
ParILUT - A Parallel Threshold ILU for GPUs

Hartwig Anzt∗†, Tobias Ribizel∗, Goran Flegar‡, Edmond Chow§, Jack Dongarra†¶‖
∗Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

‡Departamento de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I Castellón, Spain
§School of Computational Science and Engineering, Georgia Institute of Technology, USA

¶University of Manchester, Manchester, UK
‖Oak Ridge National Lab (ORNL), Oak Ridge, USA

hartwig.anzt@kit.edu, tobias.ribizel@student.kit.edu, flegar@uji.es, echow@cc.gatech.edu, dongarra@icl.utk.edu

Abstract—In this paper, we present the first algorithm for
computing threshold ILU factorizations on GPU architectures.
The proposed ParILUT-GPU algorithm is based on interleaving
parallel fixed-point iterations that approximate the incomplete
factors for an existing nonzero pattern with a strategy that
dynamically adapts the nonzero pattern to the problem char-
acteristics. This requires the efficient selection of thresholds that
separate the values to be dropped from the incomplete factors,
and we design a novel selection algorithm tailored towards GPUs.
All components of the ParILUT-GPU algorithm make heavy use
of the features available in the latest NVIDIA GPU generations,
and outperform existing multithreaded CPU implementations.

Index Terms—ParILUT, parallel threshold ILU, incomplete
factorization preconditioners, parallel selection, GPU

I. INTRODUCTION

Preconditioners based on incomplete LU (ILU) factoriza-

tions [1] are popular components in solving large, sparse linear

systems via iterative methods. The underlying principle is

to approximate the LU decomposition of the system matrix

with triangular factors that retain a high level of sparsity.

To that end, the Gaussian elimination process is modified

such that fill-in is reduced. One approach is to predefine a

sparsity pattern on which nonzero elements are allowed (level-

based ILU [1]). Alternatively, only an upper limit on the

number of nonzero elements in the pattern can be imposed,

and the pattern itself is then chosen during the factorization

process to capture the elements with the largest magnitude

(threshold-based ILU [1]). The quality of an incomplete fac-

torization in terms of how well it works as a preconditioner

depends on the problem (the matrix and its ordering), and

the factorization’s sparsity pattern. As threshold-based ILU

factorizations not only take the structural properties of the

system matrix into account but also the numerical values, they

can reflect the problem’s characteristics more effectively. As

a result, for the same number of nonzero elements, threshold-

based ILU preconditioners can be superior to level-based ILU

preconditioners in terms of improving the convergence of the

iterative solver. At the same time, thresholding techniques

This work was supported by the U.S. Department of Energy Office of
Science, Office of Advanced Scientific Computing Research, Applied Math-
ematics program under Award Numbers DE-SC0016513, DE-SC-0016564,
and DE-SC-0010042. H. Anzt was supported by the “Impuls und Vernet-
zungsfond” of the Helmholtz Association under grant VH-NG-1241.

make the parallelization of the factorization process more

challenging. In particular, since the sparsity pattern is not

known beforehand, it is impossible to employ parallelization

strategies such as level scheduling or multi-color ordering [2].

One strategy to parallelize threshold ILU factorizations is to

use graph partitioning or domain decomposition [2], [3]. How-

ever, as a high number of subdomains usually degrades the pre-

conditioner quality, domain decomposition can only provide

coarse-grained parallelism. Furthermore, the factorization of

the Schur complement corresponding to subdomain interfaces

cannot be efficiently parallelized for dynamic thresholding.

More recently, a novel strategy for computing threshold-

based ILU factorizations in a highly-parallel fashion was

presented [4]. Its underlying idea is to interleave parallel fixed-

point iterations that approximate the incomplete factors for

an existing nonzero pattern with a strategy that dynamically

adapts the nonzero pattern to the problem characteristics. The

authors demonstrate that the ParILUT algorithm can efficiently

exploit the compute power of multicore architectures featuring

thread-independent execution paths and sophisticated cache

hierarchies. In this paper, we (1) develop the first threshold-

based ILU factorization for graphics processing units (GPUs);

(2) design a novel selection algorithm that optimally utilizes

the parallel processing power available on GPUs by combining

techniques from the (super scalar) sample sort algorithm

with the recursion tree pruning employed in quickselect; (3)

use a performance assessment on a range of GPUs from

different generations to demonstrate runtime advantages of the

developed selection algorithm over state-of-the-art strategies;

(4) modify the developed selection algorithm to relax accu-

racy in favor of reduced execution time; (5) show that the

developed ParILUT-GPU algorithm outperforms its multicore

counterparts on a range of architectures.

Section II provides background about threshold-based fac-

torizations in general and the ParILUT algorithm in particular.

Section III exclusively focuses on parallel selection on GPUs,

a functionality critical for generating thresholds that separate

the smaller values that can be dropped from the incomplete

factors. Section IV provides details about the design and the

implementation of the ParILUT-GPU algorithm architectures.

Section V comprises a comprehensive experimental analysis

of the developed selection and the complete ParILUT-GPU

231

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00033



algorithm. Aside from a runtime comparison against state-of-

the-art algorithms, we also assess the performance portability

across different GPU generations. Section VI concludes with

a summary of the findings and lists related topics we plan to

address in the near future.

II. INCOMPLETE FACTORIZATION PRECONDITIONERS AND

THE PARILUT ALGORITHM

An incomplete factorization approximates the LU decompo-

sition of a nonsingular sparse matrix A with a lower triangular

matrix L and an upper triangular matrix U , i.e., A ≈ LU ,

where much of the sparsity of the original system matrix is

preserved.

The traditional way of generating incomplete factorizations

is to modify the Gaussian elimination algorithm by truncating

the fill-in that typically occurs during the factorization pro-

cess. One possibility is to predefine a sparsity pattern S on

which nonzero entries are allowed and to neglect any fill-

in arising in the Gaussian elimination process outside this

pattern (level-ILU). Alternatively, the sparsity pattern S can

be determined dynamically during the factorization process

(threshold-ILU [1]). In the latter case, the decision of whether

an element is included in the incomplete factor is usually based

on the element’s significance, i.e., its magnitude in comparison

to the other elements in the same row/column.

Independently of whether the sparsity pattern is predefined

or generated dynamically, the Gaussian elimination process

itself is inherently sequential. Natural parallelism only exists

if it is possible to find multiple rows that only depend

on rows that have already been eliminated. To increase the

parallelism, strategies such as multicolor ordering or domain

decomposition can be employed [2], [3], [5]–[9]. However,

all these approaches often reduce the quality of the incom-

plete factorization [6], [8]. Furthermore, the scalability of the

Gaussian elimination process enhanced with these strategies is

still limited as they generally fail to leverage the fine-grained

parallelism of current HPC architectures.

Obviously, employing a dynamic dropping strategy intro-

duces additional synchronization points, virtually forbidding

the parallelization of a Gaussian elimination process generat-

ing a threshold-ILU.

A fundamentally different strategy for generating incom-

plete factorizations is the ParILU algorithm that abandons the

Gaussian elimination process [10]. Instead, it uses fixed-point

iterations to approximate the incomplete factors on a pre-

defined sparsity pattern. The idea is based on the observation

that for a given ILU sparsity pattern S, the incomplete

factorization is exact in the locations of S, that is [10]

(LU)ij = aij , (i, j) ∈ S, (1)

where (LU)ij denotes the (i, j) entry of the product of the

computed factors L and U , and aij is the corresponding entry

in the matrix A.

A factorization fulfilling this property can be computed

iteratively via a bilinear fixed-point iteration of the form

x = G(x) where x is the vector containing the unknown values

lij , i ≥ j, (i, j) ∈ S,

uij , i ≤ j, (i, j) ∈ S

in the incomplete factors L and U . From (1), one can derive

lij = aij −
j−1∑
k=1

likukj , i ≥ j, (2)

uij =
1

lii

(
aij −

i−1∑
k=1

likukj

)
, i < j, (3)

uij = 1, i = j. (4)

Aside from the theoretical proof that the fixed-point itera-

tion updating all values in the incomplete factors converges

(for a suitable initial guess) in the asymptotic sense [10],

experiments using the ParILU algorithm in highly parallel

environments reveal that a few sweeps are often sufficient to

generate preconditioners competitive to those generated via the

(sequential) truncated Gaussian elimination process [10]–[12].

As a result, the ParILU algorithm outlined in Algorithm 1 has

been established as an attractive alternative to the Gaussian

elimination process for generating level-ILU preconditioners,

and is today an integral part of many sparse linear algebra

libraries designed for multi- and manycore architectures, such

as ViennaCL 1 or MAGMA-sparse.2 The attractiveness of the

ParILU algorithm mostly stems from the kernel’s simplicity

(see Algorithm 1), and the potential to efficiently run on

manycore architectures like GPUs [11], [13].

Algorithm 1 One sweep of the fixed-point ILU algorithm.

Input sparse matrix A, desired sparsity pattern S, and current L and U
factors
for (i, j) ∈ S do

if i > j then
lij =

(
aij −

∑j−1
k=1 likukj

)

else
uij =

(
aij −

∑i−1
k=1 likukj

)
/lii

end if
end for

The generation of threshold-based ILU factorizations re-

quires a more sophisticated algorithm that can dynamically

adapt the nonzero structure to the size of the fill-in elements.

The ParILUT algorithm [4] interleaves the fixed-point it-

erations (2), (3) and (4) approximating the values in the

incomplete factors for a given sparsity pattern with a strategy

that dynamically adapts the nonzero structure to the problem

characteristics. To that end, ParILUT employs building blocks

that identify structural fill-in locations, approximate values in

the incomplete factors via fixed-point iterations, and iteratively

add and remove nonzeros from the incomplete factors to

1http://viennacl.sourceforge.net/
2http://icl.cs.utk.edu/magma/

232



1 g l o b a l vo id parilu_kernel(
2 c o n s t i n t num_rows, c o n s t i n t nnz,
3 c o n s t i n t *rowidxA, c o n s t i n t *colidxA, c o n s t double *A,
4 c o n s t i n t *rowptrL, c o n s t i n t *colidxL, double *L,
5 c o n s t i n t *colptrU, c o n s t i n t *rowidxU, double *U) {
6
7 i n t k = blockDim.x * blockIdx.x + threadIdx.x;
8 i n t i, j, il, iu, jl, ju;
9 double s, sp;

10
11 / / the s p a r s i t y pa t t e rn S are the nonzero l o c a t i o n s i n A
12 i f (k < nnz) { / / sweep over a l l l o c a t i o n s i n A
13 i = rowidxA[k]; / / row of element i n A
14 j = colidxA[k]; / / co l o f element i n A
15 s = A[k]; / / s t a r t w i th value o f A
16
17 il = rowptrL[i];
18 iu = colptrU[j];
19 whi le (il < rowptrL[i+1] && iu < colptrU[j+1]) {
20 sp = 0.0;
21 jl = colidxL[il];
22 ju = rowidxU[iu];
23 sp = (jl == ju) ? L[il] * U[iu] : sp;
24 s = (jl == ju) ? s-sp : s;
25 il = (jl <= ju) ? il+1 : il;
26 iu = (jl >= ju) ? iu+1 : iu;
27 }
28 s += sp;
29 i f (i > j) / / modify L−en t ry
30 L[il-1] = s / U[colptrU[j+1]-1];
31 e l s e / / modify U−en t ry
32 U[iu-1] = s;
33 }
34 }

Fig. 1. CUDA kernel performing one ParILU sweep of Algorithm 1.

include the most significant elements while preserving the

sparsity of the incomplete factors, see Figure 2.

The algorithm starts with some initial guess for the nonzero

pattern and nonzero values in these locations. A natural

starting point is to use the upper and lower triangular parts of

the system matrix A as lower and upper incomplete factors [4].

Applying the ParILU algorithm would generate incomplete

(level-)ILU factors with a zero ILU residual R = A−L ·U in

all locations included in the sparsity pattern S of the current

incomplete factors L and U , as described by (1). At the same

time, the ILU residual will not necessarily be zero in the

locations outside S. This motivates us to consider the locations

with a nonzero ILU residual as “candidate fill-in matrix” F :

F :=R\(L ∪ U) = (A− L · U)\(L ∪ U). (5)

We note that computing F is equivalent to computing the level-

1 fill of a level-ILU, considering the current incomplete factors

as level 0 [4].

Once F is computed, the ParILUT algorithm adds the

candidate locations to the incomplete factors, and uses a fixed-

point sweep of the ParILU algorithm to adjust the values in the

(extended) incomplete factors. The enlarged incomplete factors

introduce additional nonzero locations to the new ILU resid-

ual. Obviously, recursively applying this strategy of adding

nonzero locations to the sparsity pattern increases the nonzero

count in the incomplete factors, and will ultimately result in a

significant amount of fill-in. As a mitigation strategy, instead

of adding additional locations, the ParILUT algorithm first

selects a threshold separating the smallest values, and drops

all elements smaller than this threshold from the incomplete

factors. A second ParILU sweep is needed to adjust the

values in the truncated factors. This way, the nonzero count

of the original factors is preserved, and a new iteration can

start with identifying potential fill-in candidates for the new

factors. Iteratively applying the ParILUT cycle can result in

incomplete factorizations that have a different sparsity pattern

than the level-based ILU factorizations, and are superior in

terms of reflecting the problem characteristics and improving

the convergence of a top-level solver [4].

The ParILUT algorithm is the first parallel threshold ILU

algorithm, and in [4] it is shown that it can be realized effi-

ciently on multicore architectures. All of the building blocks

forming the ParILU algorithm are amenable to parallelization

and can efficiently exploit a sophisticated cache hierarchy

due to a high data reuse rate. In particular, the threshold

selection process traversing and rearranging the values in

memory heavily benefits from data reuse.

Unfortunately, GPU architectures do not provide deep cache

hierarchies, and data reuse across thread blocks is generally

impossible. Hence, it is necessary to redesign the ParILUT

algorithm and employ different strategies to parallelize the

distinct building blocks. Most importantly, a fundamentally

different strategy to derive the thresholds separating the small-

est values is needed.

III. PARALLEL SELECTION ON GPUS

Identifying a threshold that separates the k smallest ele-

ments (in terms of magnitude) from a sequence is equivalent

to finding its k-th smallest element, which is the typical setting

for a selection algorithm.

A simple solution would be to sort the sequence, since the

desired element would appear in position k. However, sorting

the magnitudes in the complete sequence is computationally

expensive, so most efficient selection algorithms are based

on partitioning and sorting only partially. The elements are

first partitioned among multiple buckets such that each bucket

contains only the elements from a certain interval (and all the

intervals are disjoint). Knowing the number of elements in

each bucket, it is easy to determine which bucket contains the

k-th smallest element. Then, the same partitioning procedure

can be recursively applied only on this bucket, until the desired

element is found.

An important ingredient of this approach is a procedure that

efficiently determines good delimiters (“splitters”) such that

the buckets are (almost) balanced in size. The best delimiters

for partitioning the sequence into b buckets are the k/b-
quantiles for k = 1, . . . , b − 1. However, obtaining them can

be computationally expensive. A more practical approach is

to use the quantiles of a small random sample of the input

sequence as an approximation. Together, these ideas lead to

the Sampleselect algorithm which is outlined in Figure 3 and

described in more detail in the following paragraphs.

Splitter selection. The first step of the algorithm includes

the selection of “splitters” which will serve as the boundaries

233



Fig. 2. The ParILUT algorithm for computing incomplete factorizations based on thresholding.

1 double select(data, rank) {
2 if (size(data) <= base_case_size) {
3 sort(data);
4 return data[rank];
5 }
6 / / p i ck sample , s e l e c t s p l i t t e r s from i t
7 splitters = pick_splitters(data);
8 / / compute bucket s izes
9 counts = count_buckets(data, splitters);

10 / / compute bucket ranks
11 offsets = prefix_sum(counts);
12 / / determine bucket con ta in ing rank
13 bucket = lower_bound(offsets, rank);
14 / / r ecu rs i ve subca l l
15 data = extract_bucket(data, bucket);
16 rank -= offsets[bucket];
17 return select(data, rank);
18 }

Fig. 3. High-level overview of the Sampleselect algorithm

of the buckets. After picking a small random sample of the

input data, we sort the elements to determine the sample

quantiles. They are then organized into an search tree as shown

on the left-hand side of Figure 4.

Element classification. The bucket of each element in the

original sequence can be determined by descending from the

root to a leaf of the splitter tree (see Figure 5). For each

element, the path to take at a node depends on the comparison

between that element and the node’s value. If the value is

smaller than the element, the next considered node is the

left child. Otherwise, the right child is visited next. The leaf

reached by the procedure is the largest splitter si smaller than

the element, i.e., the lower delimiter of the corresponding

bucket i.
As first discussed in the context of the super-scalar sample

0

1 2

3 4 5 6

7 8 9s1 s2 s3 s4

s5

s7 s8

< ≥

s5

s7s3

s2 s4 s6

s6

s8

< ≥

< ≥

< ≥

< ≥< ≥< ≥

Fig. 4. Search tree based on bucket splitters s1, . . . , s8 (left) and its implicit
array storage order (right).

sorting algorithm [14], the index calculations in this procedure

can be implemented efficiently if we store the search tree in

level-order within an array (the root is assigned index 0 and

the children of a node at index i are assigned indexes 2i+1 and

2i+ 2). This is visualized by the right-hand side of Figure 4.

The ideal number of splitters is 2h for some h, as the search

tree then becomes a complete binary tree with h levels, where

the i-th element in the last level corresponds to the i-th bucket.

Several important observations can be made about the pro-

cedure. First, the same result can be achieved by performing

a simple binary search on the sorted array of splitters, without

forming the search tree. However, this would require more

complex index calculations. Second, the subsequent steps of

the algorithm do not require the elements to be physically

arranged into buckets, so just determining the size of each

bucket is sufficient. However, bucket extraction on line 15

of Figure 3 needs to traverse the entire sequence once more.

234



1 double element = data[idx];
2 double tree[2 * tree_width - 1];
3 i n t i = 0;
4 f o r ( i n t l = 0; l < tree_height; l++)
5 i = 2 * i + (element < tree[i] ? 1 : 2);
6 i n t bucket = i - (tree_width - 1);
7 counts[bucket]++;
8 oracles[idx] = bucket;

Fig. 5. Loop for traversing the implicit search tree.

To reduce the memory footprint, the bucket index of each

element (we use the term “oracle” according to [14]) is stored

during the classification. Then, the second traversal can be

made over oracles instead of the original sequence. If the

number of buckets is small enough, the storage space required

for the oracles can be significantly smaller than that of the

whole sequence. For example, when using 256 buckets, each

oracle can be stored within a single byte, reducing the memory

transfers for the second traversal by up to 4 and 8 times (for

single and double precision, respectively).

Selecting the k-th element. Once the size cb of each bucket

b is known, the bucket containing the k-th element can be

determined by computing the lowest rank rb =
∑b−1

i=1 ci of

each bucket. The desired element is in bucket t for which

rt < k ≤ rt+1 holds. This operation can be performed using

an exclusive scan over cb to obtain rb, followed by a search

of the result to obtain t.
The desired element can be obtained by recursively applying

Sampleselect on bucket t. Alternatively, if only an approximate

threshold is required, the procedure can be stopped as soon as

rt is close enough to k. In that case, the splitter st of the

bucket can be used as an approximate threshold.

Performance optimizations

Parallel counting and filtering. Global synchronization

and communication operations can quickly become a bot-

tleneck of parallel algorithms. In Sampleselect, the need

for global communication appears in count_buckets
and bucket_extract. count_buckets performs a

histogram-like computation, which results in race conditions

when updating the total counts. In bucket_extract, each

element of the bucket has to be assigned an unoccupied

index in the output array, demanding communication to avoid

overwriting an existing element.

On modern GPUs, both issues can be solved via atomic

operations. Atomic operations provide an efficient (but limited)

form of communication between threads as they combine

a data load, computation, and data store operation while

eliminating the danger of race conditions. Atomic operations

can be used in global and shared memory, but, due to the

smaller access latency, shared memory atomics usually incur

a significantly lower overhead. However,the scope of shared

memory atomics is limited to the same thread block, thus their

use requires a global reduction step.

Warp-aggregated atomics. Atomic operations on GPUs

tend to suffer heavily from collisions, i.e., simultaneous atomic

access to the same memory location from distinct threads. One

popular mitigation strategy is the use warp-aggregated atomic

operations [15]. As our search tree separates the input data into

256 buckets, the birthday paradox [16] suggests that even for

well-distributed input data, a high chance of bucket index col-

lisions within a warp can be expected. For general input data,

this collision rate may be even higher. Combining the search

tree traversal with intra-warp communication instructions, it is

possible to simultaneously compute the bucket index as well as

a bitmask indicating all thread lanes with the same index. This

bitmask represents colliding atomic operations, which can be

combined and executed by a single thread instead.

With the introduction of fast shared memory atomics in

NVIDIA’s Maxwell architecture [17], the technique becomes

obsolete, and our experiments indicate that manual warp-

aggregation slows down kernel execution — most likely

because of the overhead of the additional intra-warp commu-

nication.

IV. PARILUT-GPU

Aside from the threshold selection, the ParILUT algorithm

consists of the following building blocks: the candidate search

identifying the locations with nonzero ILU residual; the com-

putation of the ILU residual; the functionality to add/remove

locations from the incomplete factors; and the fixed-point

sweeps approximating the values of the incomplete factors.

Candidate search. As elaborated in Section II, the candi-

date search can be realized in terms of computing the fill-

in matrix F = (A − L · U)\(L ∪ U). For this computation,

we design a customized procedure similar to a general sparse

matrix product (SpGEMM). In addition to computing the

nonzero locations of the product L · U , the procedure also

includes the nonzero locations of the system matrix A, but

filters out locations that are present in either L or U . As in

most SpGEMM kernels, a two-pass approach is employed.

The first row-parallel pass calculates the element count in the

distinct rows. From the nonzero counts, the row pointers can

be constructed using an exclusive scan. The exclusive scan

also computes the total memory requirements of the column

index and value arrays, enabling the memory allocation of

those arrays. The second row-parallel pass inserts column

indexes into the CSR structure for the elements identified in

the first pass. No numeric values are assigned as the candidate

search only identifies locations with a nonzero ILU residual.

The actual values in these locations will later be computed

in the “Residual” routine. The cost of the candidate search

significantly depends on the nonzero structure of the matrices,

in particular, the amount of fill-in elements.

Add/Remove elements. To adapt the sparsity pattern to

the problem characteristics, the ParILUT features building

blocks that either add candidate locations to the sparsity

pattern, or remove locations if they are smaller than a certain

threshold. Both functionalities employ a two-pass approach.

In the first pass, the memory requirement of the modified

incomplete factors is analyzed by a row-parallel procedure

for computing the number of elements that are included in

235



1 g l o b a l vo id parilu_kernel_L(
2 c o n s t i n t num_rows, c o n s t i n t nnz,
3 c o n s t i n t *rowidxA, c o n s t i n t *colidxA, c o n s t double *A,
4 c o n s t i n t *rowptrL, c o n s t i n t nnzL,
5 c o n s t i n t *colidxL, c o n s t i n t *rowidxL, double *L,
6 c o n s t i n t *colptrU, c o n s t i n t *rowidxU, c o n s t double *U)

{
7
8 i n t k = blockDim.x * blockIdx.x + threadIdx.x;
9 i n t i, j, il, iu, jl, ju;

10 double s=0.0, sp=0.0;
11
12 / / the s p a r s i t y pa t t e rn S are the nonzero l o c a t i o n s in L
13 i f (k < nnzL) { / / sweep over a l l l o c a t i o n s i n L
14 i = rowidxL[k]; / / row of element i n L
15 j = colidxL[k]; / / co l o f element i n L
16 i f (i == j) { / / L has a u n i t d iagonal
17 L[k] = 1.0; / / se t value to 1.0
18 } e l s e {
19 / / check whether A conta ins an element i n t h i s l o c a t i o n
20 for ( i n t z = rowidxA[i]; z<rowidxA[i+1]; z++) {
21 i f (colidxA[z] == j) {
22 s = A[i];
23 break;
24 }
25 }
26 il = rowptrL[i];
27 iu = colptrU[j];
28 whi le (il < rowptrL[i+1] && iu < colptrU[j+1]) {
29 sp = 0.0;
30 jl = colidxL[il];
31 ju = rowidxU[iu];
32 sp = (jl == ju) ? L[il] * U[iu] : sp; / / match
33 s = (jl == ju) ? s-sp : s;
34 il = (jl <= ju) ? il+1 : il; / / increment row
35 iu = (jl >= ju) ? iu+1 : iu; / / increment column
36 }
37 s += sp;
38 L[k] = s / U[colptrU[j+1]-1];
39 }
40 }
41 }

Fig. 6. CUDA kernel performing one fixed-point sweep on the lower
triangular factor L.

the updated factors. In the routine adding new locations to the

sparsity pattern, the number of nonzeros in a row comprises the

nonzeros in the current incomplete factor and the number of

candidates for this row. In the routine dropping locations from

the incomplete factors, the values in each row are compared to

the threshold, those larger than the threshold are counted, and

those smaller than the threshold are marked for removal. A

succeeding reduction calculates the total memory requirement

of the updated sparse structures. Once the memory for the new

incomplete factors is allocated, the second row-parallel pass

fills the structures with the elements.

Fixed-point sweeps. The approximation of the values for a

given sparsity pattern is realized via the fixed-point iterations

given in (2), (3) and (4) forming the ParILU sweep. We employ

the ParILU kernel designed in [11] which is parallelized

across the nonzero elements in the sparsity pattern S (see

Algorithm 1). However, the kernel has to be modified to take

into account that, as a result of earlier ParILUT steps, the input

sparsity pattern S of the incomplete factors has diverged from

the sparsity pattern of the system matrix A. Hence, the input

sparsity pattern S in Algorithm 1 is no longer the sparsity

pattern of the system matrix, but the sparsity pattern of the

1 g l o b a l vo id residual_kernel(
2 c o n s t i n t num_rows, c o n s t i n t nnz,
3 c o n s t i n t *rowidxA, c o n s t i n t *colidxA, c o n s t double *A,
4 c o n s t i n t *rowptrL, c o n s t i n t *colidxL, double *L,
5 c o n s t i n t *colptrU, c o n s t i n t *rowidxU, double *U,
6 c o n s t i n t nnzF, c o n s t i n t *rowidxF, c o n s t i n t *colidxF,
7 double *F) {
8
9 i n t k = blockDim.x * blockIdx.x + threadIdx.x;

10 i n t i, j, il, iu, jl, ju;
11 double s, sp;
12 / / the s p a r s i t y pa t t e rn S are the nonzero l o c a t i o n s in F
13 i f (k < nnzF) { / / sweep over a l l l o c a t i o n s i n F
14 i = rowidxF[k]; / / row of element i n F
15 j = colidxF[k]; / / co l o f element i n F
16 / / check whether A conta ins an element i n t h i s l o c a t i o n
17 for ( i n t z = rowidxA[i]; z<rowidxA[i+1]; z++) {
18 i f (colidxA[z] == j) {
19 s = A[i];
20 break;
21 }
22 }
23
24 il = rowptrL[i];
25 iu = colptrU[j];
26 whi le (il < rowptrL[i+1] && iu < colptrU[j+1]) {
27 sp = 0.0;
28 jl = colidxL[il];
29 ju = rowidxU[iu];
30 sp = (jl == ju) ? L[il] * U[iu] : sp; / / match
31 s = (jl == ju) ? s-sp : s;
32 il = (jl <= ju) ? il+1 : il; / / increment row
33 iu = (jl >= ju) ? iu+1 : iu; / / increment column
34 }
35 s += sp;
36 F[k] = s;
37 }
38 }

Fig. 7. CUDA kernel computing the ILU residual values in the candidate
locations.

incomplete factor(s). In Figure 6, we outline the CUDA kernel

for updating the values in the lower incomplete factor L.

A similar kernel can be derived for updating the values in

the upper incomplete factor U . The sparsity-aware ParILU

kernel can also be parallelized across the nonzero entries

of the current sparsity pattern. However, explicitly retrieving

potential nonzero values from the system matrix A introduces

some overhead compared to Algorithm 1.

Computing the ILU residual. A central question when

adding the candidates to the incomplete factors is how to

choose the numerical values in these locations. Experiments

in [4] indicate that the ILU residual values work well as an

initial guess, and an approximation for these can be computed

efficiently by modifying Algorithm 1 to take the candidate

locations F as the sparsity pattern S and adapt the output

values, see Figure 7. By complementing this residual sweep

with a global reduction, we can compute an approximation

for the ILU residual norm. We note that this approximation

ignores the fact that some locations included in the sparsity

pattern S may have a nonzero residual, as the fixed-point

sweeps updating these values may not have converged yet.

Nevertheless, the ILU residual norm approximation may be

useful to detect convergence or breakdown of the ParILUT

algorithm [4]. In terms of computational cost, the ILU residual

routine thus combines a fixed-point sweep parallelized over the

236



TABLE I
KEY CHARACTERISTICS OF THE HIGH-END NVIDIA GPUS. THE

SUSTAINED MEMORY BANDWIDTH IS MEASURED USING THE BANDWIDTH

TEST SHIPPING WITH THE CUDA SDK.

K40m P100 V100
Architecture Kepler (3.5) Pascal (6.0) Volta (7.0)
DP Performance 1.4 TFLOPs 5.3 TFLOPs 7 TFLOPs
SP Performance 4.3 TFLOPs 10.6 TFLOPs 14 TFLOPs
Operating Freq. 0.75 GHz 1.15 GHz 1.53 GHz
Mem. Capacity 6 GB 16 GB 16 GB
Mem. Bandwidth 288 GB/s 732 GB/s 900 GB/s
Sustained BW 193 GB/s 500 GB/s 742 GB/s
L2 Cache Size 1.5 MB 4 MB 6 MB
L1 Cache Size 64 KB 64 KB 128 KB

TABLE II
TEST MATRICES.

Matrix Origin Num. Rows Nz
ANI5 2D anisotr. diff. 12,561 86,227
ANI6 2D anisotr. diff. 50,721 349,603
ANI7 2D anisotr. diff. 203,841 1,407,811
APACHE1 Suite Sparse [19] 80,800 542,184
APACHE2 Suite Sparse 715,176 4,817,870
CAGE10 Suite Sparse 11,397 150,645
CAGE11 Suite Sparse 39,082 559,722
JACOBIANMAT0 Fun3D fl. flow [20] 90,708 5,047,017
JACOBIANMAT9 Fun3D fl. flow 90,708 5,047,042
MAJORBASIS Suite Sparse 160,000 1,750,416
TOPOPT010 Geometry opt. [21] 132,300 8,802,544
TOPOPT060 Geometry opt. 132,300 7,824,817
TOPOPT120 Geometry opt. 132,300 7,834,644
THERMAL1 Suite Sparse 82,654 574,458
THERMAL2 Suite Sparse 1,228,045 8,580,313
THERMOMECH TC Suite Sparse 102,158 711,558
THERMOMECH DM Suite Sparse 204,316 1,423,116
TMT SYM Suite Sparse 726,713 5,080,961
TORSO2 Suite Sparse 115,967 1,033,473
VENKAT01 Suite Sparse 62,424 1,717,792

candidate locations F with a global reduction to compute the

approximate ILU residual norm.

V. EXPERIMENTS

A. Experiment setup

For the experimental evaluation, we use GPU architectures

of different generations to reveal how architecture-specific

features impact the performance of the ParILUT-GPU algo-

rithm. The GPU architectures used in experiments and their

key properties are listed in Table I. The kernels forming the

ParILUT-GPU algorithm are implemented in CUDA (version

9.2) and use a default thread block size of 256. Only the

selection algorithm employs a thread block size of 1024 (1024

is the maximum thread block size) to efficiently exploit shared

memory atomics. We deploy the ParILUT-GPU algorithm

in the MAGMA-sparse software library3, and leverage all

features provided by the MAGMA ecosystem. In particular,

we use the Krylov solvers included in MAGMA-sparse [18]

for experimentally assessing the preconditioner quality.

3http://icl.cs.utk.edu/magma/

We test the ParILUT algorithm for the same benchmark

problems that were previously used in [4], which allows us to

easily compare performance and preconditioner quality to the

multicore implementation. For convenience, the test matrices

are listed along with some key characteristics in Table II.

B. Selection algorithm on GPUs

First, we evaluate the GPU implementation of Sampleselect

(sselect) and compare its performance to an implemen-

tation of the Quickselect (qselect) algorithm providing

the same functionality. As the kernels are independent of

the actual element values, we generate artificial datasets by

randomly permuting sequences of various distributions of

repeated elements. In Figure 8, the throughput of Sampleselect

and of Quickselect are related to the size of the dataset.

The results on the left-hand-side of Figure 8 are obtained

with the older K40m GPU, and the results in the center of

Figure 8 with the state-of-the-art Volta architecture. For both

algorithms, two variants are examined. The variants labeled

with qselect-g and sselect-g use global memory atom-

ics, while qselect-s and sselect-s use shared memory

atomics. The results reveal that on the older K40 architecture,

the variants using global memory atomics outperform their

shared memory counterparts. On the new V100 GPU, shared

memory atomics are faster for large dataset sizes. On the

right-hand-side in Figure 8, we evaluate the impact of atomic

collisions on the older Kepler architecture as well as the

effectiveness of warp-aggregation. We increase the collision

rate by duplicating values in the dataset. While these collisions

generally have a large performance impact, warp-aggregation

proves to be an effective mitigation strategy. On the Volta

architecture, the impact of the atomic collisions is much

smaller, making warp-aggregation obsolete.

Overall, the Sampleselect algorithm consistently outper-

forms the Quickselect algorithm. The Sampleselect runtime

can be further reduced by relaxing the algorithm’s accuracy.

To that end, we note that the thresholds needed in the ParILUT-

GPU algorithm do not need to be exact. An approximate

threshold of “good quality” will in the worst case result

in small variations of the nonzero count of the incomplete

factors [4].

In Figure 9, we visualize the relative runtime breakdown

of a single recursion level. The results were obtained on the

V100 GPU using shared memory atomics and an array of 224

elements. While one level of Quickselect is faster than one

level of Sampleselect, the Sampleselect algorithm requires far

fewer levels. The approximate Sampleselect reduces the cost

of every level by omitting the extract_bucket step and

reducing the cost of the reduce operation, as no partial sums

need to be stored. One level of the approximate Sampleselect

is about two times faster than one level of Quickselect.

C. Approximate Sampleselect in ParILUT-GPU

Next, we assess the impact of using the approximate variant

of Sampleselect inside the ParILUT-GPU algorithm. For this

237



Fig. 8. Left and center: Throughput on the K40m and V100 GPU for different selection algorithms: qselect-s and sselect-s use shared memory
atomics, qselect-g and sselect-g use global memory atomics; error bars indicate the variation. Right: Throughput on the K40m for a single recursion
level using shared and global atomics with or without warp-aggregation, executed on datasets with different repetition rates for n = 224.

Fig. 9. Relative runtime breakdown on the V100 GPU for a single recursion
level in the different selection algorithms using shared memory atomics for
n = 224.

purpose, we use the generated preconditioners inside a GM-

RES iterative solver and relate the iteration count necessary to

reach a relative residual of 10−10 to the number of ParILUT-

GPU steps. For comparison, Figure 10 also includes the

iteration count required when employing a standard ILU(0)

preconditioner. The results for “0 ParILUT steps” are obtained

by taking the initial guess for the ParILUT algorithm (the

lower and upper triangular factors of the system matrix) as a

preconditioner. To accommodate minor differences in the iter-

ation counts, we average the results for the approximate Sam-

pleselect over 5 runs. The first observation is that both versions

of the ParILUT-GPU preconditioner significantly decrease the

GMRES iteration count compared to the ILU(0) precondi-

tioner. Furthermore, only negligible quality differences can be

observed between the version using exact Sampleselect and the

one using approximate Sampleselect. Given the performance

benefits, we choose to make the approximate Sampleselect the

default choice inside the ParILUT-GPU algorithm.

In Figure 11 we investigate the corresponding performance

benefits obtained from replacing the exact Sampleselect with

the approximate Sampleselect. For each problem, we show

the runtime breakdown of the ParILUT-GPU algorithm using

either exact Sampleselect (left bar) or approximate Sample-

select (right bar) on the V100 GPU. As the approximate

0 2 4 6 8 10
ParILUT steps

150

200

250

300

G
M

R
E

S
 it

er
at

io
ns

ILU(0)
ParILUT-GPU w. exact Sampleselect
ParILUT-GPU w. approx. Sampleselect

0 2 4 6 8 10
ParILUT steps

300

400

500

600

700

800
900

1000
1100

G
M

R
E

S
 it

er
at

io
ns

ILU(0)
ParILUT-GPU w. exact Sampleselect
ParILUT-GPU w. approx. Sampleselect

Fig. 10. Quality assessment of the preconditioner generated via the ParILUT
algorithm using either the exact Sampleselect or the approximate Samplese-
lect. Test problems are ANI5 (top) and ANI6 (bottom).

Sampleselect runs for some problems significantly faster, we

choose to make it the the default choice inside the ParILUT

algorithm.

D. Cross-platform portability of ParILUT-GPU

An important aspect of the ParILUT-GPU algorithm is to

provide good performance portability across different GPU

generations. To that end, we assess the existence of building

blocks heavily optimized for one architecture, but achieving

low performance on a different architecture. In the runtime

breakdown of the ParILUT-GPU in Figure 12, we normalize

238



ani7 apa1 apa2 cg10 cg11 jac0 jac9 maj thm1 thm2 tdM tTC tmt op60 op120 tor ven
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
R

un
tim

e 
fr

ac
tio

n
CSC  CSR
Candidates
Residual
Add
Sweeps
Select
Remove

Fig. 11. Relative runtime of the distinct building blocks forming the ParILUT-GPU algorithm on the V100 GPU. The two bars for each problem reflect the
breakdown of the ParILUT-GPU using exact Sampleselect (left) and approximate Sampleselect (right), respectively.

ani7 apa1 apa2 cg10 cg11 jac0 jac9 maj thm1 thm2 tdM tTC tmt topt60 opt120 tor ven
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
un

tim
e 

fr
ac

tio
n

CSC  CSR
Candidates
Residual
Add
Sweeps
Select
Remove

Fig. 12. Relative runtime of the distinct building blocks forming the ParILUT-GPU algorithm. The three bars for each problem reflect the breakdown on the
three GPU architectures considered: K40 (left bar), P100 (center bar), and V100 (right bar).

the execution times for the specific problem and architecture

configuration. The three bars for each problem correspond

to the normalized execution times on the K40m, P100 and

V100 GPUs. While this analysis provides information about

the relative runtime of the building blocks for a specific

architecture/problem setting, no information about the total

execution time is given. The results indicate that the relative

cost of the distinct building blocks heavily depends on the

problem characteristics, but seems to be almost independent

of the hardware. This indicates that the designed ParILUT-

GPU algorithm consists of building blocks that all provide

good performance portability. For the problems JAC0, JAC9,

TOPOPT060, and TOPOPT120, the candidate search heavily

dominates the ParILUT-GPU execution time. An explanation

is the high nonzero-per-row ratio of these problems, see

Table II, which results in a high amount of fill-in. Aside

from the candidate search, the addition of nonzero locations

to the sparsity structures also takes a significant portion of

the runtime. A more detailed analysis reveals that the run-

time contribution of the fixed-point iterations computing the

values in the incomplete factors (“Sweeps”) and the residuals

(“Residual”) decreases with newer hardware architectures.

E. Performance assessment of ParILUT-GPU

Finally, we compare the performance of the ParILUT-GPU

algorithm we developed to its ParILUT counterpart designed

for multicore architectures and parallelized using OpenMP. To

that end, we take the performance results reported in [4] as

reference point, and analyze the speedup of ParILUT running

on diverse hardware architectures over the crout version of the

threshold ILU (ILUT) taken from the SuperLU package4 and

running on an Intel Xeon Phi 7250 (KNL) processor.

The results in Figure 13 reveal that the ParILUT-GPU

and the ParILUT(-OMP) outperform SuperLU’s ILUT for all

problems and all configurations. For the JAC0 and the JAC9

problems, the ParILUT-GPU is slower than the “ParILUT-

OMP” running on the KNL. The reason is the sparsity pattern

4http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/

239



ani7 apa1 apa2 cg10 cg11 jac0 jac9 maj thm1 thm2 tdM tTC tmt op60 op120 tor ven
100

101

102

103

S
pe

ed
up

 o
ve

r 
S

up
er

LU
 IL

U
T

 o
n 

K
N

L

ParILUT-OMP on KNL
ParILUT-GPU on K40
ParILUT-GPU on P100
ParILUT-GPU on V100

Fig. 13. Performance assessment of the ParILUT algorithm running on diverse architectures. The reference points for the speedup values are the runtimes of
the SuperLU’s ILUT running on an Intel KNL platform.

of these systems, which makes the candidate search extremely

expensive, see Figure 12. This is a building block where the

ParILUT-OMP can heavily benefit from reusing data present

in cache. A similar effect can be observed for the TOPOPT060,

TOPOPT120, and VEN problems, where the ParILUT-GPU

outperforms the ParILUT-OMP only on the newer GPU ar-

chitectures. Comparing the different GPU architectures, the

ParILUT-GPU algorithm typically executes 2–3x faster when

moving from the K40 to the P100 platform. On the V100 GPU,

the ParILUT-GPU executes about 10%–30% faster than on

the P100 GPU. Exceptions are the TOPOPT060, TOPOPT120,

and VEN systems where the Volta architecture enables more

substantial acceleration.

VI. SUMMARY AND FUTURE WORK

We have developed the first parallel threshold ILU algorithm

for GPUs. The ParILUT-GPU algorithm interleaves fixed-point

sweeps approximating values in the incomplete factors with a

strategy that dynamically adapts the nonzero pattern to the

problem characteristics. We compose the ParILUT-GPU out

of heavily tuned GPU kernels. For threshold selection we

designed the Sampleselect algorithm that outperforms other

algorithms providing the same functionality. For a set of test

matrices we show that the developed ParILUT-GPU algorithm

executes faster than the counterpart designed to leverage the

compute power of multicore processors. The performance

portability analysis revealed that the search for potential fill-

in candidates dominates the ParILUT-GPU runtime for many

test problems and GPU architectures. Thus, future research

will particularly focus on accelerating this step. Possible

mitigation strategies include the development of randomized

candidate search, and employing machine learning techniques

for quickly generating ILUT sparsity patterns.

REFERENCES

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition.
Philadelphia, PA, USA: SIAM, 2003.

[2] A. Basermann, “Parallel block ILUT/ILDLT preconditioning for sparse
eigenproblems and sparse linear systems,” Numerical Linear Algebra
with Applications, vol. 7, no. 7-8, pp. 635–648, 2000.

[3] G. Karypis and V. Kumar, “Parallel threshold-based ILU factorization,”
in 1997 ACM/IEEE Conference on Supercomputing, Nov 1997, pp. 1–
24.

[4] H. Anzt, E. Chow, and J. Dongarra, “ParILUT—A New Parallel
Threshold ILU Factorization,” SIAM Journal on Scientific Computing,
vol. 40, no. 4, pp. C503–C519, 2018. [Online]. Available: https:
//doi.org/10.1137/16M1079506

[5] M. Benzi, W. Joubert, and G. Mateescu, “Numerical experiments with
parallel orderings for ILU preconditioners,” Electronic Transactions on
Numerical Analysis, vol. 8, pp. 88–114, 1999.

[6] S. Doi, “On parallelism and convergence of incomplete LU factoriza-
tions,” Applied Numerical Mathematics, vol. 7, no. 5, pp. 417–436, 1991.

[7] D. Hysom and A. Pothen, “A scalable parallel algorithm for incomplete
factor preconditioning,” SIAM Journal on Scientific Computing, vol. 22,
no. 6, pp. 2194–2215, 2001.

[8] D. Lukarski, “Parallel sparse linear algebra for multi-core and many-
core platforms - parallel solvers and preconditioners,” Ph.D. dissertation,
Karlsruhe Institute of Technology (KIT), Germany, 2012.

[9] E. L. Poole and J. M. Ortega, “Multicolor ICCG methods for vector
computers,” SIAM Journal on Numerical Analysis, vol. 24, pp. 1394–
1417, 1987.

[10] E. Chow and A. Patel, “Fine-grained parallel incomplete LU factoriza-
tion,” SIAM Journal on Scientific Computing, vol. 37, pp. C169–C193,
2015.

[11] E. Chow, H. Anzt, and J. Dongarra, “Asynchronous iterative algorithm
for computing incomplete factorizations on GPUs,” in Proceedings of
30th International Conference, ISC High Performance 2015, Lecture
Notes in Computer Science, Vol. 9137, J. Kunkel and T. Ludwig, Eds.,
2015, pp. 1–16.

[12] H. Anzt, E. Chow, J. Saak, and J. Dongarra, “Updating incomplete
factorization preconditioners for model order reduction,” Numerical
Algorithms, vol. 73, pp. 611–630, 2016.

[13] H. Anzt, M. Baboulin, J. Dongarra, Y. Fournier, F. Hulsemann,
A. Khabou, and Y. Wang, Accelerating the Conjugate Gradient Algo-
rithm with GPUs in CFD Simulations. Cham: Springer International
Publishing, 2017, pp. 35–43.

[14] P. Sanders and S. Winkel, “Super scalar sample sort,” in Algorithms –
ESA 2004, S. Albers and T. Radzik, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 784–796.

[15] A. Adinets. Optimized filtering with warp-aggregated
atomics. [Online]. Available: https://devblogs.nvidia.com/
cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/

[16] F. H. Mathis, “A generalized birthday problem,” SIAM Rev.,
vol. 33, no. 2, pp. 265–270, May 1991. [Online]. Available:
http://dx.doi.org/10.1137/1033051

[17] N. Sakharnykh. Fast histograms using shared atomics
on Maxwell. [Online]. Available: https://devblogs.nvidia.com/
gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/

[18] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, and M. Köhler,
“Preconditioned Krylov solvers on GPUs,” Parallel Computing, vol. 68,

240



pp. 32–44, 2017, applications for the Heterogeneous Computing
Era. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167819117300777

[19] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software, vol. 38, no. 1,
pp. 1:1–1:25, Dec. 2011.

[20] NASA, “https://fun3d.larc.nasa.gov/.”
[21] S. Wang, E. de Sturler, and G. H. Paulino, “Large-scale topology opti-

mization using preconditioned Krylov subspace methods with recycling,”
International Journal for Numerical Methods in Engineering, vol. 69,
no. 12, pp. 2441–2468, 2007.

241


