0 for not using it.
v) APPLY_SYNC: the sync methods. NOSYNC

for no additional sync, __syncwarp()
for syncing threads of the same warp, or
__syncthreads() for syncing threads of
the same block.

2) Build settings (changing the above parameter requires
recompiling):

a) Set the correct compiler, which may be necessary
on Summit
i) -DCMAKE_CXX_COMPILER=g++

-DCMAKE_C_COMPILER=gcc

b) Compile GINKGO in release mode, (default with
CMake)
i) -DCMAKE_BUILD_TYPE=Release

c) Enable Examples (should be ON by default):
i) -DGINKGO_BUILD_EXAMPLES=ON

d) Enable Cuda/OpenMP Module (should automati-
cally detect):
i) -DGINKGO_BUILD_CUDA=ON

-DGINKGO_BUILD_OMP=ON

e) Disable unused components (optional, may help in
case of unexpected errors):
i) -DGINKGO_BUILD_MPI=OFF

-DGINKGO_BUILD_HWLOC=OFF
-DGINKGO_BUILD_TESTS=OFF

f) CMake command with above options, when in the
source directory:
i) mkdir build && cd build &&

cmake -DCMAKE_CXX_COMPILER=g++
-DCMAKE_C_COMPILER=gcc
-DCMAKE_BUILD_TYPE=Release
-DGINKGO_BUILD_EXAMPLES=ON
-DGINKGO_BUILD_CUDA=ON
-DGINKGO_BUILD_OMP=ON
-DGINKGO_BUILD_MPI=OFF
-DGINKGO_BUILD_HWLOC=OFF
-DGINKGO_BUILD_TESTS=OFF ..

3) Go to the async-jacobi example when in the build
directory:

a) cd examples/async-jacobi

4) Benchmark settings controlled through command line
variables:

a) ./async-jacobi [executor] [type]
[measurement type] [problem size]
[iteration] [folder(optional)]

i) executor: cuda is the only one that is currently
supported for both sync and async.

ii) type: sync or async
iii) measurement type: normal: the normal Jacobi

iteration, flow: the final value update age
measurement, halfflow: the midway value
update age measurement, time: the time mea-
surement, normal_3d: the normal Jacobi it-
eration but for 3d (7-pt) stencil problem

iv) problem size: the grid size of 5-pt stencil
problem except for the normal_3d. It is the
grid size of 7-pt stencil problem when using
normal_3d

v) iteration: the number of updates to perform
vi) folder: optional option. If it is provided

and measurement type is not normal and
normal_3d, it will write the #experi-
ments(100) csv to the folder for the raw detail
of the measurement type.

Our setup
All our experiments were run on the Summit super-

computer at Oak-Ridge National Laboratory, US. Each
node of Summit consists of 6 NVIDIA V100 GPU’s con-
nected to each other and the CPU sockets with NVLINK
bridges. gcc-9.3.0 was used as the host compiler and
the CUDA Toolkit 11.4.2 was used as the device com-
piler. The corresponding module command: module load
cuda/11.4.2 gcc/9.3.0 cmake We only use one
GPU of a node for experiments.

https://doi.org/10.5281/zenodo.7130225
https://ginkgo-project.github.io/ginkgo/doc/develop/install_ginkgo.html
https://ginkgo-project.github.io/ginkgo/doc/develop/install_ginkgo.html

	Introduction
	Related work
	Background
	Implementation
	The Laplacian problem
	Synchronous Jacobi iteration
	Implementation 1: Static subwarp-to-rows
	Implementation 2: Dynamic subwarp-to-row assignment
	Reproducibility of results and measurement strategies

	Results
	Conclusion
	References

