
SIAM J. MATRIX ANAL. APPL. c© 2018 Society for Industrial and Applied Mathematics
Vol. 39, No. 2, pp. 829–855

PRESERVING POSITIVE DEFINITENESS IN HIERARCHICALLY
SEMISEPARABLE MATRIX APPROXIMATIONS∗

XIN XING† AND EDMOND CHOW†

Abstract. Given a symmetric positive definite (s.p.d.) matrix, two methods are proposed for
directly constructing hierarchically semiseparable (HSS) matrix approximations that are guaranteed
to be positive definite. The methods are based on a new, recursive description of the HSS approxima-
tion process where projection is used to compress the off-diagonal blocks. The recursive description
also leads to a new error analysis of HSS approximations. By constructing an s.p.d. HSS approxima-
tion directly, rather than in a factored form, the approximation errors can be better understood. As
could be expected, larger approximation errors are introduced in the new s.p.d. methods compared
to those in existing HSS approximation methods where positive definiteness is not guaranteed. How-
ever, numerical tests using the approximations as preconditioners show that methods that preserve
positive definiteness may be better than other methods even when those methods happen to generate
a positive definite preconditioner. Like existing HSS construction algorithms, the new methods have
quadratic computational complexity and can be implemented in parallel.

Key words. hierarchically semiseparable, HSS, hierarchical matrix representation, symmetric
positive definite

AMS subject classifications. 65F08, 65F30

DOI. 10.1137/17M1137073

1. Introduction. Using the low-rank nature of off-diagonal blocks, hierarchical
matrix representations enable scalable computations for certain types of dense matri-
ces arising in applications. Among established hierarchical matrix representations, H
[15, 18] and H2 [17, 16, 8] are the most flexible, allowing high-rank off-diagonal blocks
and adaptive matrix partitionings, and can be highly accurate. Conversely, hierar-
chically semiseparable (HSS) [10] and hierarchically off-diagonal low-rank (HODLR)
[1] representations only allow low-rank off-diagonal blocks and rigid matrix partition-
ings, but these features lead to particularly fast decomposition and solve algorithms
[2, 3, 28, 25]. As many matrices do not exactly have HSS or HODLR forms, these
representations are often used as approximations to a matrix. To take advantage
of hierarchical structures for solving linear systems, it is natural to use highly accu-
rate H or H2 approximations to accelerate matrix-vector multiplications or to use
less accurate HSS or HODLR approximations as preconditioners in Krylov subspace
methods.

Given a symmetric positive definite (s.p.d.) matrix A, it is desirable to compute
an approximate hierarchical representation that is also positive definite. However,
positive definiteness is not guaranteed as the hierarchical representations focus on
compressing off-diagonal blocks into low-rank representations. Preserving positive
definiteness is essential for hierarchical approximations to be used efficiently in various
algorithms and applications, e.g., using the hierarchical representation to accelerate
matrix-vector products in the conjugate gradient algorithm. The goal of this paper

∗Received by the editors July 3, 2017; accepted for publication (in revised form) by S. LeBorne
February 6, 2018; published electronically May 15, 2018.

http://www.siam.org/journals/simax/39-2/M113707.html
Funding: This work was supported by NSF grant ACI-1306573.
†School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA

30332 (xxing33@gatech.edu, echow@cc.gatech.edu).

829

http://www.siam.org/journals/simax/39-2/M113707.html
mailto:xxing33@gatech.edu
mailto:echow@cc.gatech.edu

830 XIN XING AND EDMOND CHOW

is to propose two methods for constructing HSS approximations to an s.p.d. matrix
that preserve positive definiteness.

Instead of directly producing an s.p.d. hierarchical representation of A, there
currently exist methods that construct approximate Cholesky factors of A in HSS
form [29, 20]. These algorithms are sequential in the sense that they all involve
sequential updates to Schur complements. Our algorithms are different in that they
construct s.p.d. HSS matrices directly and are much more parallel.

Another approach to avoid the loss of positive definiteness is diagonal compen-
sation. Bebendorf and Hackbusch [4] build an s.p.d. H approximation by adding
corrections to the diagonal blocks based on the approximation of each off-diagonal
block. Xia [27] adds diagonal shifts to the intermediate blocks in the symmetric ULV
decomposition [28] of HSS approximations when breakdowns occur. In comparison,
our algorithms construct an s.p.d. HSS approximation only through the compression
of off-diagonal blocks.

Of our two methods, the second (called Method 2) is related to the recently
developed “structured incomplete factorization” (SIF) from Xia’s group [31], which
also targets s.p.d. matrices. Both Method 2 and SIF use scalings by diagonal blocks,
which for us is one way to preserve positive definiteness. SIF produces a ULV-type
factorization [10], which can be constructed with much more parallelism than Cholesky
factorizations. Although SIF is likely but not guaranteed to be positive definite when
more than one level is used, our paper provides a framework for establishing SIF
variants that are positive definite by construction.

For constructing an HSS approximation using projection to compress the off-
diagonal blocks into low-rank form (e.g., using a truncated form of QR factorization)
[10, 28, 25], we give a new recursive description of the process that says the HSS
approximation Ahss can be constructed recursively from the leaf level to the root level
of the partition tree as

A = A(0) ⇒ A(1) ⇒ A(2) ⇒ · · · ⇒ A(L) = Ahss,

where A(k) is an approximant constructed from A(k−1).
Based on this new description, two positive-definite-preserving methods are de-

signed by making sure that every stage of the construction, A(k−1) ⇒ A(k), maintains
positive definiteness. Both methods are efficient in that they can be implemented in
parallel at each level and their computational complexities are of the same order as
existing HSS construction methods [28, 25]. Furthermore, the two methods are also
flexible in that they can be combined with existing HSS approximation methods and
techniques to help reduce computational complexity.

This paper also gives a new way of estimating the HSS approximation error, based
on the recursive description above. In fact, it can be proved that the errors at each
stage are orthogonal, giving

‖A−Ahss‖2F = ‖A(0) −A(1)‖2F + ‖A(1) −A(2)‖2F + · · ·+ ‖A(L−1) −A(L)‖2F ,

which is also closely related to the error analysis of H2 approximations in [16]. By
working with ‖A(k) − A(k−1)‖2F , both lower and upper bounds of ‖A − Ahss‖2F are
obtained. It turns out that ‖A(k)−A(k−1)‖2F at each stage can be bounded above and
below within a factor of 2. These bounds are directly related to the corresponding low-
rank approximation errors in the HSS construction process. Thus this error analysis
justifies existing methods (e.g., [28, 25]) in that they minimize the square of the
approximation error at each stage within a factor of 2.

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 831

By directly constructing an s.p.d. HSS approximation rather than an approxi-
mation in factored form, the errors incurred by the approximation process are better
understood, especially by using the orthogonality of the errors at each stage, as shown
above. Once an s.p.d. HSS approximation is constructed, an exact symmetric ULV
decomposition [28] can be computed, if needed, to be applied in various applications.

2. Symmetric HSS definition and notation. Any matrix A ∈ Rn×n can be
associated with an index set I = {1, 2, . . . , n}. A block of A can be represented as
AIi×Ij , where Ii and Ij are two subsets of I. Hierarchical matrix structures partition
matrices into blocks which may be nested inside other blocks. Thus we need a notation
for a hierarchy of index sets. This is naturally provided by a tree structure called a
“partition tree.” HSS representations use binary partitions and thus binary trees. For
simplicity, we assume the binary trees are perfect (all levels are completely filled).

A perfect binary tree T with m leaves is a set of nodes, T = {1, 2, . . . , 2m− 1}. To
use this tree to describe the partitioning of an HSS matrix, each node i is associated
with an index set Ii. If i is a nonleaf node, then Ii = Ic1

⋃
Ic2 , where c1 and c2 are

children of node i, and Ic1
⋂
Ic2 = ∅. The index set associated with the root node is

I, containing all the indices. Figure 1 shows an example of a 2-level binary partition
tree using a postorder numbering of the nodes [28] and the associated hierarchical
partitioning of a matrix.

The level structure of the binary tree is important in this paper. Nodes at the
leaf level are in level 1; their parents are in level 2, etc. The last level is the level
just below the root, called level L. This numbering of the levels is the reverse of
what is generally used in the HSS literature but is more natural in this paper, as the
construction of HSS representations is conceptually from the leaves toward the root.

We now define a symmetric HSS matrix, following the definition of general HSS
matrices from [26].

Definition 2.1. Given a symmetric matrix A ∈ Rn×n, a binary partition tree T ,
and hierarchical index sets {Ii}i∈T , the matrix A is a symmetric HSS matrix if there
are generators Di, Ui, Ri associated with each nonroot node i ∈ T and generators
Bij associated with each pair of siblings i, j ∈ T that can be defined recursively from
the leaf level to the root level as follows. For each leaf node i, we define the generator
Di = AIi×Ii . For each nonleaf node i with children c1 and c2, the generator Di =
AIi×Ii has the structure

Di =

(
Dc1 Uc1Bc1c2U

T
c2

Uc2B
T
c1c2U

T
c1 Dc2

)
with the nested basis property

(1) Ui =

(
Uc1

Uc2

)(
Rc1
Rc2

)
.

Fig. 1. Example partition tree and associated partitioning of a matrix. Following most HSS
literature, this is called a 2-level tree. In this paper, the levels are numbered upward from the leaf
level.

832 XIN XING AND EDMOND CHOW

As an example, the HSS matrix structure corresponding to the tree in Figure 1 is
D1 U1B12U

T
2

U2B
T
12U

T
1 D2

U3B36U
T
6

U6B
T
36U

T
3

D4 U4B45U
T
5

U5B
T
45U

T
4 D5

 .

If we assume a fixed off-diagonal block rank of r, then at each level, generator Ui has
dimensions |Ii| × r, generator Bij has dimensions r × r, and in the expressions

U3 =

(
U1

U2

)(
R1

R2

)
and U6 =

(
U4

U5

)(
R4

R5

)
the generators R1, R2, R4, and R5 have dimensions r×r. For simplicity, we construct
HSS approximations using a fixed rank r for off-diagonal blocks and using perfect
binary partition trees, but these simplifications are easily lifted.

We further use the following notation:
• The dimension of matrix A is denoted by n, and the number of elements in
Ii is denoted by ni.

• For all i, j ∈ T , denote AIi×Ij as Aij when there is no ambiguity.
• Denote lvl(k) as the set of tree nodes at the kth level, e.g., lvl(1) = {1, 2, 4, 5}

for the tree in Figure 1.
• For all i ∈ lvl(k), ic is the complement set lvl(k) \ {i}.
• The block AIi×(I\Ii) (which is not a contiguous block of A in general) is

called the HSS block row of index set Ii, which we abbreviate as Aiic . It has
dimensions ni× (n−ni). (An HSS block column can be defined similarly, but
due to symmetry of A, this concept will not be needed in this paper.) The
HSS representation exploits the low-rank nature of these blocks and existing
HSS construction techniques choose Ui to compress these blocks into low-rank
form. As an example, A22c for the above example is (A21, A24, A25).

• For any nonleaf node i ∈ lvl(k), denote its left and right children as li, ri ∈
lvl(k − 1).

• Denote R̂i =
(
RTli , R

T
ri

)T
for every nonleaf node i ∈ T so that the nested

basis property can be written as Ui =
(
Uli

Uri

)
R̂i.

3. Recursive description of HSS construction. Constructing the HSS rep-
resentation of a matrix A means constructing the generators Di, Ui, Ri, and Bliri ,
some of which are stored implicitly or are not needed at each level. If an approxi-
mate representation is desired, then approximations are made in the choice of the Ui
generators when compressing the HSS block rows and columns.

Construction of the generators for two sibling nodes generally precedes the con-
struction of the generators for their parent (however, see [21]). Although this affects
the choice of approximations (when an approximate HSS representation is desired),
this is a practical ordering of the computation since the construction cost for the parent
can be reduced by using the nested basis property and the compressed representations
at the children. Thus, construction may proceed, for example, by visiting the tree
nodes in postorder fashion [28, 26], which promotes data locality, or in bottom-up
level-by-level fashion [22, 25, 23, 14], which promotes parallelism.

Different HSS methods use different methods of compressing off-diagonal blocks.
When a matrix exactly fits the HSS form (for a given rank r), then the methods

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 833

Fig. 2. Recursive construction of a 3-level HSS approximation. Yellow, green, and blue denote
blocks that have been compressed at each level. In general, we say that A(k−1) is compressed at the
kth level to obtain A(k) for k = 1, . . . , L. To illustrate our notation, if k = 2 and i 6= j ∈ lvl(k),

then A
(k)
ij is a green block in A(2), while A

(k−1)
ij is the corresponding four yellow blocks in A(1) to

be compressed to form the green block.

mathematically produce the same result. Results may be different when an approxi-
mation in HSS form is sought. We focus on compressing off-diagonal blocks Aij into
the form UiU

T
i AijUjU

T
j , where the columns of Ui are orthonormal and UiU

T
i is a

projector usually designed to minimize the projection error ‖Aiic −UiUTi Aiic‖ of the
HSS block row Aiic (similarly for Uj and UjU

T
j). We refer to this as the “projection

method” for compressing off-diagonal blocks and it is equivalent to existing meth-
ods, e.g., [16, 10, 28, 25]. SVD, rank revealing QR factorization, or QR factorization
with pivoting may be used to construct Ui. Alternative compression methods include
interpolative decomposition [22, 30, 23, 14, 9] and adaptive cross approximation [5, 6].

We now introduce a recursive description of HSS construction using the projection
method that will simplify our derivation of s.p.d. HSS approximations. The process
uses the projection method just mentioned and is described using the bottom-up
level-by-level construction order, but our methods can also be implemented using
other construction orderings.

Figure 2 gives an overview of the recursive description. Denote the original matrix

A as A(0). The blocks of A(0) partitioned at the first level are denoted as A
(0)
ij , where

i and j refer to index sets Ii and Ij , where i, j ∈ lvl(1). These nondiagonal blocks are

compressed into the form UiU
T
i A

(0)
ij UjU

T
j and the overall compressed matrix (with its

diagonal blocks untouched) is called A(1), as shown in Figure 2. The process is then
repeated using the index sets at levels 2 and 3, etc., corresponding to partitioning the
matrix by coarser and coarser blocks, until A(L) is obtained as the HSS approximation.

Formally, for levels k from 1 to L,

A(k) = diag({A(k−1)
ii }i∈lvl(k))

+ diag({UiUTi }i∈lvl(k))(A
(k−1) − diag({A(k−1)

ii }i∈lvl(k)))diag({UiUTi }i∈lvl(k)),(2)

where the notation diag({Mi}i∈lvl(k)) denotes the block diagonal matrix composed
of all the blocks {Mi}i∈lvl(k) in order. For example, for the 2-level HSS matrix in
Figure 1,

diag({Aii}i∈lvl(1)) =

(
A11

A22

A44

A55

)
.

This notation will be abusively simplified as diag(Mi) with i ∈ lvl(k) implied for a
given level k.

We note that by the nested basis property, it can be proved that

UiU
T
i A

(k−1)
ij UjU

T
j = UiU

T
i A

(0)
ij UjU

T
j ∀i 6= j ∈ lvl(k),

834 XIN XING AND EDMOND CHOW

which says that it did not matter that, for example, blocks at level 2 were compressed
using compressed blocks at level 1; the result of the compression at level 2 is the same
as if we compressed the blocks of the original matrix directly. Practically, this means
that for each pair of siblings i and j belonging to lvl(k), the generator Bij satisfies

Bij = UTi A
(k−1)
ij Uj = UTi A

(0)
ij Uj .

4. New HSS approximations that preserve positive definiteness. Given
an s.p.d. matrix A, our goal is to find an s.p.d. HSS approximation. The recursive
description of HSS approximation presented in the last section allows us to simplify
this task. The recursive description can be written abstractly as

A = A(0) Ui=⇒
i∈lvl(1)

A(1) Ui=⇒
i∈lvl(2)

A(2) · · · Ui=⇒
i∈lvl(L)

A(L) = Ahss.

To construct an s.p.d. HSS approximation Ahss, it suffices to make sure that each
stage, A(k−1) ⇒ A(k), computed by update formula (2) maintains positive definiteness.
Following this approach, two methods are now presented.

4.1. Method 1. First, rewrite the update formula (2) for level k as

(3) A(k) = diag(UiU
T
i)A(k−1)diag(UiU

T
i) + diag(A

(k−1)
ii − UiUTi A

(k−1)
ii UiU

T
i),

where we remind the reader that i ∈ lvl(k) within each diag(·) is implied. The first
term on the right-hand side is positive semidefinite as we assume A(k−1) to be positive
definite. Meanwhile, the second term is a block diagonal matrix and thus it suffices
to make sure that each block in that matrix is positive definite.

As shown by Proposition 4.1 below, the only possible choice of Ui that makes

A
(k−1)
ii −UiUTi A

(k−1)
ii UiU

T
i positive semidefinite is the one where col(Ui) is an invariant

subspace of A
(k−1)
ii . In this paper, we focus on the simplest invariant subspaces, those

spanned by any set of eigenvectors. The columns of Ui are chosen to be orthonormal

eigenvectors of A
(k−1)
ii . In addition, Proposition 4.2 shows that this choice of Ui can

guarantee A(k) to be positive definite even though A
(k−1)
ii − UiU

T
i A

(k−1)
ii UiU

T
i can

only be guaranteed to be positive semidefinite. It is worth noting that a more general

method might exist by exploiting different invariant subspaces of A
(k−1)
ii .

Proposition 4.1. Given an s.p.d. matrix A ∈ Rn×n and a tall and skinny matrix
U ∈ Rn×r with orthonormal columns, A− UUTAUUT is positive semidefinite if and
only if col(U) is an invariant subspace of A.

Proof. Define Ũ ∈ Rn×(n−r) with columns forming an orthonormal basis of
col(U)⊥. Then,

A− UUTAUUT = (UUT + Ũ ŨT)A(UUT + Ũ ŨT)− UUTAUUT

= Ũ ŨTAŨŨT + Ũ ŨTAUUT + UUTAŨŨT .(4)

For any vector z = Ux + Ũy with x ∈ Rr, y ∈ Rn−r, the quadratic form is written
as zT (A−UUTAUUT)z = yT ŨTAŨy+ 2xTUTAŨy. As long as UTAŨy is not zero,
there exists x ∈ Rr such that the quadratic form is negative. Thus, A− UUTAUUT
is positive semidefinite if and only if UTAŨ = 0. According to the definition of Ũ ,
(AU)T Ũ = 0 holds true if and only if col(AU) ⊂ col(U) which is equivalent to col(U)
being an invariant subspace of A.

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 835

Proposition 4.2. The choice of Ui being composed of orthonormal eigenvectors

of A
(k−1)
ii for any i ∈ lvl(k) guarantees that A(k) constructed by formula (3) is always

positive definite.

Proof. Based on (4), if the columns of Ui are orthonormal eigenvectors of A
(k−1)
ii ,

then A
(k−1)
ii − UiUTi A

(k−1)
ii UiU

T
i = ŨiŨ

T
i A

(k−1)
ii ŨiŨ

T
i , where the columns of Ũi form

an orthonormal basis of col(Ui)
⊥ as before. Formula (3) for level k becomes

A(k) = diag(UiU
T
i)A(k−1)diag(UiU

T
i) + diag(ŨiŨ

T
i)diag(A

(k−1)
ii)diag(ŨiŨ

T
i).

Note that both A(k−1) and diag(A
(k−1)
ii) are positive definite. In addition, diag(UiU

T
i)

and diag(ŨiŨ
T
i) are exactly the projection matrices that correspond to a pair of

complementary subspaces in Rn. As a result, for any nonzero x ∈ Rn, at least one
of its projections z1 = diag(UiU

T
i)x and z2 = diag(ŨiŨ

T
i)x is nonzero and hence

the quadratic form xTA(k)x written as xTA(k)x = zT1 A
(k−1)z1 + zT2 diag(A

(k−1)
ii)z2 is

always positive. Thus, A(k) is positive definite.

In summary, Method 1 is to choose each Ui to be composed of r orthonormal

eigenvectors of A
(k−1)
ii . How to do this while minimizing the projection error and to

also satisfy the nested basis property at nonleaf levels will be discussed in section 5.
Pseudocode for Method 1 thus far using the bottom-up level-by-level construction
order is shown in Algorithm 4.1.

Algorithm 4.1. Method 1 (abstract version).

Input: Original s.p.d. matrix A
Output: S.p.d. HSS approximation A(L)

set A(0) = A
for k = 1, 2, . . . , L do

compute Ui ∀i ∈ lvl(k) satisfying

• columns of Ui are orthonormal eigenvectors of A
(k−1)
ii

• Ui should minimize the projection error ‖A(k−1)
iic − UiUTi A

(k−1)
iic ‖F

• if k > 1, the nested basis property must also be satisfied
compress A(k−1) by formula (2) to obtain A(k)

end for

4.2. Method 2. From (3) and (4), the update formula (2) for level k can be
written as

A(k) = diag(UiU
T
i)A(k−1)diag(UiU

T
i) + diag(ŨiŨ

T
i A

(k−1)
ii ŨiŨ

T
i)

+ diag(UiU
T
i A

(k−1)
ii ŨiŨ

T
i + ŨiŨ

T
i A

(k−1)
ii UiU

T
i), i ∈ lvl(k),(5)

where the columns of Ũi form an orthonormal basis of col(Ui)
⊥ as before. The sum of

the first and second terms can be proved to be positive definite by an argument similar

to that in Proposition 4.2. Thus, the block diagonal matrix diag(UiU
T
i A

(k−1)
ii ŨiŨ

T
i +

ŨiŨ
T
i A

(k−1)
ii UiU

T
i) is the term that might make A(k) indefinite.

In fact, the constraint that the columns of Ui are orthonormal eigenvectors of

A
(k−1)
ii in Method 1 makes UiU

T
i A

(k−1)
ii ŨiŨ

T
i + ŨiŨ

T
i A

(k−1)
ii UiU

T
i exactly zero. From

this point of view, the key is to try to get rid of this term. Thus, Method 2 can be
designed as follows.

836 XIN XING AND EDMOND CHOW

Notice that if A
(k−1)
ii is an identity matrix, then UiU

T
i A

(k−1)
ii ŨiŨ

T
i will be zero

and A(k) will be positive definite. Identity diagonal blocks remind us of scaling by
diagonal blocks. Ignoring for now the nested basis property and focusing on one
update, A(k−1) ⇒ A(k), the idea is to symmetrically scale A(k−1) by its diagonal
blocks and then to compress the scaled off-diagonal blocks using formula (2).

Formally, first calculate the symmetric factorization of A
(k−1)
ii = SiS

T
i for each

node i ∈ lvl(k), and scale the matrix A(k−1) as C(k−1) = diag(S−1
i)A(k−1)diag(S−Ti).

Then, compress the off-diagonal blocks of C(k−1) using formula (2) to obtain

(6) C(k) = diag(C
(k−1)
ii) + diag(ViV

T
i)(C(k−1) − diag(C

(k−1)
ii))diag(ViV

T
i)

with i ∈ lvl(k), where Vi ∈ Rni×r has orthonormal columns. Intuitively, Vi should

be chosen to minimize the projection error ‖C(k−1)
iic − ViV Ti C

(k−1)
iic ‖F . Finally, define

A(k) = diag(Si)C
(k)diag(STi), which can be generated recursively as

A(k) =diag(A
(k−1)
ii) + diag(SiViV

T
i S
−1
i)(A(k−1)− diag(A

(k−1)
ii))diag(S−Ti ViV

T
i S

T
i),

(7)

where each off-diagonal block is compressed as A
(k)
ij = SiViV

T
i S
−1
i A

(k−1)
ij S−Tj VjV

T
j S

T
j .

Denote Ui = SiVi and WT
i = V Ti S

−1
i . Unlike before, this newly defined Ui does not

have orthonormal columns and UiW
T
i is not a projection matrix. However, the matrix

SiViV
T
i S
−1
i can be proved to be the projection onto the subspace col(SiVi) with inner

product defined as (x, y) = xTS−Ti S−1
i y.

The update formula (7) gives a positive definite matrix and the only requirement
so far has been that the columns of Vi are orthonormal. However, we still must
guarantee that the nested basis property is satisfied, which will place an additional
condition on Vi.

Based on the definition of the nested basis property in (1), there should exist

R̂i =
(
RTli , R

T
ri

)T
such that

Vi = S−1
i

(
Uli

Uri

)
R̂i,

which is equivalent to col(Vi) ⊂ col
(
S−1
i

(
Uli

Uri

))
. By the definition of C(k−1) and

the update of A(k−2) to A(k−1) through (7), it can be noted that

col(C
(k−1)
iic) ⊂ col(S−1

i A
(k−1)
iic) ⊂ col

(
S−1
i

(
Uli

WT
li
A

(k−2)
lii

c

Uri
WT

ri
A

(k−2)
rii

c

))
⊂ col

(
S−1
i

(
Uli

Uri

))
.

Previously, Vi was chosen to compress C
(k−1)
iic as ViV

T
i C

(k−1)
iic . Thus the sufficient

condition col(Vi) ⊂ col(C
(k−1)
iic) to satisfy the nested basis property can be enforced

naturally.
Pseudocode for Method 2 thus far using the bottom-up level-by-level construction

order is shown in Algorithm 4.2.

5. Implementation of Method 1. The previous section gave the description
of two s.p.d. HSS construction methods without implementation details. Here, an
efficient implementation of Method 1 is presented. The implementation is related to
building an HSS representation using projection, which we explain first. This method,
which does not try to preserve positive definiteness, will be called the standard HSS
method in this paper and it is exactly the symmetric version of [25].

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 837

Algorithm 4.2. Method 2 (abstract version).

Input: Original s.p.d. matrix A
Output: S.p.d. HSS approximation A(L)

set A(0) = A
for k = 1, 2, . . . , L do

construct a symmetric factorization A
(k−1)
ii = SiS

T
i ∀i ∈ lvl(k)

calculate the scaled off-diagonal block C
(k−1)
ij = S−1

i A
(k−1)
ij S−Tj ∀i 6= j ∈ lvl(k)

compute Vi ∀i ∈ lvl(k) satisfying

• columns of Vi are orthonormal and col(Vi) ⊂ col(C
(k−1)
iic)

• Vi should minimize the projection error ‖C(k−1)
iic − ViV Ti C

(k−1)
iic ‖F

compress A(k−1) by formula (7) to obtain A(k)

end for

5.1. Standard HSS construction using projection. For level k from 1 to

L, define the r × r matrix M
(k)
ij = UTi A

(k−1)
ij Uj ∀i 6= j ∈ lvl(k) which satisfies

A
(k)
ij = UiM

(k)
ij U

T
j by the update formula (2). Here, i, j for M

(k)
ij are used as partition

tree node indices like those in Ui and Bij and do not refer to Ii×Ij like in A
(k)
ij . Notice

that for each pair of siblings i, j ∈ lvl(k), generator Bij = UTi A
(k−1)
ij Uj = M

(k)
ij .

We also define M
(k−1)
ij where i and j (with i 6= j) belong to lvl(k) rather than

lvl(k − 1) as the 2r × 2r matrix that satisfies

A
(k−1)
ij =

(
A

(k−1)
lilj

A
(k−1)
lirj

A
(k−1)
rilj

A
(k−1)
rirj

)
=

(
Uli

Uri

)(
M

(k−1)
lilj

M
(k−1)
lirj

M
(k−1)
rilj

M
(k−1)
rirj

)(
UTlj

UTrj

)
.

At the leaf level, the generators Ui for i ∈ lvl(1) are computed to minimize the

projection error when compressing A
(0)
iic . At level k > 1, Ui for i ∈ lvl(k) are defined

implicitly by Rli and Rri which are computed to minimize the projection error when

compressing A
(k−1)
iic .

By exploiting the nested basis property and the above relation between A
(k−1)
ij

and M
(k−1)
ij for i, j ∈ lvl(k), the projection error is

(8)
∥∥∥A(k−1)

iic − UiUTi A
(k−1)
iic

∥∥∥
F

=
∥∥∥M (k−1)

iic − R̂iR̂Ti M
(k−1)
iic

∥∥∥
F
,

where M
(k−1)
iic is naturally defined as

(
M

(k−1)
ij1

,M
(k−1)
ij2

. . .
)
, with {j1, j2, . . .} = ic.

In addition, by the nested basis property, the columns of Ui being orthonormal is

equivalent to the columns of R̂i being orthonormal. Thus the thin matrix M
(k−1)
iic of

size 2r × 2r(|lvl(k)| − 1) is the target matrix to compress to obtain R̂i. After that,

{M (k)
ij }i,j∈lvl(k) can be calculated from {M (k−1)

pq }p,q∈lvl(k−1) as

M
(k)
ij = R̂Ti M

(k−1)
ij R̂j .

To summarize, the standard HSS approximation is given in Algorithm 5.1 and it
has O(rn2) computational complexity with fixed rank r.

5.2. Method 1: Constrained optimization problem. In Method 1, at level

k, we seek Ui that minimizes the projection error ‖A(k−1)
iic − UiUTi A

(k−1)
iic ‖F , for i ∈

838 XIN XING AND EDMOND CHOW

Algorithm 5.1. Standard bottom-up level-by-level HSS construction.

Input: HSS rank r, original matrix A
Output: HSS approximation with generators {Di}, {Bij}, {Ui}, {Ri}

At the leaf level
set Di = Aii ∀i ∈ lvl(1)
compute Ui ∈ Rni×r ∀i ∈ lvl(1) satisfying
• columns of Ui are orthonormal
• Ui should minimize ‖Aiic − UiUTi Aiic‖F

compute M
(1)
ij = UTi AijUj ∀i 6= j ∈ lvl(1)

set Bij = M
(1)
ij for every pair of siblings i, j ∈ lvl(1)

for k = 2, 3, . . . , L do
compute R̂i = (RTli , R

T
ri)

T ∈ R2r×r ∀i ∈ lvl(k) satisfying

• columns of R̂i are orthonormal
• R̂i should minimize ‖M (k−1)

iic − R̂iR̂Ti M
(k−1)
iic ‖F

compute M
(k)
ij = R̂Ti M

(k−1)
ij R̂j ∀i 6= j ∈ lvl(k)

set Bij = M
(k)
ij for every pair of siblings i, j ∈ lvl(k)

end for

lvl(k), while Ui is also constrained to be exactly r orthonormal eigenvectors of the

diagonal block A
(k−1)
ii . Ignoring for now the nested basis property that must also be

satisfied at nonleaf levels, this leads to the following constrained optimization problem.

Problem 5.1. Given an orthogonal matrix V ∈ Rm×m and a target matrix B ∈
Rm×l, find r columns of V , which we call U ∈ Rm×r, such that U minimizes the
projection error ‖B − UUTB‖F .

The solution is as follows. Any r columns of V can be represented as U =
V P (Ir, 0)

T
, where P is a permutation matrix. Substituting this U into the projection

error expression, the problem becomes finding the permutation P that minimizes

‖B − UUTB‖F =
∥∥B − V P (Ir 0

0 0

)
PTV TB

∥∥
F

=
∥∥PTG− (Ir 0

0 0

)
PTG

∥∥
F
,

where G = V TB ∈ Rm×l. Thus we only need to choose a permutation of the rows of
G such that the first r rows of PTG have the largest norms.

As ‖PTG‖F = ‖B‖F , we have ‖B − UUTB‖F 6 (1 − r
n)

1
2 ‖B‖F , where equality

holds only when all the rows of G have the same norm.

5.3. Method 1: Full implementation. At level 1, the diagonal blocks A
(0)
ii ∈

Rni×ni for i ∈ lvl(1), are typically small, and their eigendecompositions are readily
computed. The Ui that are sought can be computed by solving Problem 5.1, where

V is the matrix of eigenvectors and the target matrix B is the HSS block row A
(0)
iic .

At nonleaf levels k, we need Ui to satisfy the nested basis property in addition
to minimizing the projection error and the columns of Ui being constrained to be

selected orthonormal eigenvectors of the diagonal block A
(k−1)
ii .

For i ∈ lvl(k), the diagonal block A
(k−1)
ii can be written as

A
(k−1)
ii =

(
A

(k−2)
lili

UliU
T
li
A

(k−2)
liri

UriU
T
ri

UriU
T
riA

(k−2)
rili

UliU
T
li

A
(k−2)
riri

)
.

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 839

The columns of Ui ∈ Rni×r being eigenvectors of A
(k−1)
ii is equivalent to there being

an r × r diagonal matrix Σi such that

A
(k−1)
ii Ui = UiΣi,

A
(k−1)
ii

(
Uli

Uri

)
R̂i =

(
Uli

Uri

)
R̂iΣi,(

A
(k−2)
lili

Uli UliU
T
li
A

(k−2)
liri

Uri
UriU

T
riA

(k−2)
rili

Uli A
(k−2)
riri Uri

)
R̂i =

(
Uli

Uri

)
R̂iΣi.

By induction, A
(k−2)
lili

Uli = UliΣli , and A
(k−2)
riri Uri = UriΣri . Thus the calculation

continues as(
UliΣli UliU

T
li
A

(k−2)
liri

Uri
UriU

T
riA

(k−2)
rili

Uli UriΣri

)
R̂i =

(
Uli

Uri

)
R̂iΣi,(

Σli UTliA
(k−2)
liri

Uri
UTriA

(k−2)
rili

Uli Σri

)
R̂i = R̂iΣi.(9)

The term UTliA
(k−2)
liri

Uri is exactly Bliri or M
(k−1)
liri

and has been calculated at the

previous level. Denote the leading matrix in (9) as Ei =
(

Σli
Bliri

BT
liri

Σri

)
.

Every step above is invertible. Thus, the columns of Ui being orthonormal

eigenvectors of A
(k−1)
ii is equivalent to the columns of R̂i being orthonormal eigenvec-

tors of the small 2r × 2r symmetric matrix Ei.

Now, consider computing Ui to minimize the projection error of A
(k−1)
iic . From (8),

minimizing ‖A(k−1)
iic − UiUTi A

(k−1)
iic ‖F under the nested basis constraint is equivalent

to minimizing ‖M (k−1)
iic − R̂iR̂Ti M

(k−1)
iic ‖F . By the analysis above, with eigendecom-

position Ei = ViΛiV
T
i , the optimal R̂i can be obtained by solving Problem 5.1 with

orthogonal matrix Vi, target matrix M
(k−1)
iic , and desired rank r.

The efficient implementation of Method 1 can now be given in Algorithm 5.2.
With fixed rank r, the complexity of the algorithm is O(rn2).

6. Implementation of Method 2. The main difference between Method 2 and
the standard HSS method is the symmetric scaling by diagonal blocks at each level.

At first glance, the decomposition A
(k−1)
ii = SiS

T
i and the application of S−1

i do not
appear to be practical due to the large size of these blocks at higher levels. However,
as shown below, the storage cost and computational complexity to obtain Si and to
apply S−1

i at each level can be reduced and are only related to the off-diagonal block
rank r. The complexity of Method 2 is still of the same order as that of the standard
HSS method.

Similar to the standard HSS construction procedure, for level k from 1 to L,

define M
(k)
ij = V Ti S

−1
i A

(k−1)
ij S−Tj Vj ∈ Rr×r for i 6= j ∈ lvl(k) which satisfies A

(k)
ij =

UiM
(k)
ij U

T
j . If i and j are siblings, also define Bij = M

(k)
ij by the update formula (7).

At the leaf level, all calculations can be performed directly because the matrices
are small. For compressions at nonleaf level k, i.e., to obtain A(k) from A(k−1), the
following quantities need to be calculated:

• For i ∈ lvl(k), the symmetric decomposition A
(k−1)
ii = SiS

T
i .

• For i 6= j ∈ lvl(k), the scaled off-diagonal block C
(k−1)
ij = S−1

i A
(k−1)
ij S−Tj .

840 XIN XING AND EDMOND CHOW

Algorithm 5.2. Method 1 with bottom-up level-by-level construction.

Input: HSS rank r, original s.p.d. matrix A
Output: S.p.d. HSS approximation with generators {Di}, {Bij}, {Ui}, {Ri}

At the leaf level
set Di = Aii ∀i ∈ lvl(1)
compute eigendecomposition Aii = ViΛiV

T
i ∀i ∈ lvl(1)

compute Ui by solving Problem 5.1 with Vi, Aiic , and r ∀i ∈ lvl(1)
store diagonal matrix Σi = UTi AiiUi ∀i ∈ lvl(1)

compute M
(1)
ij = UTi AijUj ∀i 6= j ∈ lvl(1)

set Bij = M
(1)
ij for each pair of siblings i, j ∈ lvl(1)

for k = 2, 3, . . . , L do

compute eigendecomposition Ei = (
Σli

Bliri

BT
liri

Σri
) = ViΛiV

T
i ∀i ∈ lvl(k)

compute R̂i by solving Problem 5.1 with Vi, M
(k−1)
iic , and r ∀i ∈ lvl(k)

store diagonal matrix Σi = R̂Ti EiR̂i ∀i ∈ lvl(k)

compute M
(k)
ij = R̂Ti M

(k−1)
ij R̂j ∀i 6= j ∈ lvl(k)

set Bij = M
(k)
ij for each pair of siblings i, j ∈ lvl(k)

end for

• For i 6= j ∈ lvl(k), M
(k)
ij = V Ti S

−1
i A

(k−1)
ij S−Tj Vj = V Ti C

(k−1)
ij Vj .

• For i ∈ lvl(k),

(10) R̂i =

(
V Tli

V Tri

)(
S−1
li

S−1
ri

)
SiVi

to satisfy the nested basis property for Ui = SiVi.
We now show how each of these four quantities can be computed efficiently.

Symmetric decomposition A
(k−1)
ii = SiS

T
i . At the leaf level, the Cholesky decom-

positionA
(0)
ii = SiS

T
i can be directly calculated. At nonleaf levels k, using compression

at the previous level, A
(k−1)
ii for i ∈ lvl(k) can be written as

A
(k−1)
ii =

(
A

(k−2)
lili

UliBliriU
T
ri

UriB
T
liri

UTli A
(k−2)
riri

)

with Uli = SliVli , Uri = SriVri , and Bliri = V Tli S
−1
li
A

(k−2)
liri

S−Tri Vri . Knowing that

A
(k−2)
lili

= SliS
T
li

and A
(k−2)
riri = SriS

T
ri , diagonal block A

(k−1)
ii can be decomposed as

(11) A
(k−1)
ii =

(
Sli

Sri

)(
I VliBliriV

T
ri

VriB
T
liri

V Tli I

)(
STli

STri

)
.

Hence, only a symmetric decomposition of the middle matrix is needed. For this, we
will use the following proposition.

Proposition 6.1. Consider a matrix H =
(
In1 M

MT In2

)
∈ R(n1+n2)×(n1+n2), where

subblock M ∈ Rn1×n2 is rank r with SVD M = UΣV T , U ∈ Rn1×r, Σ ∈ Rr×r,

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 841

V ∈ Rn2×r. The eigendecomposition of this matrix is
U√

2

U√
2
Ũ 0

V√
2

−V√
2

0 Ṽ

Ir + Σ

Ir − Σ
In1−r

In2−r

U√
2

U√
2
Ũ 0

V√
2

−V√
2

0 Ṽ

T

,

where the columns of Ũ and Ṽ form orthonormal bases of col(U)⊥ and col(V)⊥,
respectively. Furthermore, based on this eigendecomposition, if H is s.p.d., singular
values of M must be less than one and hence the eigenvalues of H are within (0, 2).

The proposition can be verified by direct calculation. Now, Bliri is a small r × r
matrix and its full SVD can be readily calculated as Bliri = QliΣliriQ

T
ri . As A

(k−1)
ii is

s.p.d., the matrix in the middle of (11) is also s.p.d. and can be decomposed as S̄iS̄
T
i ,

where

(12) S̄i =

 Vli
Qli√
2

Vli
Qli√
2

Ṽli
Vri

Qri√
2

−Vri
Qri√
2

Ṽri

 (Ir + Σliri)
1
2

(Ir − Σliri)
1
2

In1+n2−2r

based on Proposition 6.1 and the columns of Ṽli and Ṽri form orthonormal bases of
col(Vli)

⊥ and col(Vri)
⊥, respectively. Thus, a recursive definition of Si by (11) is

obtained as

(13) Si =

(
Sli

Sri

)
S̄i,

where S̄i only requires Vli , Vri , and Bliri at the previous level.

Scaled off-diagonal block C
(k−1)
ij = S−1

i A
(k−1)
ij S−Tj . First consider the one-sided

multiplication S−1
i A

(k−1)
ij for i 6= j ∈ lvl(k). Using compression at the previous level,

A
(k−1)
ij can be written as

A
(k−1)
ij =

(
SliVliV

T
li
S−1
li

SriVriV
T
ri S
−1
ri

)
A

(k−2)
ij

(
SljVljV

T
lj
S−1
lj

SrjVrjV
T
rj S
−1
rj

)T
=

(
SliVliV

T
li
S−1
li

SriVriV
T
ri S
−1
ri

)
Ã

(k−2)
ij ,

where Ã
(k−2)
ij denotes the multiplication of the last two matrices in the first line above.

Combining this expression with (12) and (13), we obtain

S−1
i A

(k−1)
ij

= S̄−1
i

(
VliV

T
li
S−1
li

VriV
T
ri S
−1
ri

)
Ã

(k−2)
ij

=

(Ir+Σliri)
−1

2

(Ir−Σliri)
−1

2

I

QT
li
V T
li√

2

QT
ri
V T
ri√

2
QT

li
V T
li√

2

−QT
ri
V T
ri√

2

Ṽ Tli 0

0 Ṽ Tri

(
VliV

T
li
S−1
li

VriV
T
ri S
−1
ri

)
Ã

(k−2)
ij

842 XIN XING AND EDMOND CHOW

=

(Ir+Σliri)
−1

2

(Ir−Σliri)
−1

2

I

QT
li√
2

QT
ri√
2

QT
li√
2

−QT
ri√
2

0 0
0 0

(
V Tli S

−1
li

V Tri S
−1
ri

)
Ã

(k−2)
ij

=

(
I2r
0

)(
(Ir + Σliri)

− 1
2

(Ir − Σliri)
− 1

2

) QT
li√
2

QT
ri√
2

QT
li√
2

−QT
ri√
2

(V Tli S−1
li

V Tri S
−1
ri

)
Ã

(k−2)
ij .

Denote

Ti =

(
(Ir + Σliri)

− 1
2

(Ir − Σliri)
− 1

2

)QT
li√
2

QT
ri√
2

QT
li√
2

−QT
ri√
2

 ,

which is a 2r × 2r matrix. Multiplying the equation above by S−Tj on the right and

unraveling Ã
(k−2)
ij , we obtain

S−1
i A

(k−1)
ij S−Tj =

(
I2r
0

)
Ti

(
V Tli S

−1
li
V Tri S

−1
ri

)
A

(k−2)
ij

(
S−Tlj Vlj

S−Trj Vrj

)
TTj
(
I2r 0

)
=

(
I2r
0

)
TiM

(k−1)
ij TTj

(
I2r 0

)
,(14)

where

M
(k−1)
ij =

(
M

(k−1)
lilj

M
(k−1)
lirj

M
(k−1)
rilj

M
(k−1)
rirj

)
.

From this equation, each scaled off-diagonal block C
(k−1)
ij only has the top-left 2r×2r

subblock being nonzero. This structure of C
(k−1)
ij arises from the ordering of the

eigenvalues in the eigendecomposition in Proposition 6.1. Evidently, the calculation

of C
(k−1)
ij only requires multiplications of matrices with dimensions 2r × 2r.
Let us also briefly consider the cost of choosing Vi to minimize the projection

error ‖C(k−1)
iic − ViV Ti C

(k−1)
iic ‖F . With the constraint col(Vi) ⊂ col(C

(k−1)
iic), only the

first 2r rows of Vi are nonzero. Thus both the storage and computational complexity
of choosing Vi are similar to that of choosing R̂i in the standard HSS construction
procedure.

Calculation of M
(k)
ij . After finding Vi to compress the scaled off-diagonal blocks

C
(k−1)
ij , matrix M

(k)
ij at the kth level can be efficiently obtained by

(15) M
(k)
ij = V Ti

(
I2r
0

)
TiM

(k−1)
ij TTj

(
I2r 0

)
Vj .

Calculation of R̂i. By the definition of Si in (13) and (12), the calculation of R̂i
through (10) can be simplified as

R̂i =

(
V Tli

V Tri

)
S̄iVi

=

(
V Tli

V Tri

) Vli
Qli√
2

Vli
Qli√
2

Ṽli
Vri

Qri√
2

−Vri
Qri√
2

Ṽri

(Ir+Σliri)
1
2

(Ir−Σliri)
1
2

I

Vi

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 843

=

 Qli√
2

Qli√
2

0 0

Qri√
2

−Qri√
2

0 0

(Ir + Σliri)
1
2

(Ir − Σliri)
1
2

I

Vi.(16)

Due to the zeros in the leading matrix above, the calculation of R̂i only requires the
multiplication of a 2r × 2r matrix by a 2r × r matrix.

The efficient implementation of Method 2 is now given in Algorithm 6.1. With
fixed rank r, the complexity of the algorithm is also O(rn2). We remark that for the
general case where HSS off-diagonal blocks have different ranks, the above procedures
can be easily adapted.

Algorithm 6.1. Method 2 with bottom-up level-by-level construction.

Input: HSS rank r, original s.p.d. matrix A
Output: S.p.d. HSS approximation with generators {Di}, {Bij}, {Ui}, {Ri}

At the leaf level
set Di = Aii ∀i ∈ lvl(1)
compute the Cholesky decomposition Aii = SiS

T
i ∀i ∈ lvl(1)

compute the scaled off-diagonal block C
(0)
ij = S−1

i AijS
−T
j ∀i 6= j ∈ lvl(1)

compute Vi ∈ Rni×r ∀i ∈ lvl(1) satisfying

• columns of Vi are orthonormal and col(Vi) ⊂ col(C
(0)
iic)

• Vi should minimize ‖C(0)
iic − ViV Ti C

(0)
iic ‖F

set Ui = SiVi ∀i ∈ lvl(1)

compute M
(1)
ij = V Ti C

(0)
ij Vj ∀i 6= j ∈ lvl(1)

set Bij = M
(1)
ij for every pair of siblings i, j ∈ lvl(1)

for k = 2, 3, . . . , L do
compute SVD Bliri = QliΣliriQ

T
ri ∀i ∈ lvl(k)

construct Ti in (14) by Σliri , Qli and Qri ∀i ∈ lvl(k)

compute the top-left 2r×2r nonzero subblock of C
(k−1)
ij as C

(k−1)

ij = TiM
(k−1)
ij TTj

by (14) ∀i 6= j ∈ lvl(k)
compute the first 2r rows V i of Vi ∀i ∈ lvl(k) satisfying

• columns of V i are orthonormal and col(V i) ⊂ col(C
(k−1)

iic)

• V i should minimize ‖C(k−1)

iic − V iV
T

i C
(k−1)

iic ‖F
compute R̂i by (16) using Σliri , Qli , Qri , and V i ∀i ∈ lvl(k)

compute M
(k)
ij = V

T

i C
(k−1)

ij V j ∀i 6= j ∈ lvl(k)

set Bij = M
(k)
ij for every pair of siblings i, j ∈ lvl(k)

end for

7. HSS approximation error analysis. For all the construction methods dis-
cussed above, the HSS approximation is constructed level-by-level as A = A(0) ⇒
A(1) ⇒ · · · ⇒ A(L) = Ahss using update formula (2) or (7). The approximation error
‖A(0) −A(L)‖F can be bounded as

(17) ‖A(0) −A(L)‖F 6
L∑
k=1

‖A(k−1) −A(k)‖F ,

which can be found by computing ‖A(k−1) −A(k)‖F at each level.

844 XIN XING AND EDMOND CHOW

7.1. Error estimation for the standard HSS method. For update formula
(2), we now provide an exact expression for ‖A(0) − A(L)‖2F , demonstrating that the
errors at each level are orthogonal to each other in a specific sense.

Proposition 7.1. For the recursive construction formula (2) with the columns
of Ui being orthonormal,

(18) ‖A(0) −A(L)‖2F =

L∑
k=1

‖A(k−1) −A(k)‖2F .

Proof. With a matrix partitioning by index subsets at the kth level, 0 < k < L,
the approximation error can be written as

‖A(0) −A(L)‖2F =
∑

i,j∈lvl(k)

‖A(0)
ij −A

(k)
ij +A

(k)
ij −A

(L)
ij ‖

2
F .

We will first show that each term in the summation above can be split as

(19) ‖A(0)
ij −A

(k)
ij +A

(k)
ij −A

(L)
ij ‖

2
F = ‖A(0)

ij −A
(k)
ij ‖

2
F + ‖A(k)

ij −A
(L)
ij ‖

2
F ,

which then implies that

(20) ‖A(0) −A(L)‖2F = ‖A(0) −A(k)‖2F + ‖A(k) −A(L)‖2F , 0 < k < L.

Consider any i, j ∈ lvl(k). If i = j or if i and j are siblings, then A
(k)
ij will not be

modified by the update formula at any of the subsequent levels. Thus, A
(k)
ij = A

(L)
ij

and (19) holds true in this case. If i and j are not siblings, block A
(L)
ij is obtained

by the compression of some larger block with indices Ip × Iq where p, q are siblings

and Ii ⊂ Ip, Ij ⊂ Iq. By the equation A
(L)
pq = UpU

T
p A

(0)
pq UqU

T
q and the nested basis

property for Up, it can be proved that col(A
(L)
ij) ⊂ col(Ui). Symmetrically, the row

space of A
(L)
ij satisfies col((A

(L)
ij)T) ⊂ col(Uj).

From the construction process, A
(k)
ij = UiU

T
i A

(k−1)
ij UjU

T
j = UiU

T
i A

(0)
ij UjU

T
j and

thus A
(0)
ij −A

(k)
ij can be written as

A
(0)
ij −A

(k)
ij = A

(0)
ij − UiU

T
i A

(0)
ij + UiU

T
i (A

(0)
ij −A

(0)
ij UjU

T
j).

Notice that the columns of A
(0)
ij − UiUTi A

(0)
ij are orthogonal to col(Ui) and the rows

of A
(0)
ij − A

(0)
ij UjU

T
j are orthogonal to col(Uj). Meanwhile, the columns and rows of

A
(k)
ij −A

(L)
ij are within col(Ui) and col(Uj), respectively. By the Pythagorean theorem

and properties mentioned above, the splitting in (19) can be proved as

‖A(0)
ij −A

(k)
ij +A

(k)
ij −A

(L)
ij ‖

2
F

= ‖A(0)
ij − UiU

T
i A

(0)
ij ‖

2
F + ‖UiUTi (A

(0)
ij −A

(0)
ij UjU

T
j) +A

(k)
ij −A

(L)
ij ‖

2
F

= ‖A(0)
ij − UiU

T
i A

(0)
ij ‖

2
F + ‖UiUTi (A

(0)
ij −A

(0)
ij UjU

T
j)‖2F + ‖A(k)

ij −A
(L)
ij ‖

2
F

= ‖A(0)
ij −A

(k)
ij ‖

2
F + ‖A(k)

ij −A
(L)
ij ‖

2
F ,

from which (20) follows.
Now, it can be observed that in the level-by-level construction process, A(L) can

also be regarded as an HSS approximation to A(l) for any 0 < l < L. Thus, (20) also
holds true when replacing index 0 by l, allowing us to recursively apply (20) for l from
0 to (L− 2) with k = l + 1 to prove the proposition.

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 845

It is worth mentioning that this proposition is closely related to the error analysis
of H2 approximations in [7, 16].

For the HSS approximation with update formula (2), an upper bound for the
square of the approximation error for one stage can be obtained as

‖A(k−1)−A(k)‖2F =
∑

i 6=j∈lvl(k)

‖A(k−1)
ij − UiUTi A

(k−1)
ij UjU

T
j ‖2F

=
∑

i 6=j∈lvl(k)

‖A(k−1)
ij −UiUTi A

(k−1)
ij ‖2F +‖UiUTi (A

(k−1)
ij −A(k−1)

ij UjU
T
j)‖2F

6
∑

i 6=j∈lvl(k)

‖A(k−1)
ij − UiUTi A

(k−1)
ij ‖2F + ‖A(k−1)

ij −A(k−1)
ij UjU

T
j ‖2F

= 2
∑

i∈lvl(k)

‖A(k−1)
iic − UiUTi A

(k−1)
iic ‖2F .(21)

Meanwhile, from the second line above, ‖A(k−1) − A(k)‖2F can be bounded from
below as

‖A(k−1) −A(k)‖2F >
∑

i∈lvl(k)

‖A(k−1)
iic − UiUTi A

(k−1)
iic ‖2F .

With these lower and upper bounds, the strategy of choosing each Ui to minimize the

projection error of HSS block rows A
(k−1)
iic is justified in that the strategy minimizes

the square of the approximation error at each stage within a factor of 2.
Instead of a fixed rank r for Ui, the compression may be performed with a thresh-

old ε such that ‖A(k−1)
iic −UiUTi A

(k−1)
iic ‖2F 6 ε2. In terms of ε, the upper bound on the

square of the approximation error for one stage is

‖A(k−1) −A(k)‖2F 6 2|lvl(k)|ε2 = 2L−k+2ε2,

giving a bound on the error for the entire approximation as

‖A−A(L)‖F 6

(
L∑
k=1

2(L−k+2)ε2

) 1
2

= ε
(
2L+2 − 4

) 1
2 ≈ 2ε(n/n0)

1
2 ,

where n0 is the average size of the index subsets {Ii}i∈lvl(1) at the leaf level. Mean-

while, we have the approximate lower bound ‖A − A(L)‖F >
√

2ε(n/n0)
1
2 if the

compression satisfies ‖A(k−1)
iic − UiUTi A

(k−1)
iic ‖2F ≈ ε2.

7.2. Error estimation for Method 1. In the standard HSS method, Ui is

chosen at each level to minimize the projection error ‖A(k−1)
iic − UUTA(k−1)

iic ‖F such
that the columns of Ui are orthonormal and, for nonleaf levels, Ui satisfies the nested
basis property. In Method 1, we have the additional requirement that the columns

of Ui are eigenvectors of A
(k−1)
ii . It is clear that the achievable minimum of Method

1 will not be better than that of the standard HSS method. From the error analysis
of the constrained optimization problem in subsection 5.2, the minimum projection

error can be as large as (1− r
ni

)
1
2 ‖A(k−1)

iic ‖F . This worst-case projection error can be
much worse than the bounds on the projection error for the standard HSS method.

However, for the Gram matrix of many s.p.d. smooth kernel functions, Method 1

may sometimes give good approximations as measured by ‖A(k−1)
iic − UUTA(k−1)

iic ‖F .
A plausible explanation of when this might happen is as follows.

846 XIN XING AND EDMOND CHOW

Based on the Mercer’s theorem, any s.p.d. smooth kernel K(x, y) on a compact
domain Ω has an eigenfunction expansion as

K(x, y) =

∞∑
k=1

λkφk(x)φk(y) ∀x, y ∈ Ω,

where {φk(x)} are orthonormal in L2(Ω) and {λk} decreases monotonically to zero.
Denote the sum of the first r terms as K(r)(x, y) and the remainder term as R(r)(x, y).
Their L2-norms in Ω× Ω are ‖K(r)‖2L2

=
∑r
k=1 λ

2
k and ‖R(r)‖2L2

=
∑∞
k=r+1 λ

2
k.

Consider two point sets I = {xj}pj=1 and J = {yj}qj=1 in domains Ω1 and Ω2,
respectively. Define Ω = Ω1∪Ω2 for the above eigenfunction decomposition. Choose r
such that ‖R(r)‖L2/‖K(r)‖L2 is relatively small, say, 10−2. We can write the diagonal
block AII and off-diagonal block AIJ as

AII = (K(xj , xl))xj ,xl∈I = K
(r)
II +R

(r)
II

=

λ1φ1(x1) . . . λrφr(x1)
λ1φ1(x2) . . . λrφr(x2)

...
...

λ1φ1(xp) . . . λrφr(xp)

φ1(x1) . . . φr(x1)
φ1(x2) . . . φr(x2)

...
...

φ1(xp) . . . φr(xp)

T

+ (R(r)(xj , xl))xj ,xl∈I ,

AIJ = (K(xj , yl))xj∈I,yl∈J = K
(r)
IJ +R

(r)
IJ

=

λ1φ1(x1) . . . λrφr(x1)
λ1φ1(x2) . . . λrφr(x2)

...
...

λ1φ1(xp) . . . λrφr(xp)

φ1(y1) . . . φr(y1)
φ1(y2) . . . φr(y2)

...
...

φ1(yq) . . . φr(yq)

T

+ (R(r)(xj , yl))xj∈I,yl∈J .

From the viewpoint of numerical integration, ‖R(r)
II ‖2F can be roughly estimated as

‖R(r)
II ‖

2
F =

|I|2

|Ω1× Ω1|
∑ |Ω1× Ω1|

|I|2
|R(r)(xj , xl)|2≈

|I|2

|Ω1× Ω1|
‖R(r)

∣∣
Ω1×Ω1

‖2L2
.

Thus, similar to the other matrices above, it is likely to hold that

‖R(r)
II ‖F ∼ O(|I|‖R(r)

∣∣
Ω1×Ω1

‖L2
), ‖K(r)

II ‖F ∼ O(|I|‖K(r)
∣∣
Ω1×Ω1

‖L2
),

‖R(r)
IJ ‖F ∼ O(

√
|I||J |‖R(r)

∣∣
Ω1×Ω2

‖L2), ‖K(r)
IJ ‖F ∼ O(

√
|I||J |‖K(r)

∣∣
Ω1×Ω2

‖L2).

Call Φ the matrix that is common in the above expressions for AII and AIJ .
If we assume that both ‖K(r)|Ω1×Ω1

‖L2
and ‖K(r)|Ω1×Ω2

‖L2
are of the same scale

as ‖K(r)‖L2 , ‖R(r)
II ‖F will be relatively small compared to ‖K(r)

II ‖F . Thus, based

on AII = K
(r)
II + R

(r)
II and K

(r)
II being rank r, it is likely that the rank-r principal

eigenvector space of AII is close to col(K
(r)
II) = col(Φ). Similarly, the rank-r principal

left-singular vector space of AIJ is also likely close to col(K
(r)
IJ) = col(Φ). As a result,

it is possible that the rank-r principal eigenvector space of AII and the rank-r principal
left-singular vector space of AIJ are close. If the spaces are close, then choosing U
as some principal orthonormal eigenvectors of AII may give a small projection error
‖AIJ − UUTAIJ‖F .

The above assumption about ‖K(r)|Ω1×Ω1
‖L2

and ‖K(r)|Ω1×Ω2
‖L2

may not hold

in general. A common example is for K(x, y) = e−‖x−y‖
2

with two domains, Ω1 and

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 847

Ω2, that are far apart. As a good approximation of K(x, y), K(r)(x, y) on Ω1 × Ω2

should have much smaller L2 norm than on Ω1 × Ω1. However, it is worth noting
that, in this case, a highly accurate approximation to AIJ may not be necessary for
preconditioning. Numerical tests are now presented to illustrate the above argument.

Consider two clusters I and J where each contains 100 uniformly randomly dis-
tributed points within a unit cube. The centers of the two cubes lie at (0, 0, 0) and

(L, 0, 0). For K(x, y) = e−‖x−y‖
2

, the diagonal block AII and off-diagonal block AIJ
are defined as above. The relative projection error ‖AIJ − UUTAIJ‖F /‖AIJ‖F ver-
sus rank r is shown in Figure 3 with two different cluster locations (L, 0, 0) for cluster
J . The columns of U are chosen as follows:

• r left-singular vectors of AIJ associated with the largest singular values,
• optimal r orthonormal eigenvectors of AII chosen by solving Problem 5.1,
• r orthonormal eigenvectors of AII associated with the largest eigenvalues,
• optimal r columns chosen by solving Problem 5.1 using a random orthogonal

matrix generated by the QR decomposition of a Gaussian random matrix.
The mean value from 10 tests is plotted in the figure.

In addition, the curve (1− r
n)

1
2 for the worst-case error is also plotted for comparison.

Figure 3 shows that using eigenvectors of AII gives good approximation errors
especially when compared to using columns of a random orthogonal matrix. In addi-
tion, the closeness between using optimal and principal eigenvectors of AII , as well
as the difference between results for nearby and distant clusters, both support the
argument above.

0 5 10 15 20 25 30
Rank r for projection

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

R
el
a
ti
v
e
P
ro
je
ct
io
n
E
rr
o
r
in

‖
·
‖
F

principal singular vectors of AIJ

optimal eigenvectors of AII

principal eigenvectors of AII

random

theoretical worst

(a) (L, 0, 0) = (1, 0, 0),
‖AIJ‖F
‖AII‖F

= 0.53

0 5 10 15 20 25 30
Rank r for projection

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

R
el
a
ti
v
e
P
ro
je
ct
io
n
E
rr
o
r
in

‖
·
‖
F

principal singular vectors of AIJ

optimal eigenvectors of AII

principal eigenvectors of AII

random

theoretical worst

(b) (L, 0, 0) = (3, 0, 0),
‖AIJ‖F
‖AII‖F

= 2.2e-3

Fig. 3. Relative projection error with K(x, y) = e−‖x−y‖2 for the cases of (a) nearby clusters
and (b) distant clusters.

7.3. Error estimation for Method 2. Due to the scaling of the off-diagonal
blocks, Proposition 7.1 does not work for Method 2. Here, we directly estimate the
HSS approximation error of Method 2 using the inequality (17). The square of the
error at each stage k can be bounded as

‖A(k−1) −A(k)‖2F =
∑

i 6=j∈lvl(k)

‖A(k−1)
ij − SiViV Ti S−1

i A
(k−1)
ij S−Tj VjV

T
j S

T
j ‖2F

848 XIN XING AND EDMOND CHOW

=
∑

i 6=j∈lvl(k)

‖Si(C(k−1)
ij − ViV Ti C

(k−1)
ij VjV

T
j)STj ‖2F

6
∑

i 6=j∈lvl(k)

‖Si‖22 ‖Sj‖22 ‖C
(k−1)
ij − ViV Ti C

(k−1)
ij VjVj‖2F

6 max
i∈lvl(k)

‖Si‖42
∑

i 6=j∈lvl(k)

‖C(k−1)
ij − ViV Ti C

(k−1)
ij VjVj‖2F

6 2 max
i∈lvl(k)

‖A(k−1)
ii ‖22

∑
i∈lvl(k)

‖C(k−1)
iic − ViV Ti C

(k−1)
iic ‖2F .

The last inequality above is obtained by the same method used in (21).

Assume Vi is chosen to satisfy ‖C(k−1)
iic −ViV Ti C

(k−1)
iic ‖2F 6 ε2 with error threshold

ε. The remaining part is to estimate maxi∈lvl(k) ‖A
(k−1)
ii ‖2 at each level. For any node

i ∈ lvl(k), (11) gives the diagonal block as

A
(k−1)
ii =

(
Sli

Sri

)(
I VliBliriV

T
ri

VriB
T
liri

V Tli I

)(
STli

STri

)
.

As A
(k−1)
ii is positive definite, the matrix in the middle is also s.p.d. and its largest

eigenvalue should be less than 2 based on Proposition 6.1. Thus, ‖A(k−1)
ii ‖2 can be

bounded as

‖A(k−1)
ii ‖2 6

∥∥∥∥(Sli Sri
)∥∥∥∥2

2

∥∥∥∥(I VliBliriV
T
ri

VriB
T
liri

V Tli I

)∥∥∥∥
2

6 2 max(‖A(k−2)
lili

‖2, ‖A(k−2)
riri ‖2)

6 2 max
j∈lvl(k−1)

‖A(k−2)
jj ‖2 6 . . . 6 2k−1 max

j∈lvl(1)
‖A(0)

jj ‖2 6 2k−1‖A‖2.

The square of the approximation error can then be bounded as

‖A(k−1) −A(k)‖2F 6 22k−1‖A‖22|lvl(k)|ε2 = 2L+k‖A‖22ε2.

Finally, the HSS approximation error of Method 2 satisfies

‖A−A(L)‖F 6 2L/2‖A‖2ε
L∑
k=1

2k/2 = ‖A‖2ε
√

2√
2− 1

(2L − 2L/2) ≈
√

2√
2− 1

n

n0
‖A‖2ε,

where n0 is the average size of the index subsets {Ii}i∈lvl(1) at the leaf level.
Note that the compression in Method 2 is applied to the scaled off-diagonal block

C
(k−1)
iic , i.e., finding Vi ∈ Rni×r that minimizes ‖C(k−1)

iic − ViV Ti C
(k−1)
iic ‖2F . Assuming

that the original HSS block row A
(k−1)
iic has fast-decaying singular values, the scaled

block row C
(k−1)
iic may not necessarily have this property. Hence, the rank of the

approximation for a given ε may be large. Heuristically, choosing Vi to minimize the
approximation error ‖A(k) − A(k−1)‖2F at each stage might be a better method, but
an efficient way to do this is currently unclear.

8. Numerical results. As example applications, we are concerned with the
preconditioning of s.p.d. matrices by HSS approximations in two general problems:
solving linear systems Ax = b using the preconditioned conjugate gradient (PCG)

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 849

method and sampling correlated random vectors y ∼ N (0, A) using a preconditioned
Lanczos process [11]. To apply the preconditioners, we use the symmetric ULV fac-
torization [28]. The following settings are shared for all experiments:

• Hierarchical partitioning of points. A full binary partition tree is constructed
by recursively partitioning a set of points using the principal components
analysis algorithm such that leaf nodes have no more than 100 points.

• Rank of HSS off-diagonal blocks. There are two settings: (1) The rank of
Ui is fixed as a constant, r. (2) The rank of Ui is adaptively chosen using a

constant relative error threshold τ in the associated compression of A
(k−1)
iic or

C
(k−1)
iic .

• Algorithm for the projection method. The randomized algorithms in [19] are
used to estimate the principal column space of the compression target matrix
with fixed rank or relative error threshold in all the HSS approximations.

• Stopping criteria. A threshold ε = 10−8 is applied for all the experiments.
PCG stops at iteration i when the relative reduction of the residual satisfies
‖ri‖/‖r0‖ 6 ε and the Lanczos method stops when the relative difference
between two consecutive iterates satisfies ‖yi+1 − yi‖/‖yi‖ 6 ε.

• Methods. Four methods are tested: block Jacobi, standard HSS with the
projection method, Method 1, and Method 2, denoted as BJ, HSS, SPDHSS1,
and SPDHSS2, respectively. The block Jacobi preconditioner is composed of
the diagonal blocks associated with the leaf nodes of the partition tree. All
methods are implemented in MATLAB.

8.1. Inverse multiquadric kernel. The inverse multiquadric kernel is a non-
compact radial basis function whose Gram matrix is dense. The kernel is

K(x, y) =
1√

1 + c‖x− y‖2
, x, y ∈ Rd,

where c is a parameter that controls the flatness of the kernel function.
To maintain constant point density, N points are randomly and uniformly dis-

tributed in a cube with edge length 3
√
N in three dimensions. We use parameters

c = 0.5 with fixed rank r = 50 or relative error threshold τ= 1e-2. A test with τ =
8e-2 only for SPDHSS2 is included. Results are shown for different values of N in
Table 1. No preconditioning results can be shown for standard HSS as these approx-
imations are not positive definite in any of our settings. Also, BiCGStab with the
standard HSS approximation as a preconditioner usually does not converge within 2N
steps for most of the test settings.

With fixed rank r, the approximation errors for both SPDHSS1 and SPDHSS2 are
always larger than for standard HSS, as expected. The iteration counts for SPDHSS1
and SPDHSS2 both increase with N , as the compression of larger blocks with fixed
rank gives less accurate HSS approximations. In addition, SPDHSS1 requires less
construction time than standard HSS, which could also have been expected.

With τ=1e-2, the iteration count using SPDHSS2 is scalable for both solving and
sampling. This is at the price of much larger ranks for off-diagonal blocks as reflected
by the storage cost. The results suggest that, in this example, the scaled HSS block

rows C
(k−1)
iic in Method 2 have slower-decaying singular values than HSS block rows

A
(k−1)
iic in standard HSS. Meanwhile, SPDHSS2 with τ=8e-2 obtains a better balance

between construction cost and preconditioner effectiveness.

850 XIN XING AND EDMOND CHOW

Table 1
Numerical results for the inverse multiquadric kernel with c = 0.5. The iteration count and

consumed time for solving and sampling, relative approximation error ‖Aapprx − A‖F /‖A‖F , con-
struction time of preconditioners (including HSS approximation and symmetric ULV decomposition),
and storage cost of the ULV factors of the HSS approximations are presented.

N 4000 8000 12000 16000 20000

Solving Unprecond. 5970/20.8 11542/144.8 15708/372.2 15973/741.3 22240/1533.6
iter/time BJ 757/3.1 1299/17.9 1248/34.8 1400/66.8 1540/111.9

(sec.) r=50 SPDHSS1 253/3.9 375/15.0 475/28.0 463/38.6 483/51.9
SPDHSS2 195/2.9 305/10.1 373/20.9 348/29.7 430/46.8

τ=1e-2 SPDHSS1 184/2.5 294/10.0 329/19.2 308/29.4 348/43.0
SPDHSS2 11/0.3 11/0.8 15/2.0 11/2.5 13/3.8

τ=8e-2 SPDHSS2 48/1.0 58/3.4 99/8.7 64/9.3 78/15.7

Sampling Unprecond. 567/12.1 670/36.2 962/107.1 912/129.9 989/185.8
iter/time BJ 269/2.7 374/12.7 283/15.9 308/23.1 352/41.0

(sec.) r=50 SPDHSS1 136/3.3 163/8.2 181/11.9 164/16.9 183/26.0
SPDHSS2 113/2.3 126/5.9 156/11.3 155/15.6 145/20.0

τ=1e-2 SPDHSS1 104/1.7 146/5.8 138/9.5 129/14.0 126/17.2
SPDHSS2 9/0.3 9/0.8 11/1.7 8/2.1 10/3.3

τ=8e-2 SPDHSS2 33/0.8 37/2.4 53/5.1 35/5.5 41/8.8

Relative r=50 SPDHSS1 6.3e-2 7.7e-2 8.7e-2 9.1e-2 9.6e-2
error SPDHSS2 6.9e-2 8.3e-2 1.1e-1 1.1e-1 1.1e-1

HSS 1.1e-2 1.6e-2 2.1e-2 2.4e-2 2.7e-2
τ=1e-2 SPDHSS1 2.7e-2 3.0e-2 3.1e-2 3.2-e2 3.2e-2

SPDHSS2 1.3e-3 1.2e-3 1.2e-3 1.2e-3 1.2e-3
HSS 2.4e-2 2.6e-2 2.8e-2 3.0e-2 3.0e-2

τ=8e-2 SPDHSS2 1.6e-2 1.4e-2 1.6e-2 1.5-e2 1.8e-2

Construct. r=50 SPDHSS1 0.7/0.1 3.5/0.2 8.0/0.3 17.4/0.5 22.1/0.5
time (sec.) SPDHSS2 2.3/0.1 10.4/0.3 16.4/0.4 34.8/0.5 51.4/0.4
apprx/ulv HSS 1.7/- 7.4/- 13.4/- 20.4/- 34.6/-

τ=1e-2 SPDHSS1 0.5/0.1 2.1/0.3 4.6/0.5 8.8/0.6 13.1/0.7
SPDHSS2 11.9/0.4 50.8/1.2 130.9/2.5 257.4/4.3 421.1/6.4
HSS 3.0/- 11.1/- 23.3/- 48.5/- 61.5/-

τ=8e-2 SPDHSS2 5.1/0.2 24.2/0.7 46.9/1.1 98.9/1.8 157.3/2.7

Storage Dense matrix 122 488 1098 1953 3051
(MB) r = 50∗ 14 28 41 58 68

τ=1e-2 SPDHSS1 20 45 75 101 134
SPDHSS2 87 248 485 744 1062

τ=8e-2 SPDHSS2 44 119 214 334 479
∗With a fixed rank, ULV factors of all the HSS approximations have the same storage cost.

To compare with standard HSS, we increase the rank r for the cases with N =
8000, 12000, 16000 such that standard HSS approximations are also positive definite.
Results are shown in Table 2. An interesting phenomenon, which also appears with
larger r and with other kernels, is that although standard HSS has a smaller approx-
imation error, it has worse preconditioning performance compared to SPDHSS2.

The HSS approximation time and storage cost versus N are shown in Figure 4.
With fixed rank, SPDHSS1 and SPDHSS2 both have quadratic computational com-
plexities. With fixed τ , these superlinear storage results indicate that ranks of the
off-diagonal blocks in both methods are related to N .

8.2. Rotne-Prager-Yamakawa kernel. The Rotne–Prager–Yamakawa (RPY)
kernel D(x, y) : R3 × R3 → R3×3 is a positive definite tensor function that describes
the hydrodynamic interactions between particles in a viscous fluid. We previously
used this kernel in coarse-grained macromolecular simulations [12, 13], and the need

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 851

Table 2
Comparison among different preconditioning methods for the inverse multiquadric kernel for

three problem sizes when the standard HSS approximation is positive definite. The relative error
(relerr), iteration count for solving (iterSO), and sampling (iterSA) are shown. The relative error
does not appear to be always correlated with iteration count.

r = 518, N = 8000 r = 665, N = 12000 r = 730, N = 16000
relerr iterSO iterSA relerr iterSO iterSA relerr iterSO iterSA

HSS 3.0e-5 12 10 5.3e-5 19 13 7.4e-5 22 16
SPDHSS1 1.2e-2 147 81 1.2e-2 174 85 1.3e-2 143 66
SPDHSS2 8.8e-4 7 6 2.1e-3 7 6 4.2e-3 10 8

10 4

Number of Points N

10 -1

10 0

10 1

10 2

10 3

H
S
S
A
p
p
ro
x
im

at
io
n
T
im

e
(s
ec
.)

SPDHSS1 r = 50
SPDHSS2 r = 50
SPDHSS1 τ=1e-2
SPDHSS2 τ=1e-2
SPDHSS2 τ=8e-2

Slope:1.95

Slope:2.07

Slope:1.94

Slope:2.04

Slope:2.22

(a) HSS approximation time

10 4

Number of Points N

10 0

10 1

10 2

10 3

10 4

S
to
ra
ge

C
os
t
(M

B
)

SPDHSS1 r = 50
SPDHSS2 r = 50
SPDHSS1 τ=1e-2
SPDHSS2 τ=1e-2
SPDHSS2 τ=8e-2

Slope:1.57

Slope:1.50

Slope:1.01

Slope:1.21

(b) ULV factor storage

Fig. 4. HSS approximation time and ULV factor storage cost versus N for the inverse multi-
quadric kernel with c = 0.5. Linear fittings are drawn with dashed lines.

to construct positive definite preconditioners for sampling in this application was the
original motivation for this work. The RPY kernel is defined as

D(x, y) =

kBT
6πηaI3 if x = y,
kBT

8πη|r|

[(
I3 + rrT

|r|2

)
+ 2a2

|r|2

(
1
3I3 −

rrT

|r|2

)]
if ‖x− y‖ > 2a,

kBT
6πηa

[(
1− 9

32
|r|
a

)
I3 + 3

32
|r|
a
rrT

|r|2

]
if ‖x− y‖ < 2a,

with r = x− y, where kB , T, η are fixed physical quantities and a is the radius of the
particles. In this test, a = 1 and constant kBT

6πηa = 1. We place N nonoverlapping
particles randomly inside a cube with a width chosen such that the volume fraction
is 0.3. Note that the RPY kernel matrix with N particles is of size 3N × 3N .

Results are presented in Table 3. The standard HSS approximations with r = 50
or τ=1e-2 are not positive definite for any tested N . This is a challenging problem,
as none of the methods give scalable preconditioning performance. Although the
construction cost is high in some cases, it can be amortized over the many sample
vectors that must be computed for the same matrix in real applications.

8.3. Boundary integral equation. Consider the three-dimensional Laplace
equation in a bounded Lipschitz domain Ω with Dirichlet condition u = uD on ∂Ω.
The indirect boundary integral equation [7] for this problem leads to a linear system
V x = b with

852 XIN XING AND EDMOND CHOW

Table 3
Numerical results for RPY kernel with particle volume fraction 0.3.

N 4000 6000 8000 10000 12000

Sampling Unprecond. 105/4.4 116/10.2 123/15.3 131/24.9 136/36.4
iter/time BJ 113/5.2 127/12.0 128/16.9 136/27.4 143/40.0

(sec.) r=50 SPDHSS1 68/4.3 75/9.6 81/13.3 89/21.4 98/33.5
SPDHSS2 65/4.0 80/10.6 86/14.3 95/22.8 103/35.3

τ=2e-2 SPDHSS1 24/3.2 26/5.7 28/8.8 29/12.3 30/16.4
τ=8e-2 SPDHSS2 19/2.4 22/4.7 24/7.7 24/11.0 26/17.0

Relative r=50 SPDHSS1 2.2e-1 2.3e-1 2.4e-1 2.4e-1 2.5e-1
error SPDHSS2 1.9e-1 1.9e-1 2.0e-1 2.1e-1 2.2e-1

τ=2e-2 SPDHSS1 5.2e-2 5.4e-2 5.8e-2 5.8e-2 6.0e-2
τ=8e-2 SPDHSS2 2.7e-2 2.9e-2 2.8e-2 2.6e-2 2.9e-2

Construct. r=50 SPDHSS1 3.1/0.19 6.6/0.36 12.0/0.39 16.9/0.50 24.6/0.77
time (sec.) SPDHSS2 6.7/0.19 16.0/0.37 25.8/0.39 37.3/0.51 54.5/0.65
apprx/ulv τ=2e-2 SPDHSS1 9.9/2.11 20.4/3.44 35.8/4.59 50.4/6.14 72.7/7.52

τ=8e-2 SPDHSS2 87.8/1.89 178.5/3.22 349.6/5.23 581.3/7.71 866.0/12.96

Storage Dense matrix 1099 2472 4395 6867 9888
(MB) r = 50 45 76 92 129 155

τ=2e-2 SPDHSS1 461 731 955 1251 1509
τ=8e-2 SPDHSS2 380 645 1008 1455 1837

(22) Vij =

∫
τi

∫
τj

1

4π‖x− y‖2
dxdy, bi =

∫
τi

uD(x)dx,

where {τi} is a partitioning of ∂Ω and matrix V is known to be always s.p.d.
In this test, ∂Ω is the unit sphere and we solve the linear system above with uni-

form triangulations with different numbers of triangles, N . Entries of b are randomly
selected from [−1, 1]. Results are shown in Table 4.

In contrast to the previous problems, the standard HSS approximations using our
chosen rank r and thresholds τ are found to be positive definite for these integral
equation problems. Here, standard HSS should be the preconditioner of choice but
there is no guarantee that the standard HSS approximations for these problems are
always positive definite. Thus, it is still of interest to see how SPDHSS1 and SPDHSS2
perform.

Similar to what was observed in Table 2, the preconditioning performance of
SPDHSS2 is close to that of standard HSS, even though standard HSS gives more
accurate approximations. A disadvantage of SPDHSS1 here is also evident: for the
small relative error threshold τ=1e-2, SPDHSS1 needs much larger ranks than stan-
dard HSS to compress the off-diagonal blocks as reflected by the enormous storage
cost. This is corroborated by Figure 3 shown earlier, where the decay of relative errors
in Method 1 is much slower than that of the truncated SVD. This disadvantage sug-
gests that SPDHSS1 should only be used for low-accuracy preconditioning operations
by controlling its off-diagonal block rank r.

To summarize, based on the three tests above, SPDHSS2 is more effective than
SPDHSS1 for preconditioning but requires greater construction time and storage.
SPDHSS1 is faster to construct but cannot provide highly accurate approximations
with low-rank compression. A careful rank selection for HSS off-diagonal blocks in
both methods is needed to balance the trade-off between preconditioner quality and
construction cost. Like the standard HSS construction, both methods have O(rn2)
computational complexity. We remark that our implementations are sequential and

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 853

Table 4
Numerical results for the boundary integral equation over the unit sphere with different N . The

meshes and matrices are constructed by the package BEM++ [24].

N 3206 6500 9008 12600 34184

Solving Unprecond. 80/0.32 92/0.96 104/1.92 106/3.56 140/34.32
iter/time BJ 35/0.16 37/0.40 39/0.79 44/1.58 51/11.14

(sec.) r=50 SPDHSS1 20/0.23 21/0.67 22/0.91 23/1.52 25/7.36
SPDHSS2 11/0.14 13/0.43 13/0.54 15/1.06 18/5.34
HSS 11/0.14 13/0.35 14/0.58 15/1.14 17/5.55

τ=1e-2 SPDHSS1 9/0.36 10/1.28 10/1.74 10/3.00 11/17.26
SPDHSS2 10/0.13 11/0.35 5/0.33 11/1.00 10/3.82
HSS 9/0.10 10/0.27 10/0.44 10/0.71 11/3.77

τ=5e-2 SPDHSS1 16/0.19 18/0.53 18/0.84 20/1.50 22/8.9

Relative r=50 SPDHSS1 1.3e-1 1.4e-1 1.4e-1 1.4e-1 1.6e-1
error SPDHSS2 6.0e-2 9.0e-2 9.5e-2 1.0e-1 1.3e-1

HSS 2.0e-2 2.8e-2 3.3e-2 3.7e-2 4.7e-2
τ=1e-2 SPDHSS1 1.7e-2 2.0e-2 2.0e-2 2.1e-2 2.4e-2

SPDHSS2 1.7e-2 2.0e-2 4.0e-3 1.7e-2 7.0e-3
HSS 1.4e-2 1.7e-2 1.5e-2 1.8e-2 2.1e-2

τ=5e-2 SPDHSS1 8.7e-2 9.8e-2 1.0e-1 1.1e-1 1.2e-1

Construct. r=50 SPDHSS1 0.4/0.07 1.8/0.23 2.8/0.28 6.9/0.45 52.2/1.17
time (sec.) SPDHSS2 1.1/0.08 4.6/0.17 7.6/0.28 23.9/0.32 125.5/0.82
apprx/ulv HSS 0.8/0.08 3.4/0.17 5.6/0.23 16.6/0.32 91.2/0.82

τ=1e-2 SPDHSS1 1.7/0.82 8.1/3.19 15.8/6.14 33.0/11.41 410.2/127.95
SPDHSS2 1.4/0.10 5.4/0.23 12.8/0.37 22.1/0.62 164.1/1.68
HSS 0.7/7e-2 2.7/0.16 6.1/0.23 10.6/0.32 67.5/0.91

τ=5e-2 SPDHSS1 0.4/0.10 1.4/0.20 2.6/0.27 5.16/0.41 37.3/1.10

Storage Dense matrix 78 322 619 1211 8915
(MB) r = 50 11 23 30 46 128

τ=1e-2 SPDHSS1 157 552 941 1588 8237
SPDHSS2 15 35 58 81 275
HSS 10 21 32 46 143

τ=5e-2 SPDHSS1 16 32 43 59 151

runtimes can be improved by taking advantage of parallelism. In addition, if the
original matrix can be represented in H or H2 matrix form that is accurate enough
to be s.p.d., it is then possible to reduce the construction cost of both methods by
taking advantage of the low-rank structures in these forms.

9. Conclusion. In this paper, we designed two positive-definite-preserving HSS
approximation algorithms based on a recursive description of constructing HSS rep-
resentations. Method 1 is different from all existing methods in that the Ui used to
compress the off-diagonal blocks are based on the diagonal blocks and do not require
factoring HSS block rows. That this cheaper alternative can provide good approxi-
mations in some cases, as well as its generalization to different choices of invariant
subspaces for Ui, is worthy of further study. Method 2 chooses Vi to compress off-
diagonal blocks after scaling. It is also worthwhile to explore how to choose Vi to
directly minimize the approximation error ‖A(k) − A(k−1)‖ (before scaling) at each
stage, while also preserving positive definiteness.

This paper also provided a method of understanding the errors incurred at each
stage of an HSS approximation when projection is used to compress off-diagonal
blocks. This use of projection led to the elegant result that the errors at each stage are
orthogonal to each other. Experimentally, we observed that smaller approximation

854 XIN XING AND EDMOND CHOW

error is not always correlated with better preconditioned convergence rate. Better
control of the preconditioned convergence behavior via the approximations chosen in
hierarchical representations is a long-term goal of this research.

REFERENCES

[1] S. Ambikasaran and E. Darve, An O(n logn) fast direct solver for partial hierarchically
semi-separable matrices, J. Sci. Comput., 57 (2013), pp. 477–501.

[2] S. Ambikasaran, M. O’Neil, and K. R. Singh, Fast Symmetric Factorization of Hierarchical
Matrices with Applications, arXiv:1405.0223[physics, stat], 2014.

[3] A. Aminfar, S. Ambikasaran, and E. Darve, A fast block low-rank dense solver with appli-
cations to finite-element matrices, J. Comput. Phys., 304 (2016), pp. 170–188.

[4] M. Bebendorf and W. Hackbusch, Stabilized rounded addition of hierarchical matrices,
Numer. Linear Algebra Appl., 14 (2007), pp. 407–423.

[5] M. Bebendorf and S. Rjasanow, Adaptive low-rank approximation of collocation matrices,
Computing, 70 (2003), pp. 1–24.

[6] M. Bebendorf and R. Venn, Constructing nested bases approximations from the entries of
non-local operators, Numer. Math., 121 (2012), pp. 609–635.

[7] S. Börm, Efficient Numerical Methods for Non-Local Operators: H2-Matrix Compression,
Algorithms and Analysis, European Mathematical Society, Zürich, 2013.

[8] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with
applications, Engrg. Anal. Bound. Elem., 27 (2003), pp. 405–422.

[9] D. Cai, E. Chow, Y. Saad, and Y. Xi, SMASH : Structured Matrix Approximation by Sepa-
ration and Hierarchy, submitted.

[10] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

[11] E. Chow and Y. Saad, Preconditioned Krylov subspace methods for sampling multivariate
Gaussian distributions, SIAM J. Sci. Comput., 36 (2014), pp. A588–A608.

[12] E. Chow and J. Skolnick, Effects of confinement on models of intracellular macromolecular
dynamics, Proc. Nat. Acad. Sci., 112 (2015), pp. 14846–14851.

[13] E. Chow and J. Skolnick, DNA internal motion likely accelerates protein target search in a
packed nucleoid, Biophys. J., 112 (2017), pp. 2261–2270.

[14] P. Ghysels, X. Li, F. Rouet, S. Williams, and A. Napov, An efficient multicore implemen-
tation of a novel HSS-structured multifrontal solver using randomized sampling, SIAM J.
Sci. Comput., 38 (2016), pp. S358–S384.

[15] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices, Computing, 62 (1999), pp. 89–108.

[16] W. Hackbusch and S. Börm, Data-sparse approximation by adaptive H2-matrices, Comput-
ing, 69 (2002), pp. 1–35.

[17] W. Hackbusch, B. Khoromskij, and S. A. Sauter, On H2-matrices, in Lectures on Applied
Mathematics, H.-J. Bungartz, R. Hoppe, and C. Zenger, eds., Springer-Verlag, Berlin,
2000, pp. 9–29.

[18] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: Application
to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.

[19] N. Halko, P. Martinsson, and J. Tropp, Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011),
pp. 217–288.

[20] S. Li, M. Gu, C. Wu, and J. Xia, New efficient and robust HSS Cholesky factorization of
SPD matrices, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 886–904.

[21] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from
matrix-vector multiplication, J. Comput. Phys., 230 (2011), pp. 4071–4087.

[22] P. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matrix, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1251–1274.

[23] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, A distributed-memory package for
dense hierarchically semi-separable matrix computations using randomization, ACM Trans.
Math. Software, 42 (2016), pp. 27:1–27:35.

[24] W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger, Solving boundary
integral problems with BEM++, ACM Trans. Math. Software, 41 (2015), pp. 6:1–6:40.

[25] S. Wang, X. Li, J. Xia, Y. Situ, and M. de Hoop, Efficient scalable algorithms for solving
dense linear systems with hierarchically semiseparable structures, SIAM J. Sci. Comput.,
35 (2013), pp. C519–C544.

https://arxiv.org/abs/1405.0223

SYMMETRIC POSITIVE DEFINITE HSS APPROXIMATIONS 855

[26] J. Xia, On the complexity of some hierarchical structured matrix algorithms, SIAM J. Matrix
Anal. Appl., 33 (2012), pp. 388–410.

[27] J. Xia, A robust inner–outer hierarchically semi-separable preconditioner, Numer. Linear
Algebra Appl., 19 (2012), pp. 992–1016.

[28] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[29] J. Xia and M. Gu, Robust approximate Cholesky factorization of rank-structured symmetric
positive definite matrices, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2899–2920.

[30] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via ran-
domized sampling, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 837–858.

[31] J. Xia and Z. Xin, Effective and robust preconditioning of general SPD matrices via structured
incomplete factorization, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1298–1322.

	Introduction
	Symmetric HSS definition and notation
	Recursive description of HSS construction
	New HSS approximations that preserve positive definiteness
	Method 1
	Method 2

	Implementation of Method 1
	Standard HSS construction using projection
	Method 1: Constrained optimization problem
	Method 1: Full implementation

	Implementation of Method 2
	HSS approximation error analysis
	Error estimation for the standard HSS method
	Error estimation for Method 1
	Error estimation for Method 2

	Numerical results
	Inverse multiquadric kernel
	Rotne-Prager-Yamakawa kernel
	Boundary integral equation

	Conclusion
	References

