
Distributed Southwell: An Iterative Method with Low
Communication Costs

Jordi Wolfson-Pou

School of Computational Science and Engineering

College of Computing, Georgia Institute of Technology

Atlanta, Georgia, United States of America

jwp3@gatech.edu

Edmond Chow

School of Computational Science and Engineering

College of Computing, Georgia Institute of Technology

Atlanta, Georgia, United States of America

echow@cc.gatech.edu

ABSTRACT
We present a new algorithm, the Distributed Southwell method,

as a competitor to Block Jacobi for preconditioning and multigrid

smoothing. It is based on the Southwell iterative method, which

is sequential, where only the equation with the largest residual is

relaxed per iteration. The Parallel Southwell method extends this

idea by relaxing equation i if it has the largest residual among all the

equations coupled to variable i . Since communication is required for

processes to exchange residuals, this method in distributed memory

can be expensive. Distributed Southwell uses a novel scheme to

reduce this communication of residuals while avoiding deadlock.

Using test problems from the SuiteSparse Matrix Collection, we

show that Distributed Southwell requires less communication to

reach the same accuracy when compared to Parallel Southwell. Ad-

ditionally, we show that the convergence of Distributed Southwell

does not degrade like that of Block Jacobi when the number of

processes is increased.

KEYWORDS
iterative methods, sparse linear systems, Jacobi, Gauss-Seidel, South-

well, multigrid, reducing communication, one-sided MPI, remote

memory access

ACM Reference format:
Jordi Wolfson-Pou and Edmond Chow. 2017. Distributed Southwell: An

Iterative Method with Low Communication Costs. In Proceedings of SC17,
Denver, CO, USA, November 12–17, 2017, 13 pages.

DOI: 10.1145/3126908.3126966

1 INTRODUCTION
For distributed computing, one of the most commonly used multi-

grid smoothers is Block Jacobi, where the blocks come from an

appropriate partitioning of the problem. This method is highly par-

allel, but has two main disadvantages: (1) it does not converge for

all symmetric positive de�nite matrices, and (2) convergence de-

grades when parallelism is increased by using more blocks and thus

smaller blocks. On the other hand, Gauss-Seidel converges more

rapidly than Block Jacobi and converges for all symmetric positive

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

SC17, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-5114-0/17/11. . . $15.00

DOI: 10.1145/3126908.3126966

de�nite matrices. The disadvantage of Gauss-Seidel is that it is

inherently a sequential method. Gauss-Seidel can be parallelized

by using block multicoloring, but a large number of colors may be

needed for irregular problems [3].

In this paper, our starting point is a related but little-known

algorithm called the Southwell method [16, 17]. While Gauss-Seidel

can be interpreted as relaxing a set of equations in a speci�c order,

Southwell can be interpreted as relaxing equations one at a time

in a dynamic and greedy fashion depending on which equation

has the largest residual. In this way, Southwell can converge faster

than Gauss-Seidel. However, Southwell is sequential by de�nition,

since the choice made for which equation to relax depends on the

previous relaxation. In this paper, we call this method the Sequential

Southwell method.

Previously, we introduced the idea of Parallel Southwell [18]. In

this method, equation i is relaxed if it has the largest residual com-

pared to the residuals of the equations coupled to variable i . This

method allows equations to be relaxed simultaneously, and does

not require global communication to determine the equation with

the largest residual. Ref. [18] explored a simple way of implement-

ing Parallel Southwell in distributed memory using asynchronous

communication semantics. In this implementation, communication

was reduced by having processes piggy-back its new residual norm

(for a block of equations) in messages sent to neighboring processes,

which were only sent after a process relaxed its equations. This

implementation, however, could deadlock when processes used

stale values of the residual norms of their neighbors.

This paper presents the Distributed Southwell method, which

addresses the deadlock issue that arises when implementing Paral-

lel Southwell in distributed memory. In Distributed Southwell, each

process stores the estimates to its own residual norm that are held

by its neighbors. These estimates are used to avoid deadlock. Addi-

tionally, each process locally computes better estimates of residual

norms that belong to its neighbors without any communication.

Importantly, Distributed Southwell also uses new techniques to re-

duce communication compared to Parallel Southwell in distributed

memory. We implement Distributed Southwell using one-sided MPI

functions, and run experiments with up to 8192 MPI processes. For

our test problems we use a set of test matrices from the SuiteSparse

matrix collection[7]. We show that Distributed Southwell usually

requires far less communication to converge when compared with

Parallel Southwell. Additionally, we show that the convergence of

Distributed Southwell does not degrade like that of Block Jacobi

when the number of processes is increased.

http://www.acm.org/publications/policies/artifact-review-badging#available

2 BACKGROUND
2.1 Stationary Iterative Methods
The Jacobi and Gauss-Seidel methods are fundamental stationary

iterative methods for solving the sparse, linear system Ax =b[15].

A general stationary iterative method, with initial guess x (0), can

be written as

x (k+1) = Gx (k) + f , (1)

where G is the iteration matrix, f is a vector, and the bracketed

superscript is the iteration index. The residual vector corresponding

to the approximation x (k) is r (k) = b −Ax (k).
For a given stationary iterative method, we de�ne the update

of the ith component from x
(k)
i to x

(k+1)
i as the relaxation of row

i . For a system with n equations, we de�ne the relaxation of n
rows as a sweep. We further de�ne a parallel step as a phase of

computation in which rows are relaxed in parallel. For example,

a sweep of Jacobi is also a parallel step of Jacobi. For sequential

Gauss-Seidel, each parallel step relaxes a single equation, while for

Multicolor Gauss-Seidel, a parallel step involves relaxing all rows

belonging to a single color. For example, if a problem has seven

colors, it takes seven parallel steps of Multicolor Gauss-Seidel to

perform one sweep.

2.2 The Sequential Southwell Method
We �rst introduce some notation necessary for explaining the Se-

quential Southwell method and its parallel variants. For row i , row

indices ηj , i are neighbors of i if aηj i , 0. We de�ne the neigh-
borhood of row i as the set Ni = {η1,η2, . . . ,ηqi } of cardinality

qi , where each index in the set is a neighbor, i.e., the neighbor-

hood of row i is the set of rows coupled with row i . We also de�ne

Γi = {|rη1 |, |rη2 |, . . . , |rηqi |} where rηj is the residual of equation

ηj .
Instead of relaxing rows in some prescribed order as in the Gauss-

Seidel method, each step of Sequential Southwell relaxes the row i
with the largest component of the residual vector. Then the residual

vector is updated, but notice that only components corresponding

to neighbors of row i need to be updated. Formally,

x
(k+1)
i =

x
(k)
i +

r
(k)
i
aii
, if |ri | is the maximum for all i ,

x
(k)
i , otherwise,

(2)

r
(k+1)
ηj = r

(k)
ηj − r

(k)
i

aηj i

aii
, for all ηj ∈ Ni , j = 1, . . . ,qi . (3)

We also have that the updated residual r
(k+1)
i = 0 for the row i that

was chosen to be relaxed. Note that in this paper, we are techni-

cally using the Gauss-Southwell method, which is more natural to

analyze, and which was actually �rst proposed by Gauss. In this

method, we relax the row i with the largest |ri/aii |. The method is

identical to what we are calling the Sequential Southwell method

when we scale the systems, as we do in this paper, such that the

matrices have unit diagonals.

Sequential Southwell can converge faster than Gauss-Seidel in

terms of the number of relaxations. However, the method never

caught on for automatic computers due to the relatively high cost

of determining the row with the largest residual, compared to sim-

ply cycling through all equations as in the Gauss-Seidel method.

Nevertheless, it has recently found application as an adaptive multi-

grid smoother [14, 13], as a greedy multiplicative Schwarz method

(where the subdomain with the largest residual norm is chosen

to be solved next) [10], as a way of accelerating coordinate de-

scent optimization methods for big data problems [12], and as a

scheme for choosing basis vectors when �nding sparse solutions to

underdetermined inverse problems, e.g., [5, 9].

Our motivation to study and develop Southwell-like methods is

due to today’s high cost of interprocessor communication compared

to computation. Assume for the moment that each parallel process

is responsible for a single row of the matrix equation Ax = b.

When a row is relaxed, that process must send data to the processes

corresponding to neighboring rows in order for these processes to

update their residuals (see formula (3)). Therefore, each relaxation is

associated with communication. If Southwell-like methods reduce

the number of relaxations required to solve a problem compared to

that of stationary iterative methods, then they also can reduce the

amount of communication.

2.3 The Parallel Southwell Method
In the Parallel Southwell method[18], instead of relaxing a single

row at each step, multiple rows can be relaxed simultaneously,

corresponding to rows that have the largest residual within its

neighborhood, i.e., row i is relaxed if |ri | is maximal in {Γi , |ri |}. We

de�ne this condition as the Parallel Southwell criterion. A geometric

illustration of one parallel step is shown in Figure 1.

Figure 1: Illustration of one parallel step of Parallel Southwell. The
blue points correspond to the rows chosen to be relaxed in one par-
allel step via the Parallel Southwell criterion. The red points are
neighbors of one of the blue points.

Figure 2 shows an example of the convergence behavior of Par-

allel Southwell compared to that of other methods. The matrix is

from a �nite element discretization of the Poisson equation on a

square domain. Irregularly structured linear triangular elements

are used. The discrete right-hand side has elements sampled from

a uniform random distribution with mean zero and is scaled such

that its 2-norm is 1. The example problem has 3081 rows and the

convergence for three sweeps of each method is shown.

The �gure shows that Sequential Southwell converges fastest,

in terms of number of relaxations, compared to other methods. In

particular, it requires about half the number of relaxations as Gauss-

Seidel when only low accuracy is required (e.g., residual norm

reduction to 0.6). Parallel Southwell converges almost as rapidly

as Sequential Southwell but is of course a parallel method. The

2

markers along each curve delineate the parallel steps. Multicolor

Gauss-Seidel requires 6 colors (the number of rows assigned each

color is very unbalanced although we assign colors using a breadth-

�rst traversal). For low accuracy, Parallel Southwell requires a much

smaller number of relaxations than Multicolor Gauss-Seidel and

approximately the same number of parallel steps. Jacobi converges

slowest compared to the other methods when convergence is mea-

sured in terms of number of relaxations.

Num. relaxations

0 3081 6162 9243

R
e

s
id

u
a

l
n

o
rm

0.2

0.4

0.6

0.8

1
GS

SW

Par SW

MC GS

Jacobi

Figure 2: Convergence for a small �nite element problem. Themeth-
ods compared areGauss-Seidel (GS), Sequential Southwell (SW), Par-
allel Southwell (Par SW), Multicolor Gauss-Seidel (MC GS), and Ja-
cobi. The markers along the curves for the parallel methods delin-
eate the parallel steps.

2.4 Block Methods on Distributed Memory
Computers

For the Jacobi and Parallel Southwell methods on a distributed

memory machine, it is natural to partition a problem into non-

overlapping subdomains, with one subdomain for each process. To

approximately solve the local subdomain problems, Gauss-Seidel

may be used. In the case of Jacobi, this is often referred to as Hybrid

Gauss-Seidel[4, 6], or Processor Block Gauss-Seidel[2].

We use the following notation:

• Each parallel process with rank p (ranging from 0 to P − 1,

where P is the total number of processes) is responsible

for mp rows of the n total rows, where the partitioning is

determined, e.g., with METIS [11].

• The values {δ0,δ1, . . . ,δP } are the P+1 row index o�sets,

i.e., the pre�x sum of {0,m0,m1, . . . ,mP−1}.

• Each process stores rp and xp corresponding to the
®δp =

δp : (δp+1 − 1) (Matlab array notation) portion of the global

residual and solution arrays, respectively.

• We use the one-sided memory model, where p has a region

of memory that remote processes can directly write to

without the involvement of p. We de�ne this region of

memory as the memory windowWp of p.

In this notation, the Block Jacobi algorithm is shown in Algo-

rithm 1.

Algorithm 1: Block Jacobi

1 Set r = b − Ax
2 for each process with rank p do
3 Set rp = r (®δp)

4 Set xp = x (®δp)
5 end
6 for k = 1, . . . , kmax on process with rank p do
7 Update xp and rp by relaxing the equations belonging to p
8 Write updates to {W1, . . . ,Wqp }

9 Wait for neighbors to �nish writing toWp

10 Read fromWp to update rp
11 end

For the block form of Parallel Southwell, instead of comparing

the magnitude of individual residual vector components, we now

compare the residual norm for the rows of process p to the residual

norms for the rows that belong to the neighbors ofp, i.e., we rede�ne

Γp = {‖r1‖2, ‖r2‖2, . . . , ‖rqp ‖2} where we assume the neighboring

processes have indices 1, 2, . . . ,qp . If process p satis�es the Parallel

Southwell criterion, it relaxes the equations in its subdomain and

sends updates to its neighbors. Upon receiving these updates, the

neighbors of p use this new information to update their boundary

points. Additionally, at each parallel step, an extra communication

step is needed in order for p to know the residual norms that belong

to its neighbors. We call this an explicit residual update, where a

process sends its updated residual norm to its neighbors.

A geometric interpretation of the block version of Parallel South-

well is shown in Figure 3, where the top mesh shows the partition-

ing, and the bottom mesh shows the subdomains that are selected

to be updated via the Parallel Southwell criterion.

An illustration of the key phases of a parallel step of Parallel

Southwell is shown in Figure 4(a). The illustration shows four pro-

cesses, where the edges connecting them indicate a neighbor rela-

tionship. In phase 1 of the �gure, p3 is the only process that deter-

mines that it must update. In phase 2, p3 updates, and writes to the

memory of p2, which counts as a single message. This changes the

residual of p2, and updates the copy of the residual of p3 held by

p2. In phase 3, p2 detects that its own residual has changed, so it

updates the copies of its residual that p1 and p3 hold, which requires

two additional messages to be sent.

Algorithm 2 shows the block form of Parallel Southwell imple-

mented in distributed memory. To be clear, this algorithm is math-

ematically identical to Parallel Southwell implemented in shared

memory. Note that this algorithm is di�erent than that introduced

in Ref. [18], which can possibly deadlock. To observe how that algo-

rithm might deadlock, consider again Figure 4(a) but now assume

that p2 does not communicate its updates, i.e., if we remove the

explicit residual norm update from the last phase of the diagram.

Deadlock will now occur. This can be seen at phase 2, where the

true residual norm of each process (ri in blue shown above each

node) is less than its copies of the residual norm of its neighbors

(ri in black on the right and left of each node, above the connec-

tion edge), resulting in all processes failing to satisfy the Parallel

Southwell criterion.

3

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .3 𝑟3 = .4
𝑟1 = .2 𝑟0 = .1 𝑟2 = .3 𝑟1 = .2 𝑟3 = .4 𝑟2 = .3

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .1 𝑟3 = 0
𝑟1 = .2 𝑟0 = .1 𝑟2 = .3 𝑟1 = .2 𝑟3 = 0 𝑟2 = .3

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .1 𝑟3 = 0
𝑟1 = .2 𝑟0 = .1 𝑟2 = .1 𝑟1 = .2 𝑟3 = 0 𝑟2 = .1

relax and
communicate
updates

communicate
new
residuals

initial
residuals

p
h

a
se

 1
p

h
a

se
 2

p
h

a
se

 3

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .3 𝑟3 = .4
𝑟1 = .2 𝑟0 = .1 𝑟2 = .3 𝑟1 = .2 𝑟3 = .4 𝑟2 = .3

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .1 𝑟3 = 0
𝑟1 = .2 𝑟0 = .1 𝑟2 = .3 𝑟1 = .2 𝑟3 = 0 𝑟2 = .1

𝑃0 𝑃1 𝑃2 𝑃3

𝑟0 = .1 𝑟1 = .2 𝑟2 = .1 𝑟3 = 0
𝑟1 = .2 𝑟0 = .1 𝑟2 = .1 𝑟1 = .2 𝑟3 = 0 𝑟2 = .1

relax and
communicate
updates

explicit
residual
update to
avoid
deadlock

initial
residuals ǁ𝑟1 = .1 ǁ𝑟0 = .2 ǁ𝑟2 = .2 ǁ𝑟1 = .3 ǁ𝑟3 = .3 ǁ𝑟2 = .4

ǁ𝑟1 = .1 ǁ𝑟0 = .2 ǁ𝑟2 = .2 ǁ𝑟1 = .3 ǁ𝑟3 = .1 ǁ𝑟2 = 0

ǁ𝑟1 = .1 ǁ𝑟0 = .2 ǁ𝑟2 = .2 ǁ𝑟1 = .1 ǁ𝑟3 = .1 ǁ𝑟2 = 0

p
h

a
se

 1
p

h
a

se
 2

p
h

a
se

 3

(a) Parallel Southwell parallel step (b) Distributed Southwell parallel step

Figure 4: Illustration of a parallel step of (a) Parallel Southwell and (b) Distributed Southwell. In the illustration, a line of four processes
P0, . . . , P3, with an array communication topology, start the parallel step with exact residuals r0, . . . , r3 (shown in blue above the correspond-
ing P), and their estimates of the residual norms of their neighbors (shown in black above the inter-process connections). Additionally, in
(b), each Pi also stores the estimate of the residual norm of Pi stored by the neighbors of Pi , denoted by r̃0, . . . , r̃3. Each line of four pro-
cesses, three lines in total, denotes a phase of the parallel step. Red residuals denote an updated residual, and red arrow connections denote
communication. Note that the illustration is not based on any data taken from any real experiments.

Figure 3: Parallel Southwell with multiple equations per process.
Top: the subdomains assigned to each process. Bottom: four subdo-
mains selected via the Parallel Southwell criterion.

There are a few communication-reducing optimizations shown

in Algorithm 2. First, if process p does not relax its rows, and none

of its neighbors relax their rows, there is no need for p to send its

residual to its neighbors because its residual has not changed. This

is shown in the If statement on line 19. Second, if p does satisfy the

Parallel Southwell criterion, it can append its new residual norm to

all outgoing messages, which eliminates the need to communicate

its new residual to its neighbors in a separate message. This is

shown in line 10.

Algorithm 2: Parallel Southwell (block version)

1 Set r = b − Ax
2 for each process with rank p do
3 Set rp = r (®δp)

4 Set xp = x (®δp)
5 Set Γp = { ‖r1 ‖2, . . . , ‖rqp ‖2 }
6 end
7 for k = 1, . . . , kmax on process with rank p do
8 if ‖rp ‖2 is maximum in {Γ, ‖rp ‖2 } then
9 Update xp and rp by relaxing the equations belonging to p

10 Write updates and ‖rp ‖2 to {W1, . . . ,Wqp }

11 else
12 Wait for neighbors to �nish writing toWp

13 for j = 1, . . . , qp do
14 if Neighbor qj has written new information toWp then
15 Read fromWp to update rp
16 Update ‖rqj ‖2 in Γ

17 end
18 end
19 if ‖rp ‖2 has changed then
20 Write ‖rp ‖2 to {W1, . . . ,Wqp }

21 end
22 end
23 Wait for neighbors to �nish writing toWp

24 for j = 1, . . . , qp do
25 if Neighbor qj has written new information toWp then
26 Update ‖rqj ‖2 in Γ

27 end
28 end
29 end

3 THE DISTRIBUTED SOUTHWELL METHOD
The premise of the Distributed Southwell method is that the resid-

uals for the equations on neighboring processes do not need to be

known exactly. These residuals are only needed for processes to

4

determine if they should relax their own equations. That this step

is done precisely following the Parallel Southwell criterion is not

essential.

This premise allows many possibilities for reducing communi-

cation. In particular, processes do not need to carry out explicit

residual updates every time their residual norm changes. Instead,

a process p can maintain estimates of the residuals for the equa-

tions on neighboring processes. When a process p relaxes its own

equations, it knows how these relaxations a�ect the residual on its

neighbor q, without any communication. Referring to formula (3),

the update

−r
(k)
i

aηj i

aii

to the neighbor residual r
(k)
ηj only depends on local information, in

particular r
(k)
i , while aηj i and aii are matrix data that can be stored

locally (i.e., the process responsible for row i stores column i of A).

Consider now a neighbor s of q, so that the matrix dependencies

arep ⇐⇒ q ⇐⇒ s . If a neighbor s of processq relaxes its equations,

then the e�ect on the residual of q will not be known to process p.

This is how the estimate that process p has of the residual norm of

process q loses accuracy. Again referring to formula (3), the size of

the discrepancy is related to the size of the residual component, i.e.,

it decreases in size as the iterations progress.

As explained in Section 2.4, there is a major drawback of using

inaccurate residuals. If the residual norm estimates on all processes

is such that no process thinks it has the largest residual norm,

then deadlock occurs. This means that there is a risk of deadlock

if the residual norm estimates are larger than the actual residual

norms. Fortunately, this situation can be detected by a process q
maintaining a copy of the estimate thatp has of the residual norm of

q. This copy can be maintained, like above, without communication.

Thus q can detect if the estimates of its residual norm are larger

than its actual residual norm. In this case, q sends p an explicit

message to update its estimate. Deadlock is thus avoided.

Num. relaxations

0 3081 6162 9243

R
e
s
id

u
a
l
n
o
rm

0.2

0.4

0.6

0.8

1
SW

Par SW

MC GS

Dist SW

Figure 5: Convergence for a small �nite element problem. Dis-
tributed Southwell is compared to othermethods (all in scalar form).
Themarkers along the curves for the parallelmethods delineate the
parallel steps.

Figure 5 shows the convergence of Distributed Southwell for the

same �nite element problem as used in Figure 2. The convergence

curves for Sequential Southwell, Parallel Southwell, and Multicolor

Gauss-Seidel are repeated from that �gure for comparison. All

methods in this �gure use their scalar forms (i.e., subdomain size of

1). We observe that the behavior of Distributed Southwell closely

matches that of Parallel Southwell (which uses the exact Parallel

Southwell criterion for choosing which equations to relax) for low

levels of accuracy (e.g., residual norm 0.6), which is the “sweet spot”

for using Southwell-like methods compared to using Gauss-Seidel.

We also observe that with inexact residual estimates, Distributed

Southwell relaxes more equations per parallel step, as shown by

the markers along the curves in the �gure. This may account for

the degraded convergence of Distributed Southwell compared to

Parallel Southwell as more parallel steps are taken.

The Distributed Southwell idea can be easily extended to use

subdomains in a practical distributed code. Here, process p stores a

ghost layer of residuals corresponding to all o�-processor connec-

tions to the boundary points of p, where zqj denotes the residual

ghost layer for the points βqj of neighbor qj . When process p re-

laxes its equations, it also updates all points in the ghost layer, and

uses this to update all the residual norms in Γ. These updates denote

the contribution of p to the residual norm of its neighbors. This

allows p to store more accurate copies of the residual norms of

its neighbors, in the case that p updates often without receiving

updates from neighbors. When p receives updates from neighbors,

the values in the ghost layer and Γ are corrected.

In addition to p storing Γ, p also stores Γ̃, which are the residual

norms of p stored by the neighbors of p. When neighbor q1 of p
updates and writes to the memory of p, it includes its new estimate

of the residual of p in the message. In the memory of p, this is

the value ‖r̃q1 ‖2. This value is always exactly known by p, since

only p and q1 alter the estimate of the residual norm of p stored by

q1. If p determines that ‖r̃q1 ‖2 > ‖rp ‖2, then there is a possibility

of deadlock, and p communicates its residual norm and boundary

points to q1, which brings the estimate of the residual norm of p
stored by q1 up to date.

The algorithm for Distributed Southwell (in block or subdomain

form) is shown in Algorithm 3. An illustration of the key phases of

a parallel step of Distributed Southwell is shown in Figure 4(b). As

in (a), p3 updates, but also updates its estimate of the residual norm

of p2, obtaining the new residual norm of p2 exactly. If p1 were

to also update the residual norm of p2 in this phase, p3 would not

have an exact estimate of the residual norm of p2, but it would be a

better estimate than if p3 did nothing at all. In phase 3, p2 detects

possible deadlock on p1, and sends a single message that updates

the estimate of the residual norm of p2 stored by p1.

Our distributed implementations (for all algorithms including

Distributed Southwell) use the one-sided semantics provided in MPI-

3, also known as remote memory access (RMA)[1]. For one-sided,

an origin process writes directly to the memory of a target process

without the target being involved in the transfer of data, avoiding

the communication required by the receiving side. Another reason

we use one-sided functions is that in Parallel and Distributed South-

well, it is not always clear when, or if, a process should expect a

message from a neighbor. Each process initially makes an MPI group

5

Algorithm 3: Distributed Southwell (block version)

1 Set r = b − Ax
2 for each process with rank p do
3 Set rp = r (®δp)

4 Set xp = x (®δp)
5 Set Γp = { ‖r1 ‖2, . . . , ‖rqp ‖2 }
6 Set Γ̃p = { ‖r̃1 ‖2, . . . , ‖r̃qp ‖2 }
7 for j = 1, . . . , qp do
8 Set zqj = r (βqj)
9 end

10 end
11 for k = 1, . . . , kmax on process with rank p do
12 if ‖rp ‖2 is maximum in {Γp, ‖rp ‖2 } then
13 Update xp and rp by relaxing the equations belonging to p
14 for j = 1, . . . , qp do
15 Update zqj and compute ‖rqj ‖2
16 Set ‖r̃qj ‖2 = ‖rp ‖2
17 Write updates, zp , ‖rp ‖2, and ‖rqj ‖2 toWqj
18 end
19 end
20 Wait for neighbors to �nish writing toWp

21 for j = 1, . . . , qp do
22 if Neighbor qj has written new information toWp then
23 Update rp
24 Overwrite zqj
25 Overwrite ‖rqj ‖2 in Γ and ‖r̃qj ‖2 in Γ̃

26 end
27 if ‖rp ‖2 < ‖r̃qj ‖2 then
28 Set ‖r̃qj ‖2 = ‖rp ‖2
29 Write zqj , ‖rp ‖2 and ‖rqj ‖2 toWqj
30 end
31 end
32 Wait for neighbors to �nish writing toWp

33 for j = 1, . . . , qp do
34 if Neighbor qj has written new information toWp then
35 Overwrite zqj
36 Overwrite ‖rqj ‖2 in Γ and ‖r̃qj ‖2 in Γ̃

37 end
38 end
39 end

consisting of its neighbors, and calls MPI_Win_allocate() to cre-

ate a memory window, i.e., allocates a region of memory that is ac-

cessible by remote processes. During communication phases, assum-

ing all processes have information to send, processes enter access

epochs by calling MPI_Win_post() followed by MPI_Win_start().

Messages are then sent using MPI_Put(), and the epochs are ended

using MPI_Win_complete() followed by MPI_Win_wait(). A pro-

cess and all its neighbors must collectively call all commands for

starting and ending the access epochs.

4 RESULTS
4.1 Multigrid Smoothing
We �rst test the use of Distributed Southwell as a smoother for the

multigrid method. Here, we use a scalar rather than block version

of Distributed Southwell. The test problem is the 2D Poisson equa-

tion on a square discretized on a regular mesh by centered �nite

di�erences. The discrete right-hand side is chosen to be a vector

with random entries uniformly distributed between -1 and 1. To

test multigrid convergence, the grid dimensions are increased from

15× 15 to 255× 255. Each V-cycle uses multiple levels such that the

coarsest level corresponds to a 3 × 3 grid, at which an exact solve

is used.

Each V-cycle uses one step of pre-smoothing and one step of

post-smoothing. As a baseline for comparison, we use Gauss-Seidel

as a smoother. For Distributed Southwell as a smoother, we use

a number of relaxations corresponding to exactly the number of

relaxations as Gauss-Seidel (i.e., the number of unknowns in the

grid at a given level, called “1 sweep”). We also test Distributed

Southwell using half of the number of relaxations of Gauss-Seidel

(called “1/2 sweep”). Distributed Southwell selects many rows to be

relaxed simultaneously in a single parallel step. In order to achieve

an exact total number of relaxations (for our comparison purposes),

in the �nal parallel step of Distributed Southwell, a random subset

of the rows selected to be relaxed are actually relaxed.

Figure 6 shows the residual norm relative to the initial resid-

ual norm after 9 V-cycles. The most important result is that Dis-

tributed Southwell as a smoother shows grid-size independent

convergence, even though some rows may never have been re-

laxed in the smoother, which is particularly true in the case of

“1/2 sweep.” We also observe that Distributed Southwell is a more

e�cient smoother than Gauss-Seidel, resulting in better multigrid

convergence even when Distributed Southwell uses the same num-

ber of relaxations as Gauss-Seidel.

15 31 63 127 255

Grid dimension

10
-10

10
-9

10
-8

10
-7

10
-6

R
e
l.
 r
e
s
id

u
a
l
n
o
rm

GS, 1 sweep

Dist SW, 1/2 sweep

Dist SW, 1 sweep

Figure 6: Relative residual norm after 9 V-cycles of multigrid ap-
plied to solving the 2D Poisson equation for increasing grid dimen-
sions. Distributed Southwell as a smoother is compared to Gauss-
Seidel (GS) as a smoother. The results show that convergence is inde-
pendent of grid size in all cases. In addition, Distributed Southwell
is more e�cient as a smoother, per relaxation, than Gauss-Seidel.

4.2 Test Framework
In the following experiments, we compare Distributed Southwell,

Parallel Southwell, and Block Jacobi implemented in distributed

6

memory. Here, we used a random initial guess and a right-hand

side b = 0. We scaled all initial guesses such that ‖r (0)‖2 = 1. All

test matrices are shown in Table 1, which were taken from the

SuiteSparse Matrix Collection[7], and symmetrically scaled to have

unit diagonal values. We used up to 256 32-core nodes on the NERSC

Cori (Phase I) supercomputer. We varied the number of parallel

steps from zero to 50, and took 50 samples at each parallel step. Out

of 50 samples, we used the run that gave us the lowest wall-clock

time, i.e., we considered the best time a method could obtain at a

given parallel step.

Table 1: Test problems from the SuiteSparse Matrix Collection. All
matrices are symmetric positive de�nite.

Number of Number of

Matrix Non-zeros Equations

Flan_1565 114,165,372 1,564,794

audikw_1 77,651,847 943,695

Serena 64,122,743 1,382,121

Geo_1438 60,169,842 1,371,480

Hook_1498 59,344,451 1,468,023

bone010 47,851,783 986,703

ldoor 42,451,151 909,537

boneS10 40,878,708 914,898

Emilia_923 40,359,114 908,712

inline_1 36,816,170 503,712

Fault_639 27,224,065 616,923

StocF-1465 20,976,285 1,436,033

msdoor 19,162,085 404,785

af_5_k101 17,550,675 503,625

For all methods, when a process updates, a single Gauss-Seidel

sweep is carried out on the subdomain that the process is respon-

sible for. We note that a single process per node could be used,

with a multi-threaded local solver, e.g., Multicolor Gauss-Seidel.

Another important note is that we are using the Parallel Southwell

method as de�ned in Section 2.3, and not as de�ned in [18]. This is

because Parallel Southwell as de�ned in [18] deadlocks for all our

test problems.

4.3 Reducing ‖r ‖2 to 0.1 Using 8192 Processes
Table 2 shows results for reducing ‖r ‖2 to 0.1 with 8192 MPI pro-

cesses (256 nodes). The table shows the wall-clock time, communi-

cation cost, number of parallel steps, number of relaxations, and

the number of active processes. “Communication cost” is de�ned

as the total number of messages sent by all processes, divided by

the total number of processes. “Active processes” is de�ned as the

average fraction of processes carrying out block relaxations of local

subdomains at each parallel step.

The table shows that Block Jacobi can achieve ‖r ‖2 = 0.1 for

only three of the test matrices. Figure 7 plots the convergence with

respect to di�erent axes for four problems. In the case of bone010,

Block Jacobi initially reduces the residual norm, but eventually di-

verges. This can also be seen for Geo_1438 and Hook_1498, which

are two cases where Block Jacobi can reach the target residual norm.

This divergence underscores the unreliability of Block Jacobi, espe-

cially when a large number of processes is used. Matrix af_5_k101

is the only case in which Block Jacobi never diverged.

Table 2 also shows the superiority of Distributed Southwell over

Parallel Southwell. Distributed Southwell is approximately twice as

fast, requires close to a third of the communication, and converges

in fewer parallel steps. Parallel Southwell requires fewer relaxations,

but needs to communicate more per relaxation.

The fact that Parallel Southwell requires fewer relaxations but

requires almost three times the communication shows how costly

the explicit residual updates of Parallel Southwell are. This cost is

shown in Table 3, where the explicit residual updates by Parallel

Southwell dominate the overall communication cost.

We also observe that in Distributed Southwell, more processes

are active compared to Parallel Southwell. This is a result of using

inexact residual norms. We note that if adjacent subdomains relax

at the same time (rather than an independent set of subdomains),

then convergence is at risk.

Since multigrid smoothing and preconditioning only requires a

small number of sweeps, it is useful to look at the costs per parallel

step. This is shown in Table 4, where Distributed Southwell is faster

than the other methods.

Table 3: Communication cost breakdown for Parallel Southwell (PS)
and Distributed Southwell (DS), where “Solve comm” denotes the
communication cost of sending updates to neighbors after a local
subdomain is solved, and “Res comm” denotes the communication
cost of explicit residual updates.

Solve comm Res comm

Matrix PS DS PS DS

Flan_1565 27.945 28.961 308.240 85.836
audikw_1 28.630 30.634 454.749 126.932
Serena 27.399 27.748 367.147 97.391
Geo_1438 26.485 27.076 325.846 86.910
Hook_1498 24.076 25.744 284.861 78.220
bone010 27.965 28.617 355.249 95.326
ldoor 11.980 12.745 69.063 20.043
boneS10 18.462 19.433 157.410 45.862
Emilia_923 † 32.101 † 102.375
inline_1 24.352 27.311 298.601 77.505
Fault_639 † 27.785 † 98.213
StocF-1465 24.188 25.208 308.056 85.529
msdoor 11.560 12.669 76.695 23.670
af_5_k101 10.603 10.947 58.091 16.651

4.4 Strong Scaling
We �rst look at a target residual norm of ‖r ‖2 = 0.1 and varying

the number of MPI processes. Six examples are shown in Figure 8,

where wall-clock time is shown as a function of the number of MPI

processes. In most cases, and for all methods, the wall-clock time

initially decreases as we increase the number of MPI processes, and

then starts to increase. This is due to the local subdomain solves,

where a single Gauss-Seidel sweep is used. This operation has the

complexity of a sparse matrix-vector product, and as the number

of MPI processes increases (i.e., local subdomain sizes decrease),

the time spent on communication increasingly outweighs the time

spent on computation. It can be observed that the poor scalability

is worse for the smaller problems.

We can see that Distributed Southwell is always faster than

Parallel Southwell, except for Flan_1565 on 64 processes, where

7

Table 2: Comparison of Distributed Southwell (DS) with Parallel Southwell (PS) and Block Jacobi (BJ) for reducing the residual to ‖r ‖2 = 0.1.
Linear interpolation on log

10
(‖r ‖2) was used to extract this data. The † symbol indicates that a method could not achieve ‖r ‖2 ≤ 0.1 in 50

parallel steps. The wall-clock time was determined by taking the minimum of 50 samples, i.e., showing each method performing at its best.
“Communication cost” is de�ned as the total number of messages sent by all processes divided by the number of processes. “Active processes”
is de�ned as the average fraction of processes carrying out block relaxations of local subdomains at each parallel step.

Wall-clock time Communication cost Parallel steps Relaxations/n Active processes

Matrix BJ PS DS BJ PS DS BJ PS DS BJ PS DS BJ PS DS

Flan_1565 † 0.547 0.234 † 336.185 114.797 † 46.073 35.000 † 2.249 2.330 † 0.049 0.066

audikw_1 † 1.100 0.434 † 483.379 157.566 † 44.907 33.699 † 1.613 1.737 † 0.036 0.049

Serena † 0.731 0.301 † 394.546 125.139 † 44.193 31.764 † 1.818 1.839 † 0.041 0.057

Geo_1438 0.068 0.577 0.224 53.835 352.331 113.986 3.805 44.381 30.896 3.805 1.872 1.916 1.000 0.042 0.061

Hook_1498 0.064 0.523 0.234 41.335 308.938 103.964 3.040 37.368 29.495 3.040 1.809 1.939 1.000 0.048 0.064

bone010 † 0.700 0.266 † 383.214 123.943 † 41.750 31.119 † 1.956 2.000 † 0.047 0.064

ldoor † 0.106 0.055 † 81.043 32.788 † 18.467 15.515 † 1.889 2.012 † 0.101 0.126

boneS10 † 0.363 0.180 † 175.872 65.295 † 27.220 22.737 † 2.138 2.257 † 0.078 0.099

Emilia_923 † † 0.309 † † 134.476 † † 38.669 † † 2.085 † † 0.054
inline_1 † 0.673 0.263 † 322.954 104.816 † 34.164 26.351 † 1.804 2.045 † 0.052 0.077

Fault_639 † † 0.315 † † 125.997 † † 37.617 † † 1.773 † † 0.045
StocF-1465 † 0.607 0.227 † 332.244 110.737 † 41.615 28.841 † 1.661 1.731 † 0.039 0.059

msdoor † 0.128 0.066 † 88.255 36.339 † 18.708 14.662 † 1.618 1.776 † 0.086 0.121

af_5_k101 0.021 0.082 0.040 16.148 68.694 27.598 2.624 13.885 12.210 2.624 1.733 1.788 1.000 0.123 0.146

Table 4: Per parallel step results of Distributed Southwell (DS) com-
pared with Parallel Southwell (PS) and Block Jacobi (BJ) for taking
50 parallel steps using 8192 MPI processes. Mean wall-clock time
and communication cost over the 50 parallel steps are shown.

Wall-clock time Communication cost

Matrix BJ PS DS BJ PS DS

Flan_1565 0.017 0.012 0.006 12.537 7.307 3.056
audikw_1 0.031 0.025 0.013 18.092 10.634 5.204
Serena 0.023 0.017 0.009 15.234 8.899 3.607
Geo_1438 0.018 0.013 0.007 14.149 7.854 3.337
Hook_1498 0.021 0.014 0.008 13.599 8.102 3.705
bone010 0.022 0.017 0.007 14.596 9.024 3.406
ldoor 0.008 0.006 0.004 6.319 4.243 2.688
boneS10 0.018 0.014 0.006 9.226 6.026 2.562
Emilia_923 0.023 0.014 0.008 15.370 7.574 3.473
inline_1 0.025 0.019 0.010 13.877 9.191 5.075
Fault_639 0.021 0.015 0.008 15.735 7.317 3.411
StocF-1465 0.021 0.014 0.009 14.616 7.798 4.455
msdoor 0.009 0.007 0.005 7.101 4.467 2.955
af_5_k101 0.008 0.006 0.004 6.155 4.728 3.248

the two wall-clock times are quite close. Additionally, when Block

Jacobi achieves ‖r ‖2 = 0.1, it is faster than Parallel and Distributed

Southwell, e.g., for Hook_1498. However, it is often the case that

Block Jacobi cannot achieve ‖r ‖2 = 0.1, even for a small number of

processes. For example, for Flan_1565, ldoor, and StocF-1465, Block

Jacobi cannot achieve ‖r ‖2 = 0.1 for more than 128 processes. This

demonstrates that Block Jacobi can be an unreliable method even

for a small number of processes.

We now look at the residual norm after 50 parallel steps of each

method as we vary the number of MPI processes from 32 to 8192

(from 1 to 256 nodes). Six examples are shown in Figure 9. It is clear

that for larger numbers of MPI processes, the convergence of Block

Jacobi severely degrades or Block Jacobi may even diverge after

50 parallel steps. The degradation is much more mild for Parallel

Southwell and Distributed Southwell. The fact that the residual

norm of Distributed Southwell does not signi�cantly degrade is

why it can be considered a competitor to Block Jacobi for massively

parallel multigrid smoothing and preconditioning.

5 RELATEDWORK
Several variants of Southwell’s original method have been reported

in the literature that are designed to reduce the cost of choosing

the next row to relax and/or allow more than one equation to be

relaxed at the same time.

In the sequential adaptive relaxation method [14, 13], a small

active set of rows is initially chosen. A row from this active set

is chosen based on its residual and a preliminary relaxation is

performed. If the updated value is not a signi�cant change from the

previous value, then the update is discarded and the row is removed

from the active set. Otherwise, the updated value is kept, and the

neighbors of the row are added to the active set. The number of

rows to consider in each step is thus kept small in this strategy.

Alternatively, in the simultaneous adaptive relaxation method

[14], a threshold θ is chosen. Rows with residual components larger

than θ in magnitude are relaxed simultaneously. We note that such

methods, like Jacobi, are not guaranteed to converge for all symmet-

ric positive de�nite matrices, whereas such convergence is guar-

anteed for Multicolor Gauss-Seidel and Parallel Southwell, where

an independent set of equations is relaxed simultaneously. Stage-

wise orthogonal matching pursuit methods also are accelerated

by using the idea of a threshold to select multiple basis vectors

simultaneously [5, 9].

In the context of large-scale optimization, greedy coordinate

descent has been parallelized by partitioning the problem into sub-

domains. Each subdomain is solved using the greedy method corre-

sponding to Sequential Southwell [19].

To reduce the number of messages sent and to improve the ef-

�ciency of an asynchronous iterative method, an asynchronous
variable threshold method has been designed [8]. Here, thresholds

are applied to the change in the solution after a block of equations

8

G
e o

_1
43

8

0 0.2 0.4 0.6 0.8

Wall-clock Time (seconds)

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

Block Jacobi

Parallel Southwell

Distributed Southwell

0 200 400 600

Communication Cost

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

0 10 20 30 40 50

Parallel Step

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

H
o o

k_
14

98

0 0.2 0.4 0.6 0.8 1

Wall-clock Time (seconds)

10
-2

10
-1

10
0

10
1

10
2

R
e

s
id

u
a

l
N

o
rm

0 100 200 300 400 500 600

Communication Cost

10
-2

10
-1

10
0

10
1

10
2

R
e

s
id

u
a

l
N

o
rm

0 10 20 30 40 50

Parallel Step

10
-2

10
-1

10
0

10
1

10
2

R
e

s
id

u
a

l
N

o
rm

b o
ne

01
0

0 0.2 0.4 0.6 0.8 1

Wall-clock Time (seconds)

10
-1

10
0

10
1

R
e

s
id

u
a

l
N

o
rm

0 200 400 600

Communication Cost

10
-1

10
0

10
1

R
e

s
id

u
a

l
N

o
rm

0 10 20 30 40 50

Parallel Step

10
-1

10
0

10
1

R
e

s
id

u
a

l
N

o
rm

af
_5

_k
10

1

0 0.1 0.2 0.3

Wall-clock Time (seconds)

10
-3

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

0 50 100 150 200 250 300

Communication Cost

10
-3

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

0 10 20 30 40 50

Parallel Step

10
-3

10
-2

10
-1

10
0

R
e

s
id

u
a

l
N

o
rm

Figure 7: Comparison of Block Jacobi and Distributed and Parallel Southwell for four test problems that show di�erent behavior of Block
Jacobi. For Geo_1438 and Hook_1498, Block Jacobi is able to reach the target residual norm of 0.1, and is the best method for these problems
for this level of accuracy. However, Block Jacobi diverges for these problems if more steps are taken. For bone010, Block Jacobi is not able
to reach the target residual norm of 0.1. Distributed Southwell is the best method for this problem for this level of accuracy. Of the 14 test
problems shown in Table 1, af_5_k101 is the only case in which Block Jacobi never diverged.

corresponding to a subdomain or process has been relaxed (like

in the sequential adaptive relaxation method mentioned above).

If the change is too small, the update is not performed, and thus

no messages need to be sent in this case. This method is not re-

lated to Distributed Southwell, but presents a possibility for further

reducing communication cost.

Southwell-based techniques have been used by Rüde [14, 13]

as adaptive smoothers for problems with irregular geometries or

jumps in coe�cients where there may be locally large residuals in

the multigrid method. Sequential adaptive relaxation and simultane-

ous adaptive relaxation, mentioned above, were applied to augment

a standard smoothing step. For the simple problem we tested in

Section 4.1, on the other hand, we found that even a “1/2 sweep” of

Distributed Southwell could give grid-independent convergence.

9

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-1

W
a
ll-

c
lo

c
k
 T

im
e

Flan_1565

Block Jacobi

Parallel Southwell

Distributed Southwell

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-1

W
a
ll-

c
lo

c
k
 T

im
e

ldoor

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-1

W
a
ll-

c
lo

c
k
 T

im
e

StocF-1465

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-2

10
-1

W
a
ll-

c
lo

c
k
 T

im
e

inline_1

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-1

W
a
ll-

c
lo

c
k
 T

im
e

bone010

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-2

10
-1

W
a
ll-

c
lo

c
k
 T

im
e

Hook_1498

Figure 8: Wall-clock time as a function of the number of MPI processes for reducing ‖r ‖2 to 0.1. Missing data for Block Jacobi indicates that
Block Jacobi could not achieve ‖r ‖2 ≤.1 in 50 parallel steps, usually due to divergence of the Block Jacobi method. The Block Jacobi method
is fastest when it does converge.

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-4

10
-2

10
0

10
2

10
4

10
6

R
e
s
id

u
a
l
N

o
rm

Flan_1565

Block Jacobi

Parallel Southwell

Distributed Southwell

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

R
e
s
id

u
a
l
N

o
rm

ldoor

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-2

10
-1

10
0

10
1

10
2

10
3

R
e
s
id

u
a
l
N

o
rm

StocF-1465

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-2

10
0

10
2

10
4

10
6

R
e
s
id

u
a
l
N

o
rm

inline_1

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e
s
id

u
a
l
N

o
rm

bone010

32 64 128 256 512 1024 2048 4096 8192

MPI Processes

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e
s
id

u
a
l
N

o
rm

Hook_1498

Figure 9: Residual norm after 50 parallel steps as a function of the number of MPI processes for di�erent test problems. When the residual
norm is above 1, this indicates that the method has diverged after 50 parallel steps. For larger numbers of processes, Block Jacobi is more
likely to diverge after many steps.

10

6 CONCLUSION
Parallel Southwell is a natural way to parallelize the Sequential

Southwell method. However, in a distributed setting, Parallel South-

well has a high communication cost that stems from the require-

ment for neighboring processes to exchange the residual norms of

their local subproblems. In Distributed Southwell, the main idea

is that these residual norms do not need to be known exactly. In-

stead, estimates of the residual norms of neighbors can be computed

locally without communication. However, deadlock may occur if

the estimates are such that no process thinks it has the largest

residual norm. This paper presented a novel scheme to avoid dead-

lock by sending explicit residual norm update messages only when
necessary. The result is that Distributed Southwell uses much less

communication than Parallel Southwell.

Distributed Southwell is also a potential improvement over Block

Jacobi when a large number of processes is used. This is an impor-

tant issue when considering future exascale machines, where the

number of cores will be massive. In this case, block sizes will be

small, possibly leading to slow or no convergence for Block Jacobi.

7 ACKNOWLEDGMENTS
The authors are grateful to the reviewers whose perceptive and

detailed comments greatly helped improve this paper. This ma-

terial is based upon work supported by the U.S. Department of

Energy, O�ce of Science, O�ce of Advanced Scienti�c Computing

Research, Applied Mathematics program under Award Number DE-

SC-0012538. This research used resources of the National Energy

Research Scienti�c Computing Center (NERSC), a DOE O�ce of

Science User Facility supported by the O�ce of Science of the U.S.

Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES
[1] MPI: Message Passing Interface Standard, Version 3.0, High-Performance Comput-

ing Center Stuttgart, September 2012.

[2] M. Adams, M. Brezina, J. Hu, and R. S. Tuminaro, Parallel multigrid smoothing:
polynomial versus Gauss-Seidel, Journal of Computational Physics, 188 (2003),

pp. 593–610.

[3] M. F. Adams, A distributed memory unstructured Gauss-Seidel algorithm for multi-
grid smoothers, in Proceedings of the 2001 ACM/IEEE Conference on Supercom-

puting, 2001.

[4] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, Multigrid smoothers
for ultraparallel computing, SIAM Journal on Scienti�c Computing, 33 (2011),

pp. 2864–2887.

[5] T. Blumensath and M. E. Davies, Stagewise weak gradient pursuits, IEEE Trans-

actions on Signal Processing, 57 (2009), pp. 4333–4346.

[6] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, , and U. M. Yang, A survey of
parallelization techniques for multigrid solvers, Frontiers of Parallel Processing for

Scienti�c Computing, (2005).

[7] T. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM

Transactions on Mathematical Software, 38 (2011), pp. 1:1–1:25.

[8] D. de Jager and J. Bradley, Extracting state-based performance metrics using
asynchronous iterative techniques, Performance Evaluation, 67 (2010), pp. 1353–

1372.

[9] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, Sparse solution of underdeter-
mined systems of linear equations by stagewise orthogonal matching pursuit, IEEE

Transactions on Information Theory, 58 (2012), pp. 1094–1121.

[10] M. Griebel and P. Oswald, Greedy and randomized versions of the multiplicative
Schwarz method, Linear Algebra and its Applications, 437 (2012), pp. 1596–1610.

[11] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partition-
ing irregular graphs, SIAM Journal on Scienti�c Computing, 20 (1998), pp. 359–392.

[12] J. Nutini, M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke, Coordinate
descent converges faster with the Gauss-Southwell rule than random selection, in

ICML-15 Proceedings of the 32nd International Conference on Machine Learning,

2015, pp. 1632–1641.

[13] U. Rüde, Fully adaptive multigrid methods, SIAM Journal on Numerical Analysis,

30 (1993), pp. 230–248.

[14] U. Rüde, Mathematical and Computational Techniques for Multilevel Adaptive
Methods, SIAM, Philadelphia, PA, USA, 1993.

[15] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, USA,

2nd ed., 2003.

[16] R. V. Southwell, Relaxation Methods in Engineering Science – A Treatise on
Approximate Computation, Oxford University Press, 1940.

[17] R. V. Southwell, Relaxation Methods in Theoretical Physics, Clarendon Press,

1946.

[18] J. Wolfson-Pou and E. Chow, Reducing communication in distributed asyn-
chronous iterative methods, in ICCS Workshop on Mathematical Methods and

Algorithms for Extreme Scale (Procedia Computer Science), vol. 80, 2016, pp. 1906–

1916.

[19] Y. You, X. Lian, J. Liu, H. Yu, I. S. Dhillon, J. Demmel, and C. Hsieh, Asyn-
chronous parallel greedy coordinate descent, in Advances in Neural Information

Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and

R. Garnett, eds., Curran Associates, Inc., 2016, pp. 4682–4690.

11

A ARTIFACT DESCRIPTION: DISTRIBUTED
SOUTHWELL: AN ITERATIVE METHOD
WITH LOW COMMUNICATION COSTS

A.1 Abstract
This artifact is comprised of the code for Distributed Southwell (and

the other methods used in this paper), the SuiteSparse test matrices

from Table 1, and �les containing the random initial guesses for x
in the matrix equation Ax = b. It also includes Bash scripts needed

to reproduce the results shown in this paper.

A.2 Description
A.2.1 Check-list (artifact meta information).

• Algorithm: Distributed Southwell and Parallel Southwell

• Program: C++ with MPI.

• Compilation: CC -std=c++11 -O3 -qopenmp -mkl on Cori. If

not on Cori, use Intel MPI instead, i.e., use mpiicpc instead of CC.

• Binary: DMEM_Southwell.

• Data set: binary �les containing SuiteSparse matrices and text

�les containing initial x vectors.

• Run-time environment: Linux x86_64, Cray MPICH 7.3.0, Casper,

METIS, and Intel Math Kernel Library (any version that supports

PARDISO and random number generators can be used).

• Hardware: Any.

• Output: Residual norm and statistics for setup and solve phases,

e.g., total wall-clock time.

• Experiment work�ow: Clone the repository; install libraries

(METIS and Casper) if necessary; compile with make; run

DMEM_Southwell with desired input.

• Publicly available?: Yes.

A.2.2 How so�ware can be obtained. It can be obtained from

Github by cloning the repository

https://github.com/jwolfsonp/Southwell.git.

A.2.3 Hardware dependencies. We gathered our results using

nodes on the NERSC Cori (Phase I), where each node contains two

Intel Xeon E5-2698 v3 Haswell 2.3 GHz CPUs and are connected

via Cray Aries interconnect. However, because Casper is used, our

program should run on most machines.

A.2.4 So�ware dependencies.

• C++11 with OpenMP.

• Cray MPICH: We used Cray MPICH on Cori with the

default compiler CC. If not running on Cori, use mpiicpc,

i.e., the latest Intel C++ MPI.

• Casper: We used Casper for one-sided asynchronous

progress control. The user can specify a certain number

of ghost processes per node by setting the environment

variable CSP_NG, e.g., executing export CSP_NG=1 on the

command line will set aside one physical core per node

for asynchronous progress control. For the results in this

paper, only one core was used. The static library �le is

included in the repository, which was generated on Cori.

• METIS:This is needed for load balancing. The static library

�le is included in the repository, which was generated on

Cori.

• Intel Math Kernel Library (MKL): For solving local sub-

domains directly, PARDISO is used. We also need MKL’s

random number generators for generating initial guesses.

MKL is not needed to reproduce the results in this paper,

but the option to use PARDISO and random number gen-

erators is included in case users are interested.

A.2.5 Datasets. The SuiteSparse matrices are stored in a Drop-

box folder (provided upon request by emailing Jordi Wolfson-Pou

at jwp3@gatech.edu). The text �les containing initial guesses are

stored on Github.

A.3 Installation
Simply clone the repository, and use make. If using Cori, type

module unload cray -libsci

module unload darshan

module unload cray -mpich

module load cray -mpich /7.3.1

before using make. If not running on Cori, be aware of the following.

1. When compiling, make sure MKL is linked correctly.

2. Make sure METIS and Casper are correctly installed.

3. the Make�le is currently only suitable for Cori, so it must

be manually altered to run on a di�erent machine.

A.4 Experiment work�ow
After compiling, the DMEM_Southwell binary should be in your

directory. The program takes arguments as input in the format

-argument argument_value. Some arguments just set �ags, so no

argument value is needed.

Here is an example of running our program at the command

line (Note that the arguments at every new line are there just for

readability).

CSP_NG =1 srun -N 32 -n 1024 ./ DMEM_Southwell

-x_zeros

-mat_file ecology2.mtx.bin

-sweep_max 20

-loc_solver gs

-solver sos_sds

In this example, 32 nodes of Cori are requested, with one ghost

process per node. An initial guess of all zeros is used for x and b
is initialized to uniformly distributed random numbers. For Cori,

srun is used, where -N speci�es number of nodes, and -n is the

total number of MPI processes. If using a di�erent machine, mpirun
or mpiexec can be used. Our program automatically scales x or b
(depending on if b or x are requested by the user to be a vector of

all zeros) such that the initial residual has a norm of one. In this

case, by specifying x_zeros, x is all zeros, and b is scaled. Setting b
to all zeros is the default. The matrix ecology2 is used here, where

-mat_file expects a �le name as the argument value. If a �le is

not speci�ed, our program generates a 5-point centered-di�erence

approximation of the Laplace PDE on a 1000× 1000 2D domain. We

run 20 parallel steps, as speci�ed by the sweep_max 20 argument,

which is also the default. We use Gauss-Seidel sweeps on local

subdomains, as denoted by -loc_solver gs, which is the default.

For the parallel solver, we use Distributed Southwell as speci�ed

by -solver sos_sds. No solver is used by default.

12

http://www.mcs.anl.gov/project/casper/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/node/470282
https://software.intel.com/en-us/node/521842
http://www.mcs.anl.gov/project/casper/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/node/470282
https://software.intel.com/en-us/node/521842

During execution, the matrix is loaded to MPI rank 0, and par-

titioned using METIS. The matrix is then scattered to the rest of

the processes. Each process then gathers necessary information for

the solve phase, e.g., determines all process neighbors. The timings

for the setup phase is then written to the screen. After the desired

number of parallel steps is carried out by the desired solver, various

statistics are reported to the screen, e.g., residual norm upon com-

pletion. To print the data in a format suitable for post-processing,

e.g., for easily plotting the output data, the -format_out argument

can be used.

A.5 Evaluation and expected result
To reproduce the parallel data presented in this paper, the script

AllMatJob.sh runs the SouthwellJob.sh script on all 14 matri-

ces from Table 1. The SouthwellJob.sh script submits a parallel

job on Cori and runs the SweepPar.sh script. The user must manual

change the number of nodes to request within the SouthwellJob.sh
script.

The SweepPar.sh script executes 50 parallel steps of Distributed

Southwell, Parallel Southwell, and Block Jacobi, with Gauss-Seidel

sweeps on local subdomains. The script uses 32 MPI processes per

node. A random x read from a �le is used. The script takes the matrix

name as the �rst input (the �le will be matrix_name.mtx.bin),

and the number of nodes second. For example, ./SweepPar.sh
Flan_1565 32 loads the �le Flan_1565.mtx.bin and uses 32 nodes

with 32 processes per node. The script produces text �les stored in

the data/matrix_name/ directory, one �le per method per number

of nodes.

13

	Abstract
	1 Introduction
	2 Background
	2.1 Stationary Iterative Methods
	2.2 The Sequential Southwell Method
	2.3 The Parallel Southwell Method
	2.4 Block Methods on Distributed Memory Computers

	3 The Distributed Southwell Method
	4 Results
	4.1 Multigrid Smoothing
	4.2 Test Framework
	4.3 Reducing "026B30D r"026B30D 2 to 0.1 Using 8192 Processes
	4.4 Strong Scaling

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	A Artifact Description: Distributed Southwell: An Iterative Method with Low Communication Costs
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result

