
SCALABLE ASYNCHRONOUS1

DOMAIN DECOMPOSITION SOLVERS∗2

CHRISTIAN GLUSA† , ERIK G. BOMAN‡ , EDMOND CHOW§ , SIVASANKARAN3

RAJAMANICKAM¶, AND DANIEL B. SZYLD‖4

Abstract. Parallel implementations of linear iterative solvers generally alternate between phases5
of data exchange and phases of local computation. Increasingly large problem sizes and more hetero-6
geneous compute architectures make load balancing and the design of low latency network intercon-7
nects that are able to satisfy the communication requirements of linear solvers very challenging tasks.8
In particular, global communication patterns such as inner products become increasingly limiting at9
scale.10

We explore the use of asynchronous communication based on one-sided MPI primitives in the11
context of domain decomposition solvers. In particular, a scalable asynchronous two-level Schwarz12
method is presented. We discuss practical issues encountered in the development of a scalable solver13
and show experimental results obtained on a state-of-the-art supercomputer system that illustrate14
the benefits of asynchronous solvers in load balanced as well as load imbalanced scenarios. Using the15
novel method, we can observe speed-ups of up to 4x over its classical synchronous equivalent.16

Key words. Asynchronous iteration, domain decomposition, Schwarz methods, chaotic relax-17
ation18

AMS subject classifications. 68W10, 65Y05, 68W15, 65N5519

1. Introduction. Multilevel methods such as multigrid and domain decomposi-20

tion are among the most efficient and scalable solvers for partial differential equations21

developed to date. Adapting them to the next generation of supercomputers and22

improving their performance and scalability is crucial in the push towards exascale.23

Domain decomposition methods subdivide the global problem into subdomains, and24

then alternate between local solves and boundary data exchange. This puts a signif-25

icant stress on the network interconnect, since all processes try to communicate at26

once. On the other hand, during the solve phase, the network is under-utilized. The27

use of non-blocking communication can only alleviate this issue, but not fully resolve28

it. In asynchronous methods, on the other hand, computation and communication29

occur at the same time, with some processes performing computation while others30

communicate, so that the network is consistently in use.31

The term “asynchronous” can have several different meanings in the literature.32

In computer science, it is sometimes used to describe communication patterns that33

are non-blocking, so that computation and communication can be overlapped. Itera-34

tive algorithms that use such “asynchronous” communication yield the same iterates35

(results) up to round-off error, as they do not change the mathematical algorithm. In36

applied mathematics, on the other hand, “asynchronous” denotes parallel algorithms37

where each process (processor) proceeds at its own speed without synchronization.38

∗ Part of this work has been accepted for publication in the form of a proceedings paper by the
25th International Domain Decomposition Conference.
†Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico, USA

(caglusa@sandia.gov).
‡Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico, USA

(egboman@sandia.gov).
§School of Computational Science and Engineering, College of Computing, Georgia Institute of

Technology, Atlanta, Georgia, USA (echow@cc.gatech.edu).
¶Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico, USA

(srajama@sandia.gov).
‖Temple University, Philadelphia, Pennsylvania, USA (szyld@temple.edu).

1

This manuscript is for review purposes only.

Thus, asynchronous algorithms go beyond the widely used bulk-synchronous paral-39

lel (BSP) model. More importantly, they are mathematically different than syn-40

chronous methods and generate different iterates. The earliest work in this area was41

called “chaotic relaxation” [11]. Both types of asynchronous approaches are expected42

to play an important role on future supercomputers. In this paper, we focus on43

asynchronous methods in the mathematical sense, and we will use the terms “asyn-44

chronous” and “synchronous” to distinguish between methods that are asynchronous45

and synchronous in the mathematical sense.46

Domain decomposition solvers [16, 34, 33] are often used as preconditioners in47

Krylov subspace iterations. Unfortunately, the computation of inner products and48

norms widely used in Krylov methods requires global communication. Global com-49

munication primitives, such as MPI_Reduce, asymptotically scale as the logarithm of50

the number of processes involved. This can become a limiting factor when very large51

process counts are used. The underlying domain decomposition method, however,52

can do away with globally synchronous communication, assuming the coarse prob-53

lem in multilevel methods can be solved in a parallel way. Therefore, we will focus54

on using domain decomposition methods purely as iterative methods in the present55

work. We will note, however, that the discussed algorithms could be coupled with ex-56

isting pipelined methods [22] which alleviate the global synchronization requirement57

of Krylov solvers.58

Another issue that is crucial to good scaling behavior is load imbalance. Load59

imbalance might occur due to heterogeneous hardware in the system, network noise,60

dynamic power capping [1], or due to local, problem specific causes, such as iteration61

counts for local solves that vary from subdomain to subdomain. The latter are espe-62

cially difficult to predict, so that load balancing cannot occur before the actual solve.63

Therefore, processes in a synchronous parallel program must be idle until its slowest64

process has finished. In an asynchronous method, local computation can continue,65

and potentially improve the quality of the global solution.66

An added benefit of asynchronous methods is that, since the interdependence67

between subdomains has been weakened, fault tolerance [9, 10] can be more easily68

achieved. When one process must stop, be it for a hard or a soft fault, it can be69

replaced without having to halt every other process.70

The main drawback of asynchronous iterations is the fact that deterministic be-71

havior is sacrificed. Consecutive runs do not produce the same result. (But one would72

hope that they are at most a distance proportional to the convergence tolerance apart73

from each other.) This also makes the mathematical analysis of asynchronous methods74

significantly more difficult than for its synchronous counterparts. Analytical frame-75

works for asynchronous linear (and nonlinear) iterations have long been available76

[11, 4, 5, 18], but generally cannot produce sharp convergence bounds except in the77

simplest cases.78

The main contributions of our work are:79

• A novel asynchronous two-level domain decomposition method, scalable to80

thousands of processors.81

• An empirical study of one-sided MPI performance in a scientific computing82

setting.83

• Empirical comparisons of synchronous and asynchronous variants of domain84

decomposition solvers on a state-of-the-art parallel computer.85

Our work demonstrates that asynchronous methods have the potential of outper-86

forming conventional synchronous solvers and offer a viable alternative in the push87

towards exascale.88

2

This manuscript is for review purposes only.

The present work is structured as follows: In Section 2, we present overlapping do-89

main decomposition methods, and explain their use in synchronous and asynchronous90

fashion. For a general introduction to domain decomposition methods we refer the91

reader to [16, 34, 33]. The section concludes with a convergence analysis of the pre-92

sented one- and two-level methods. Section 3 is dedicated to a description of the93

presently available mechanisms in MPI and hardware to achieve truly asynchronous94

communication. Numerical experiments exploring asynchronous communication and95

using the presented domain decomposition methods are given in Section 4, where96

we compare the strong and weak scaling behavior of synchronous and asynchronous97

solvers with and without load imbalance.98

1.1. Related work. An asynchronous one-level domain decomposition solver99

with optimized artificial boundary conditions was proposed in [30]; see also [21, 20, 17]100

for its analysis in two different settings. An implementation of asynchronous optimized101

Schwarz is described in [36]. An optimization package that leverages asynchronous102

coordinate updates is presented in [31]. An asynchronous multigrid method for shared103

memory systems was proposed in [35]. Synchronization reducing Krylov methods have104

a long history [14]. However, preconditioning such methods is unresolved apart from105

some simple preconditioners [13]. Recent work extends their applicability to one level106

domain decomposition preconditioning [37]. Pipelined Krylov methods [22] reduce107

synchronization costs by overlapping inner products with matrix-vector products and108

preconditioner applications, and can be used with any preconditioner.109

2. Domain decomposition methods.110

2.1. One-level Restricted Additive Schwarz (RAS). We want to solve the111

global system112

Au = f,113114

where A ∈ RN×N arises from the finite element or finite difference discretization of115

a partial differential equation. Informally, one-level domain decomposition solvers116

break up the global system of equations into overlapping sub-problems that cover the117

whole global system. This requires that the matrix A is sparse and couples unknowns118

only in a local manner.119

The iteration then alternates between computation of the global residual, which120

involves communication, and local solves for solution corrections. Special attention121

needs to be paid to the unknowns in the overlap, in order to avoid over-correction.122

Below, we describe the different methods considered in this work in detail in order123

to understand what data is required to be exchanged and how the methods can be124

executed in asynchronous fashion.125

Based on the graph of A or geometric information for the underlying problem126

the unknowns are grouped into P overlapping sets Np of size Np, p = 1, . . . , P . An127

example of such a partitioning is given in Figure 2.1. We further split the sets Np128

into129

Sp :=
{
j ∈ Np | ∃k ∈ N c

p : Ajk 6= 0
}
,130131

i.e., unknowns that are on the boundary of the set Np, and interior unknowns Ip :=132

Np \ Sp.133

The notation throughout this section is based on Dolean et al. [16]. We call the134

restriction to the p-th set Rp ∈ RNp×N . The entries of the matrices Rp are all either135

3

This manuscript is for review purposes only.

Fig. 2.1. Partitioning of a uniform triangular mesh of the unit square into 4 overlapping
subdomains. The non-overlapping partitioning produced using METIS [25] is shown in green; the
extended overlapping subdomains are shown in red.

one or zero, with exactly one entry per row and at most one entry per column being136

non-zero. The local parts of A are given by137

Ap = RpART
p ∈ RNp×Np .138139

Furthermore, we require a partition of unity, represented by diagonal weighting140

matrices Dp, such that the discrete partition of unity property holds141

I =

P∑

p=1

RT
pDpRp.(2.1)142

143

In what follows, we will assume that Dp are Boolean, i.e. their entries are either zero144

or one. This means that every (potentially shared) unknown has a special attachment145

with exactly one subdomain. We will furthermore require that (Dp)jj = 0 for all146

surface unknowns j ∈ Sp. One way of satisfying these restrictions is to extend overlaps147

starting with a non-overlapping partition and then define the special attachment via148

the partition.149

Consequently,150

DpRpR
T
q Dq = 0 for p 6= q(2.2)151152

and153

DpRpR
T
pDp = Dp.(2.3)154155

Moreover, the identity156

RpART
q Dq = RpR

T
q RqART

q Dq(2.4)157158

holds, since for any uq ∈ RNq , Dquq is supported on the interior unknowns Ip, and159

hence ART
q Dquq is supported in Nq. But on Nq, RT

q Rq acts as the identity.160

4

This manuscript is for review purposes only.

1 1 0 0 1 1

1 1 0 0 1 1

1 1 0 0 1 1

1 1 0 0 1 1

1 1 0 0 1 1

1 0

1 0

1 0

0 1

0 1

Fig. 2.2. Two overlapping subdomains. The overlap between the subdomains is shaded in gray;
the respective surface sets S• are shown by red circles, the interior unknowns I• as blue circle. The
diagonal values of the respective D• are shown next to the nodes.

A stationary iterative method based on the splitting A = M−N is given globally161

as162

un+1 = un + M−1 (f −Aun) ,163164

where M−1 is a preconditioner for A.165

This means that we need to calculate the residual rn = f −Aun. Its local part166

on node p is given by167

Rpr
n = Rpf −RpAu

n
168

= Rp

(
P∑

q=1

RT
q DqRq

)
f −RpA

(
P∑

q=1

RT
q DqRq

)
un169

=

P∑

q=1

RpR
T
q DqRqf −

P∑

q=1

RpR
T
q AqDqRqu

n
170

=

P∑

q=1

RpR
T
q (DqRqf −AqDqRqu

n) ,171

172

where we used (2.1) and (2.4). This means that in order to obtain the local part of173

the global residual, we first compute locally DpRpf −ApDpRpu
n on every node p,174

and then communicate and accumulate the overlapping parts of these local residual175

vectors. The latter operation is represented by the operator
∑P
q=1 RpR

T
q .176

The restricted additive Schwarz (RAS) preconditioner [8, 7] is given by177

M−1
RAS =

P∑

p=1

RT
pDpA

−1
p Rp.178

179

RAS is widely used and is the default option for overlapping domain decomposition180

preconditioners in PETSc [3]. It can be thought of as a variant of the additive Schwarz181

preconditioner182

M−1
AS =

P∑

p=1

RT
pA
−1
p Rp183

184

5

This manuscript is for review purposes only.

that is convergent as an iterative method, since the damping by Dp in the overlapping185

parts avoids over-correction; see [18]. Note that for a natural choice of Dp, the number186

of communication steps is cut in half as there is no communication associated with187

RT
pDp.188

Now, the local part of the RAS iteration is given by189

Rpu
n+1 = Rpu

n + RpM
−1
RASr

n
190

= Rpu
n +

P∑

q=1

RpR
T
q DqA

−1
q Rqr

n.191

192

If we set unp = Rpu
n and rnp = Rpr

n as the local parts of solution and residual193

respectively, the RAS iteration is194

rnp =

P∑

q=1

RpR
T
q

(
DqRqf −AqDqu

n
q

)
,195

un+1
p = unp +

P∑

q=1

RpR
T
q DqA

−1
q rnq .196

197

This seems to suggest that the update step requires neighborhood communication as198

well. But in fact, in the next iteration, computation of the residual only requires199

Dpu
n+1
p . From (2.2), (2.3), we see that the iterative scheme without the communica-200

tion step in the update201

rnp =

P∑

q=1

RpR
T
q

(
DqRqf −AqDqw

n
q

)
,(2.5)202

wn+1
p = wnp + A−1

p rnp(2.6)203204

is equivalent because Dpu
n
p = Dpw

n
p for all n. The solution unp can be recovered from205

wnp in the post-processing step206

unp = Rpu
n =

P∑

q=1

RpR
T
q DqRqu

n =

P∑

q=1

RpR
T
q Dqw

n
q .207

208

Finally, we use the norm of the residual in the stopping criterion. The norm can209

be computed from local quantities as210

||rn||2 = rn · rn = rn ·
(

P∑

p=1

RT
pDpRpr

n

)
211

=

P∑

p=1

(Rpr
n) · (DpRpr

n) =

P∑

p=1

rnp ·
(
Dpr

n
p

)
.212

213

In conclusion, we can give the local form of RAS as in Algorithm 2.1, where214

we have dropped the superscript n for the iteration number. In fact, Algorithm 2.1215

describes both the synchronous and the asynchronous version of RAS. In the syn-216

chronous version, line 4 is executed in lock step fashion by all subdomains using217

non-blocking two-sided communication primitives. This communication step could218

be overlapped by computation. However, in established frameworks such as Trilinos,219

such overlapping requires major changes to the framework1. PETSc allows some over-220

1https://github.com/trilinos/Trilinos/issues/767

6

This manuscript is for review purposes only.

Algorithm 2.1 Restricted additive Schwarz (RAS) in local form, “↔” signifies com-
munication.

1: wp ← 0
2: while not converged do
3: Local residual: sp ←DpRpf −ApDpwp
4: Accumulate: rp ←

∑P
q=1 RpR

T
q sq ↔

5: Solve: Apvp = rp
6: Update: wp ← wp + vp
7: end while
8: Post-process: up ←

∑P
q=1 RpR

T
q Dqwq ↔

lap of computation and communication with two-phase assembly [3]. It is possible to221

modify such established libraries for the asynchronous iterations of this paper. How-222

ever, in order to keep the focus on algorithmic development, we developed a library223

that supports the one-sided communication primitives, and build the new solvers using224

the communication primitives.225

In the asynchronous variant, each subdomain exposes a memory region for remote226

access. On execution of line 4, the relevant components of the current local residual227

vector sp = DpRpf −ApDpwp are written to the neighboring subdomains, and the228

latest locally available data sq from every neighbor q is used. We refer to Section 4.1229

for a discussion of the options for actually achieving this neighborhood exchange in230

practice. The implementation of a convergence check (as used on line 2) that does231

not require synchronization is detailed in Section 4.4.232

2.2. Two-level synchronous RAS. In order to improve the scalability of the233

solver, a mechanism of global information exchange is required. Let R0 ∈ Rn0×n be234

the restriction from the fine grid problem to a coarser mesh, and let the coarse-grid235

matrix A0 be given by the Galerkin relation A0 = R0ART
0 . The coarse-grid solve236

can be incorporated in the RAS iteration either in additive fashion:237

un+1 = un +

(
1

2
M−1

RAS +
1

2
RT

0 A
−1
0 R0

)
(f −Aun) ,(2.7)238

239

or in multiplicative fashion:240

un+1/2 = un + RT
0 A
−1
0 R0 (f −Aun) ,241

un+1 = un+1/2 + M−1
RAS

(
f −Aun+1/2

)
.242

243

In what follows, we focus on the additive version, since it naturally lends itself to244

asynchronous iterations: subdomain solves and coarse-grid solves are independent of245

each other.246

We now determine the local form of the global algorithm. It is understood that247

the solve with A0 itself might be distributed over several processes. This internal248

computation is not meant to be performed in an asynchronous manner, which is why249

we do not need to further explore the local form of the coarse-grid solve. For simplicity250

of exposition we therefore do not describe the solution of the coarse-grid problem itself251

in local form, i.e. we will simply write A−1
0 . The local part of the coarse-grid update252

7

This manuscript is for review purposes only.

Algorithm 2.2 Synchronous RAS with additive coarse grid in local form, “↔” sig-
nifies communication.

1: wp ← 0
2: while not converged do
3: On subdomains
4: Local residual: sp ←DpRpf −ApDpwp
5: Send R0R

T
p sp to coarse grid ↔

6: Accumulate: rp ←
∑P
q=1 RpR

T
q sq ↔

7: Solve: Apvp = rp
8: Update: wp ← wp + 1

2vp
9: Receive cp = RpR

T
0 v0 from coarse grid ↔

10: Update: wp ← wp + 1
2cp

11: On coarse grid
12: Receive R0R

T
p sp from subdomains ↔

13: Accumulate r0 =
∑P
p=1 R0R

T
p sp

14: Solve A0v0 = r0

15: Send cp = RpR
T
0 v0, p = 1, . . . , P to subdomains ↔

16: end while
17: On subdomains
18: Post-process up ←

∑P
q=1 RpR

T
q Dqwq ↔

is253

1

2
RpR

T
0 A
−1
0 R0 (f −Aun)254

=
1

2

(
RpR

T
0

)
A−1

0

P∑

p=1

(
R0R

T
p

)
(DpRpf −ApRpu

n) .255

256

Here, the operators
(
R0R

T
p

)
and

(
RpR

T
0

)
encode the communication from sub-257

domain p to the coarse grid and vice versa. We notice that while the communica-258

tion among subdomains consist in one neighborhood data exchange per iteration, the259

coarse-grid solve involves sending data from the subdomains to the coarse grid, and260

sending a solution from the coarse grid to the subdomains. In conclusion, the local261

form of RAS with an additive coarse grid is given in Algorithm 2.2. Again, we have262

dropped the superscript for the iteration number. The communication between coarse263

and fine grid can be implemented in multiple ways. Since we want to allow the coarse264

grid solve to be distributed itself and the same coarse unknown can be owned by265

several coarse grid ranks (just as is the case for the fine grid), we do not consider266

options involving MPI_Reduce/MPI_Bcast or MPI_Gather/MPI_Scatter or their non-267

blocking equivalents. Instead, we opted for use of MPI_Isend and MPI_Irecv. A future268

improvement could involve the use of intercommunicators and MPI_Iallgatherv or269

other collectives. The advantage of the current approach is that the changes between270

synchronous and asynchronous implementation of the communication layer (described271

in the next section) are minimal.272

2.3. Two-level asynchronous RAS. From the mathematical description (2.7)273

of two-level additive RAS, one might be tempted to see the coarse-grid problem simply274

as an additional subdomain. From Algorithm 2.2 the fundamental differences between275

8

This manuscript is for review purposes only.

the subdomains and the coarse-grid problem become apparent. Subdomains deter-276

mine the right-hand side for their local solve and correct it by transmitting boundary277

data to their neighbors. The coarse grid, on the other hand, receives its entire right-278

hand side from the subdomains, and hence it has to communicate with every single279

one of them.280

In order to perform asynchronous coarse-grid solves, we therefore need to make281

sure that all the right-hand side data necessary for the solve has been received by the282

processes responsible for the coarse grid. Moreover, corrections sent by the coarse283

grid should be used exactly once by the subdomains. This is achieved by not only284

allocating memory regions to hold the coarse-grid right-hand side on the coarse-grid285

processes and the coarse-grid correction on the subdomains, but also Boolean variables286

that are polled to determine whether writing or reading right-hand side or solution287

data is permitted. More precisely, writing of the local subdomain residuals to the288

coarse-grid memory region of r0 is contingent upon the state of the Boolean variable289

canWriteRHSp. (See Algorithm 2.3.) When canWriteRHSp is True, right-hand side290

data is written to the coarse grid, otherwise this operation is omitted. Here, the291

subscripts are used to signify the MPI rank owning the accessed memory region. As292

before, index 0 corresponds to the (potentially distributed) coarse grid and indices293

1, . . . , P correspond to the subdomains. To improve readability, we show access to a294

memory region on the calling process in blue, while remote access is printed in red.295

In a similar fashion, the coarse grid checks whether every subdomain has written a296

right-hand side to r0 by polling the state of the local Boolean array RHSisReady0. The297

communication of the obtained coarse-grid solution back to the subdomains follows the298

same pattern, using the variables solutionIsReadyp. The subdomains update their299

current iterate using the local subdomain solution and the coarse-grid solution. If the300

latter is not available, the subdomain solution is used unweighted. If both solutions301

are available, then the same weighting (1/2, 1/2) as in the synchronous case (2.7) is302

used. We note that the algorithm is asynchronous despite the data dependencies.303

Coarse grid and subdomain solves do not wait for each other.304

We determined by experiments that overall performance is adversely affected305

if the coarse grid constantly polls the status variable RHSisReady0, waiting for all306

subdomains to provide right-hand side information. Therefore, we added a sleep307

statement into its work loop. If the sleep interval is too short, the sleep statement308

is ineffective. If the sleep interval is too large, the coarse grid will be under-used.309

Keeping the ratio of attempted coarse-grid solves (i.e. reads from RHSisReady0) to310

actual performed coarse-grid solves at around 1/20 has been proven effective to us.311

This can easily be achieved by an adaptive procedure that counts both successful312

solves and solve attempts and then either increases or decreases the sleep interval313

accordingly.314

2.4. Convergence Analysis of Asynchronous Iterations. We present below315

the mathematical framework used to describe and study asynchronous algorithms. We316

modify the model introduced by Bertsekas [5], [6] to take into account the fact that317

data available at a process p from another process q might have been produced during318

different local iterations. This issue can arise when data is accessed on process p while319

it is being overwritten by a new transmission from process q.320

For a mathematical model of these asynchronous iterations on P processors, let321

us denote by {σn}n∈N the sequence of non-empty subsets of {1, . . . , P}, defining which322

processes update their components at the “iteration” n, where here “iteration” can323

be thought of as a time stamp. We call these sets of update indices. Define further for324

9

This manuscript is for review purposes only.

Algorithm 2.3 Asynchronous RAS with additive coarse grid in local form. Variables
printed in blue are exposed memory regions that are local to the calling process. Red
variables are remote memory regions. Subscripts denote the owning process of the
variable. Array access is denoted by “[·]”.

1: while not converged do
2: On subdomains
3: Local residual: sp ←DpRpf −ApDpwp
4: if canWriteRHSp then

5: r0 ← r0 + R0R
T
p sp

6: canWriteRHSp ← False

7: RHSisReady0[p]← True

8: end if
9: Accumulate asynchronously: rp ←

∑P
q=1 RpR

T
q sq

10: Solve: Apvp = rp
11: if solutionIsReadyp then

12: Update: wp ← wp + 1
2vp + 1

2cp
13: solutionIsReadyp ← False

14: else
15: Update: wp ← wp + vp
16: end if
17: On coarse grid
18: if RHSisReady0[p] ∀p = 1, . . . , P then
19: Solve A0v0 = r0

20: for p = 1, . . . , P do
21: RHSisReady0[p]← False

22: canWriteRHSp ← True

23: cp ← RpR
T
0 v0

24: solutionIsReadyp ← True

25: end for
26: else
27: Sleep (time adjusted adaptively)
28: end if
29: end while
30: On subdomains
31: Post-process synchronously up ←

∑P
q=1 RpR

T
q Dqwq

p, q ∈ {1, . . . , P},
{
τ

(p)
q,n

}
n∈N

a sequence of integer vectors, where
(
τ

(p)
q,n

)
i
, 1 ≤ i ≤ Nq325

represents the iteration number (or time stamp) of the i-th component of data coming326

from process q and available on process p at the beginning of the computation of327

the process which produces up,n at time n. Thus, these are the time stamps of328

previous computations that are used by process p, and thus, the quantities n− τ (p)
q,n,i329

are sometimes called delays. We use the notation330

Xp = RNp , and X̃ = X1 × · · · ×XP331332

to denote local and global solution spaces, and Tp,n : X̃ → Xp the rule that is used333

to update the local iterate up,n at iteration n. We can now define, for each process p,334

10

This manuscript is for review purposes only.

the asynchronous iterations as follows:335

up,n =

{
Tp,n

(
u

(p)
1,n, . . . , u

(p)
P,n

)
if p ∈ σn,

up,n−1 if p /∈ σn.
(2.8)336

337

The iteration is initialized using some initial guess for up,0, and we used the notation338

u
(p)
q,n := u

q,τ
(p)
q (n)

to denote the data from process q that is available to process p at339

time n.340

In other words, at time n, either up,• is not updated (if p /∈ σn) or it is updated341

with the result of applying the (local) operator Tp,n to the variables computed at342

times τ
(p)
• . For comparison, the corresponding synchronous iteration is given by343

up,n = Tp,n (u1,n−1, . . . , uP,n−1) ,(2.9)344345

or, in compact form, as346

ũn = T̃n (ũn−1) ,(2.10)347348

where349

ũn = (u1,n, . . . , uP,n) , and T̃n = (T1,n, T2,n, · · · , TP,n) .350351

We further assume that the three following conditions are satisfied352

∀p, q ∈ {1, . . . , P} , 1 ≤ i ≤ Nq,∀n ∈ N∗,
(
τ (p)
q,n

)
i
≤ n,(2.11)353

∀p ∈ {1, . . . , P} , card {n ∈ N∗ | p ∈ σn} =∞,(2.12)354

∀p, q ∈ {1, . . . , P} , 1 ≤ i ≤ Nq, lim
n→+∞

(
τ (p)
q,n

)
i

=∞.(2.13)355

Condition (2.11) indicates that data used at the time n must have been produced356

before time n, i.e., time does not flow backward. Condition (2.12) means that no357

process will ever stop updating its components. Condition (2.13) corresponds to the358

fact that new data will always be provided to the process. In other words, no process359

will have a piece of data that is never updated.360

We note that these assumptions pose no significant restrictions on the iterations361

that we consider, but are necessary for the analysis.362

Assume that each Xp is a normed linear space, equipped with a norm ||·||p. Given363

a positive vector w ∈ RP>0, the weighted norm ||·||w on the product space X is defined364

to be365

||ũ||w = max
p=1,...,P

||up||p
wp
·366

367

We are ready to present a convergence theorem for asynchronous iterative algo-368

rithms, whose proof can be found in [18, Theorem 3.3].369

Theorem 2.1. Assume that there exists ũ∗ ∈ X such that T̃n (ũ∗) = ũ∗ for all n.370

Moreover, assume that there exists γ ∈ [0, 1) and w ∈ RP>0 such that for all n we have371

∣∣∣
∣∣∣T̃n (ũ)− ũ∗

∣∣∣
∣∣∣
w
≤ γ ||ũ− ũ∗||w .372

373

Then the asynchronous iterates ũn converge to ũ∗, the unique common fixed point of374

all T̃n.375

11

This manuscript is for review purposes only.

In view of equations (2.5) and (2.6), we have376

T 1L
p,n(w1, . . . , wP) = wp + A−1

p

P∑

q=1

RpR
T
q (DqRqf −AqDqwq)377

378

for the one-level method. We immediately observe that the mappings T 1L
p,• do not379

depend on n, and that the iteration is stationary.380

In order to tackle the two-level method, based on Algorithm 2.3 we set381

T 2L
0,n (v0, w1, . . . , wP) = A−1

0

P∑

q=1

R0R
T
q (DqRqf −AqDqwq) .382

383

Moreover, for p = 1, . . . , P , we set384

T 2L
p,n(v0, w1, . . . , wP) = wp +

1

2
RpR

T
0 v0 +

1

2
A−1
p

P∑

q=1

RpR
T
q (DqRqf −AqDqwq)385

386

for iteration numbers n that include coarse-grid updates, and387

T 2L
p,n(v0, w1, . . . , wP) = T 1L

p,n(w1, . . . , wP)388389

for iterations n without coarse-grid update. Status variables such as canWriteRHSp390

act implicitly as constraints on the sets of update indices σn and do not appear in the391

definition of the mappings T 2L
p,n .392

It has been shown in [19] that both the one- and the two-level iterations are393

contracting in a weighted max-norm, provided that A is a non-singular M-matrix, i.e.394

if A has nonpositive off-diagonal elements and all entries of A−1 are nonnegative.395

Thus, we have the following result.396

Theorem 2.2. The one-level method given in (2.5) and (2.6) and the two-level397

method given in Algorithm 2.3 converge, provided that A is a non-singular M-matrix398

and that the conditions 2.11–2.13 hold.399

For further extensions of the theory, such as inexact sub-solves with A−1
p replaced400

by some (potentially nonstationary) Sp,n ≈ A−1
p , we refer the reader to [19].401

3. One-sided Message Passing Interface. In order to drive the asynchronous402

method in a distributed memory setting, we use a one-sided approach wherein the re-403

mote process incurs minimal overhead for servicing received messages from the sender404

process. The one-sided approach is achieved in MPI using the Remote Memory Access405

(RMA) semantics, wherein every process exposes a part of its local memory window406

to remote processes for read as well as write operations. However, in reality, a syn-407

chronization between the source and the target process is required for progress of408

the underlying application. This active synchronization step, while still preserving409

the asynchronous nature of the algorithm, is expensive and might erode the natu-410

ral gains obtained from the asynchronous method. Therefore in order to extract the411

maximum gains from an asynchronous method, a passive approach is required. A412

passive approach entails transmission of messages which causes little to no interfer-413

ence to the target process. As a result, the target process does not need to yield its414

operating system time for servicing incoming message interrupts and therefore does415

not participate in the communication process. The RMA framework on MPI imple-416

ments passive target synchronization with the help of two sets of primitives MPI_Win_417

12

This manuscript is for review purposes only.

lock/MPI_Win_unlock and MPI_Win_lock_all/MPI_Win_unlock_all. While the for-418

mer involves opening and closing the exposure epoch on remote nodes for each access419

operation, the latter only requires opening and closing of access epoch once during420

the application lifetime incurring less target synchronization overhead.421

RMA’s passive one-sided communication can leverage a hardware mechanism422

known as Remote Direct Memory Access (RDMA) [28] when available. It allows RMA423

to directly map memory windows to the RDMA engine, allowing messages written by424

remote processes to be directly read by each process. This leads to minimum distur-425

bance to the remote process and achieving a truly passive, one-sided communication426

scheme.427

RDMA is usually a hardware characteristic that may not be supported by all428

machines. Though we expect one-sided communication of RMA to be able to handle429

progress of communication in an entirely asynchronous manner, it generally fails to do430

so since MPI does not guarantee asynchronous progress. In such a case, asynchronous431

progress may be enforced by allocating certain auxiliary cores to ghost processes that432

solely perform the task of asynchronous progress control. As a consequence we obtain433

an RDMA agnostic system while simultaneously obtaining the benefits of RDMA.434

Even in the presence of RDMA, asynchronous progress control mechanism can be435

complementary since the low level RDMA engine may not be capable to handle high436

volumes of communication. Casper [32] and Intel Asynchronous Progress Control437

(APC) are two such implementations that provide ghost processes for asynchronous438

progress control.439

4. Implementation and numerical experiments.440

4.1. Comparison of one-sided MPI communication options. There are a441

multitude of options for achieving asynchronous neighborhood exchange. Data that is442

supposed to be moved from rank p to rank q could be held in MPI windows on either443

p or q. In the first case, rank p will write the data to its local buffer using MPI_Put,444

and rank q will retrieve it from the remote buffer using MPI_Get. In the second case,445

rank p writes the data to the remote memory region using a MPI_Put, and q retrieves446

using a local MPI_Get.447

The second distinction comes from the type of locking mechanism used. Exclusive448

or shared locks can either be applied for each individual memory access (MPI_Win_449

lock), or windows can be locked in shared fashion for all subsequent access (MPI_450

WIN_lock_all). In the latter case, windows can be flushed using any of the available451

flush operations.452

We benchmark the different available options in a simple test case in order to de-453

termine which one should be used in the implementation of our domain decomposition454

solvers. The performance of one-sided MPI communication depends on the support455

provided by the MPI implementation as well as the network hardware. These experi-456

ments are performed on the Haswell partition of Cori at the National Energy Research457

Scientific Computing Center (NERSC), using the default Cray MPICH, version 7.7.3.458

Since one-sided MPI has not been widely adopted, performance variations compared459

to the classical two-sided routines can be expected to be much more significant. It460

should be noted that different network hardware and better support in future MPI461

versions could further improve timings for one-sided MPI routines.462

64 MPI ranks are arranged in a three dimensional regular periodic grid (3D torus),463

and each rank repeatedly exchanges a vector of doubles with its 26 neighbors. This464

test mimics the communication pattern in the neighborhood exchange of the one-465

level method. For each of the possible communication option as given in Table 4.1,466

13

This manuscript is for review purposes only.

we measure the time it takes to perform 50,000 exchanges of vectors of 500 doubles.467

By exchanging vectors that have a constant value corresponding to the exchange468

iteration, we can also measure how often inconsistent data is accessed (i.e. data that469

is accessed before it has been completely been transmitted). This phenomenon does470

not occur when using two-sided communication, since completion is guaranteed by471

the implementation. While the absolute number of accesses to incomplete writes472

is probably quite dependent on the ratio of computation to communication, we are473

interested in the susceptibility of the different communication options.474

We make several observations. Unsurprisingly, the use of exclusive locks does not475

perform well in terms of time. However, the use of shared locks in every communica-476

tion phase performs equally poorly, which is why we decide to use global locking and477

unlocking (MPI_Win_lock_all / MPI_Win_unlock_all) in what follows. Using global478

locking, we see that using remote puts instead of remote gets is significantly faster.479

We also observe that unless exclusive locks are used, we always experience ac-480

cess to inconsistent data. This might not be of too much importance within our481

application, since it amounts to using residual information that is only slightly more482

outdated. Finally, we observe that using global locking and puts results in faster483

communication than classical two-sided non-blocking communication.484

Based on the above results, we choose to use global locking using MPI_Win_lock_485

all / MPI_Win_unlock_all, paired with remote MPI_Puts and local MPI_Gets and486

MPI_flush_all, since it appears to provide a good balance of speed and consistency.487

We note however that these results might depend significantly on characteristics of488

the system and the MPI implementation.489

4.2. Performance metrics. The average contraction factor per iteration is de-490

fined as ρ̃ = (rfinal/r0)
1
K , where r0 is the norm of the initial residual vector, rfinal the491

norm of the final residual vector, and K is the number of iterations that were taken492

to decrease the residual from r0 to rfinal. For an asynchronous method, the number493

of iterations varies from subdomain to subdomain, and hence ρ̃ is not well-defined.494

The following generalization permits us to compare synchronous methods with their495

asynchronous counterpart:496

ρ̂ =

(
rfinal

r0

) τsync
T

.497
498

Here, T is the total iteration time, and τsync is the average time for a single iteration499

of the synchronous method. In the synchronous case, since T = τsyncK, ρ̂ recovers ρ̃.500

The approximate contraction factor ρ̂ can be interpreted as the average contraction501

of the residual norm in the time of a single synchronous iteration. As it will be502

visible in the results to follow, we note here that ρ̂ for the asynchronous method503

obviously depends on the total iteration time for the synchronous method. Assume504

that the total iteration time for the synchronous method doubles, but the time taken505

by the asynchronous one stays constant. Consequently, the approximate contraction506

factor for the synchronous method stays constant, but the contraction factor for the507

asynchronous method gets squared and therefore decreases.508

4.3. Test problem. As a test problem, we solve509

−∆u = f in Ω = [0, 1]d, u = 0 on ∂Ω,510511

where the right-hand side is f = dπ2
∏d
k=1 sin (πxk). The corresponding solutions is512

u =
∏d
k=1 sin (πx). We discretize Ω using a uniform simplicial mesh and approximate513

14

This manuscript is for review purposes only.

global
lock

per comm phase per neighbor time in
seconds

inconsistency
fraction

7 MPI_Win_lock(EXCLUSIVE)
MPI_Win_unlock

local MPI_Put,
remote MPI_Get

34.6 0.0

7 MPI_Win_lock(EXCLUSIVE)
MPI_Win_unlock

remote MPI_Put,
local MPI_Get

37.8 0.0

7 MPI_Win_lock(SHARED)
MPI_Win_unlock

local MPI_Put,
remote MPI_Get

31.8 0.00151

7 MPI_Win_lock(SHARED)
MPI_Win_unlock

remote MPI_Put,
local MPI_Get

33.0 0.00254

n/a MPI_Wait_all MPI_Isend,
MPI_Irecv

9.59 0.0

3 - local MPI_Put,
remote MPI_Get

25.8 0.123

3 - remote MPI_Put,
local MPI_Get

8.42 0.00716

3 MPI_flush_all local MPI_Put,
remote MPI_Get

22.1 0.117

3 MPI_flush_all remote MPI_Put,
local MPI_Get

9.06 0.00491

3 MPI_flush_local_all local MPI_Put,
remote MPI_Get

22.1 0.099

3 MPI_flush_local_all remote MPI_Put,
local MPI_Get

9.02 0.00501

3 MPI_flush_local local MPI_Put,
remote MPI_Get

24.1 0.172

3 MPI_flush_local remote MPI_Put,
local MPI_Get

10.7 0.00198

3 MPI_flush local MPI_Put,
remote MPI_Get

21.8 0.105

3 MPI_flush remote MPI_Put,
local MPI_Get

11.2 0.00207

Table 4.1
Results of communication test described in Section 4.1 on 64 MPI ranks. The listed operations

are either performed once per neighborhood communication phase, or for each individual neighbor-
hood exchange. If MPI Win lock all/MPI Win unlock all is used, the column “global lock” has a 3.
We measured the time for 50,000 repetitions and the fraction of neighborhood exchanges leading to
incompletely written data.

15

This manuscript is for review purposes only.

the solution using piece-wise linear finite elements. We note that the arising system514

matrix A is a non-singular M-matrix, and therefore Theorem 2.2 applies. Further-515

more, we mention that the generalization of the test problem to convection-diffusion516

problems with non-constant diffusion coefficient is possible, but does not alter the517

numerical results obtained below in a significant way, which is why we only present518

the case of the standard Poisson problem.519

4.4. Convergence detection. In classical synchronous iterative methods, a520

stopping criterion of the form ||r|| < ε is evaluated at every iteration. Here, r is the521

residual vector, ε is a prescribed tolerance (that might be chosen as a function of the522

discretization error), and ||·|| is an appropriate norm. The global quantity ||r|| needs523

to be computed as the sum of local contributions from all the subdomains. This524

implies that convergence detection in asynchronous methods is not straightforward,525

since collective communication primitives require synchronization. In the numerical526

examples below, we use a simplistic convergence criterion, consisting in writing the527

local contributions to a master rank, say rank 0. This master rank sums the contri-528

butions, and determines if this approximation of the global residual norm is smaller529

than the prescribed tolerance. If so, the master rank declares global convergence and530

notifies the other ranks by sending a non-blocking message. This simplistic conver-531

gence detection mechanism has several drawbacks. For one, the global residual is532

updated by the master rank, which might not happen frequently enough. Hence it533

is possible that the iteration continues despite the true global residual norm already534

being smaller than the tolerance. Moreover, the mechanism puts an increased load535

on the network connection to the master rank, since every subdomain writes to its536

memory region. Finally, since the local contributions to the residual norm are not537

necessarily monotonically decreasing, the criterion might actually detect convergence538

when the true global residual is not yet smaller than the tolerance. The delicate topic539

of asynchronous convergence detection has been treated in much detail in the liter-540

ature, and we refer to [2, 29] for an overview of more elaborate approaches. While541

these detection schemes mostly address the shortcomings of the above approach, their542

correct implementation turns out to be quite involved. Since we are not observing543

any major issues with our simplistic convergence detection scheme for the test prob-544

lems that we consider, we have not implemented any of the schemes available in the545

literature.546

4.5. Platform and implementation details. All runs are performed on the547

Haswell partition of the Cori supercomputer at NERSC. While all of the code was548

written from scratch, the differences between the synchronous and the asynchronous549

code path are limited, since only the communication layer and the stopping criterion550

need to be changed. (E.g. compare Algorithms 2.2 and 2.3.) We stress that the asyn-551

chronous solver uses one-sided communication only in the solve phase. Therefore, we552

record solve times only, since the time to set up the solver is unaffected by the type of553

communication in the solution phase. Furthermore, all subdomains are synchronized554

via a MPI_Barrier before entering the solve phase. One MPI rank is used per core,555

i.e. 32 ranks per Haswell node. Moreover, one subdomain is assigned to each MPI556

rank. The underlying mesh is partitioned either into uniformly sized rectangular sub-557

domains or using the METIS library [25]. In the latter case, the option to minimize558

the overall communication volume is used. Our solvers handle general unstructured559

matrices, and the structure of the mesh is not exploited. We either use560

• direct solvers for subdomain and coarse-grid problems, provided by SuperLU561

[27, 15], or562

16

This manuscript is for review purposes only.

• conjugate gradient method preconditioned with an incomplete Cholesky fac-563

torization for the subdomain problems and a geometric multigrid solver for564

the coarse problem.565

The latter option would allow for a distributed coarse-grid solve and is therefore in566

principle more scalable. In all numerical examples, we will use only a single core for567

the coarse-grid solve.568

4.6. Comparison against HPDDM. We verify the performance of the syn-569

chronous version of our code against the HPDDM library [24, 23, 16] using the 2D and570

3D test problems from Section 4.3. In all cases, we set up a GMRES solver and use a571

two-level additive RAS as right preconditioner. The reason for using a Krylov method572

here is that domain decomposition methods in general are commonly used as precon-573

ditioners, and HPDDM is most likely developed with that use case in mind. HPDDM574

was linked against the Intel Math Kernel Library, SuiteSparse [12] and ARPACK [26]575

and the option for coarse grid data exchange using MPI_Igather/MPI_Iscatter was576

enabled. We use the following parameters in HPDDM: -hpddm krylov method=gmres577

-hpddm schwarz method=ras -hpddm schwarz coarse correction=additive578

-hpddm geneo nu=NU, where NU is chosen so that the size of the coarse grid matches579

our solver. In 2D the subdomains consist of roughly 20k unknowns, and the coarse580

grid contains about 16 unknowns per subdomain. In 3D the subdomains consist of581

roughly 40k unknowns, and the coarse grid contains about 1 unknown per subdomain.582

In Figures 4.1 and 4.2 we plot the results of weak scaling experiments: overall solve583

time, the reached residual norm and the time per iteration. We repeated each run 5584

times. Mean values are given by solid lines, and individual runs as dots. We observe585

that while the time to convergence behaves quite differently for both implementa-586

tions, the time per iteration follows the same trend. HPDDM behaves slightly better587

at large subdomain count which could be explained by the use of MPI collectives, but588

might also be an artifact of the difference in convergence behavior or the difference589

in coarse solvers (HPDDM uses Cholmod). We can therefore use our synchronous590

method as a base of comparison for the newly developed asynchronous solver.591

4.7. One-level RAS, 2D test problem, strong scaling. We compare syn-592

chronous and asynchronous one-level RAS in a strong scaling experiment, where we593

fix the global problem size of a 2D test problem to about 261,000 unknowns, and vary594

the number of subdomains between 4 and 256. We cannot expect good scaling behav-595

ior for this one level method, since increasing the number of subdomains adversely596

affects the rate of convergence. The iteration is terminated based on the simplistic597

convergence criterion described in Section 4.4. In Figure 4.3 we show solve time, fi-598

nal residual norm and approximate rate of convergence. It can be observed that the599

synchronous method is faster for smaller numbers of subdomains, yet comparatively600

slower for larger number of subdomains. The crossover point between the two regimes601

appears to be at 64 subdomains.602

An important question is whether the asynchronous method happens to converge603

because every subdomain performs the same number of local iterations, and hence604

the asynchronous method just mirrors the synchronous one, merely with a different605

communication method. The histogram in Figure 4.4 shows that this is not the case.606

The number of local iterations varies significantly. The slowest subdomain performs607

barely more than 11,000 iterations, whereas the fastest one almost reaches 16,000. The608

problem was load balanced by the number of degrees of freedom in each subdomain,609

thus the local solves are also approximately balanced but the communication is likely610

slightly imbalanced. This means that in this scenario, system and network noise611

17

This manuscript is for review purposes only.

0

5

10

se
co

n
d

s Sync

HPDDM

101 102 103
subdomains

10−7

10−6

10−5

re
si

d
u

a
l

n
o
rm Sync

HPDDM

105 106 107

DoFs

0.01

0.02

0.03

se
co

n
d

s/
it

er
a
ti

o
n

Sync

HPDDM

Fig. 4.1. Weak scaling of GMRES preconditioned by two-level additive RAS using the syn-
chronous version of our code (Sync) and HPDDM for the 2D test problem in a load balanced case.
From top to bottom: Total solution time, final residual norm, and time per iteration. Mean values
are given by solid lines, and individual runs as dots.

are the main contributions to the observed variations in local iteration counts. For612

comparison, when only 4 subdomains were used, the local iteration counts were 1497,613

1500, 1504 and 1527.614

The advantage of asynchronous RAS becomes even clearer when the experiment615

is repeated under load imbalance. We create an artificial load imbalance by choosing616

one of the subdomains to be 50% larger than the rest. In Figure 4.5 it is observed that617

the asynchronous method outperforms the synchronous one in all but the 4 subdomain618

case.619

4.8. Two-level RAS, 2D test problem. In order to gauge the performance620

and scalability of the synchronous and asynchronous two-level RAS solvers, we per-621

form weak and strong scaling experiments.622

4.8.1. Weak scaling. In the weak scaling experiment the number of subdomains623

P and the global number of degrees of freedom (DoFs) are increased proportionally.624

We use 16, 64, 256 and 1024 subdomains to solve the 2D test problem. The local625

number of unknowns on each subdomain is kept constant at almost 20,000. The626

coarse-grid problem increases in size proportionally to the number of subdomains,627

with approximately 16 unknowns per subdomain. Again, the iteration is terminated628

based on the simplistic convergence criterion described in Section 4.4.629

In Figure 4.6 we plot the solution time, the achieved residual norm and the average630

contraction factor ρ̂ depending on the global problem size. Both the synchronous and631

the asynchronous method reach the prescribed tolerance of 10−8. Due to the lack632

of an efficient mechanism of convergence detection, the asynchronous method ends633

up iterating longer than necessary, so that the final residual norm often is smaller634

18

This manuscript is for review purposes only.

0

5

10

se
co

n
d

s Sync

HPDDM

102 103
subdomains

10−7

10−6

re
si

d
u

a
l

n
o
rm Sync

HPDDM

107 108

DoFs

0.1

0.2

0.3

se
co

n
d

s/
it

er
a
ti

o
n

Sync

HPDDM

Fig. 4.2. Weak scaling of GMRES preconditioned by two-level additive RAS using the syn-
chronous version of our code (Sync) and HPDDM for the 3D test problem in a load balanced case.
From top to bottom: Total solution time, final residual norm, and time per iteration. Mean values
are given by solid lines, and individual runs as dots.

than 10−9. The number of iterations in the synchronous case is about 110, whereas635

the number of local iterations in the asynchronous case varies between 110 and 150.636

(See Figure 4.7.) The iteration counts are significantly lower than for the one-level637

methods. One can observe that for 16, 64 and 256 subdomains, the asynchronous638

and the synchronous methods take almost the same time for the solve. For 1024639

subdomains, however, the synchronous method is seen to take significantly more time.640

This can be explained by the fact that for 1024 subdomains, the size of the coarse grid641

is comparable to the size of the subdomains, and hence the coarse-grid solve which642

exchanges information with all the subdomains slows down the overall progress. For643

the asynchronous case this is not observed, since the subdomains do not have to644

wait for information from the coarse grid. This explains why we see better weak645

scalability for the asynchronous method than for the synchronous variant, and why646

we can observe a speedup of 2x of the asynchronous method over its synchronous647

counterpart. The third subplot of Figure 4.6 shows that the asynchronous method648

outperforms its synchronous equivalent in all but the smallest problem.649

To further illustrate the effect of load imbalance, we repeat the previous experi-650

ment with one subdomain being 50% larger than the rest. The results are shown in651

Figure 4.8. While the results are mostly consistent with the previous case, it can be652

seen that, as expected, the performance advantage of the asynchronous method over653

the synchronous one has increased. Even before the size of the coarse-grid system is654

comparable to the size of the typical subdomain problem, the asynchronous method655

outperforms its synchronous counterpart.656

19

This manuscript is for review purposes only.

101

3×100
4×100
6×100

2×101

se
co

nd
s Sync

Async

101 102
subdomains

10−10

10−8

re
si

du
al

no
rm

Sync
Async

101 102

subdomains

0.990

0.995

ρ̂ Sync
Async

Fig. 4.3. Strong scaling of synchronous and asynchronous one-level RAS for the 2D test problem
with system size of approximately 261,000 unknowns. The subdomains are load balanced. From top
to bottom: Solution time, final residual norm, and the resulting approximate contraction factor ρ̂.
It can be observed that the synchronous method is significantly faster than for smaller numbers of
subdomains (cores), yet comparatively slower for larger number of subdomains, as shown by the
contraction factor.

11000 12000 13000 14000 15000 16000
local iteration count

0

20

40

nu
m

be
ro

fs
ub

do
m

ai
ns

Fig. 4.4. Histogram of local iteration counts for asynchronous one-level RAS for the 2D test
problem with 256 subdomains (load balanced case).

4.8.2. Strong scaling. For the strong scaling experiment the global number of657

degrees of freedom used to discretize the 2D test problem is fixed at about 4 million.658

The coarse-grid problem consists of approximately 4,000 unknowns. The number of659

subdomains used on the fine level takes values in {4, 16, 64, 256}. This means that660

the coarse-grid problem is always smaller than the typical subdomain problem, and661

no slowdown due to an imbalance of the computational cost of coarse and fine solve662

should arise.663

The timing results are shown in the top of Figure 4.9. Both synchronous and664

asynchronous method display good strong scaling behavior. It is observed that the665

synchronous method is faster than the asynchronous method for smaller subdomain666

count. But already for 64 subdomains this behavior is reversed, and the asynchronous667

method outperforms the synchronous one. This suggests that synchronization is an668

20

This manuscript is for review purposes only.

101
se

co
nd

s Sync
Async

101 102
subdomains

10−10

10−9

10−8

10−7

re
si

du
al

no
rm Sync

Async

101 102

subdomains

0.9925

0.9950

0.9975

ρ̂

Sync
Async

Fig. 4.5. Strong scaling of synchronous and asynchronous one-level RAS for the 2D test problem
with a system size of approximately 261,000 unknowns under load imbalance: one subdomain is
50% larger than the rest. From top to bottom: Solution time, final residual norm, and approximate
contraction factor ρ̂. It can be observed that the asynchronous method outperforms the synchronous
one in all but the 4 subdomain case, as shown by the contraction factor. The advantage of the
asynchronous method over the synchronous one is increased, as compared to Figure 4.3.

important factor already at modest core count.669

At the bottom of Figure 4.9, we show the timing results in the case of load670

imbalance. It can be seen that the asynchronous method is faster than the synchronous671

one independent of the number of subdomains, and that its performance advantage672

increases as more processes are used.673

4.9. Two-level RAS with iterative sub-solves, 3D test problem. The674

density of the subdomain matrices Ap in 3D (about 15 entries per row) is higher than675

for the 2D test problem (about 7 entries per row). This means that direct factorization676

leads to more fill-in and thereby is more expensive. Therefore, we solve subdomain677

and coarse problem of the three dimensional test case using iterative solvers. For678

the subdomains, we use a conjugate gradient solver preconditioned by an incomplete679

Cholesky factorization. We employ a relative tolerance of 1/10 which has been de-680

termined experimentally to be sufficient. The coarse-grid problem is solved using a681

single V-cycle of a geometric multigrid solver with one step of Gauss-Seidel for pre-682

and post-smoothing. The use of multigrid allows us to solve the coarse-grid problem683

in a distributed fashion when it becomes too large for a single MPI rank. The global684

problem is partitioned into uniformly sized regular subdomains. The local number of685

unknowns on each subdomain is kept constant at about 40,000. The coarse-grid prob-686

lem increases in size proportionally to the number of subdomains, with approximately687

one unknown per subdomain.688

The results of a weak scaling experiment are shown in Figure 4.10. We observe689

behavior that is similar to the 2D case. We notice however that the size of the coarse-690

grid problem (and hence the solution of the coarse-grid problem) are not the issue691

21

This manuscript is for review purposes only.

0.5

1.0
se

co
nd

s Sync
Async

101 102 103
subdomains

10−10

10−9

10−8

10−7

re
si

du
al

no
rm

Sync
Async

106 107

DoFs

0.7

0.8

0.9

ρ̂ Sync
Async

Fig. 4.6. Weak scaling of synchronous and asynchronous two-level additive RAS for the 2D
test problem, load balanced case. From top to bottom: Total solution time, final residual norm,
and approximate contraction factor ρ̂. One can observe that for 16, 64 and 256 subdomains, the
asynchronous and the synchronous method take almost the same time for the solve, with a slight
advantage for the asynchronous method. For 1024 subdomains, however, the synchronous method
is seen to take significantly more time, since the coarse grid, due to its size, starts to be the limiting
factor. The asynchronous method is not affected by this.

110 120 130 140 150
local iteration count

0

50

100

150

nu
m

be
ro

fs
ub

do
m

ai
ns

Fig. 4.7. Histogram of local iteration counts asynchronous two-level additive RAS for the 2D
test problem with 1024 subdomains.

here. At 4096 ranks, the coarse-grid problem is an order of magnitude smaller than692

the typical subdomain problem. The apparent slowdown of the synchronous method693

is caused by the cost of exchanging information between the coarse grid and the694

subdomains. While a slowdown is also visible in the asynchronous method, it is much695

less pronounced, resulting in a speedup of 4x over the synchronous method.696

We also observe that compared to the 2D case where direct solvers were used, both697

synchronous and asynchronous iterations terminate almost exactly once the prescribed698

tolerance has been achieved. The reason for this is that convergence checks occur much699

more frequently as the tolerance is reached, since the iterative sub-solves converge to700

their local tolerance typically within one iteration.701

22

This manuscript is for review purposes only.

1.0

1.5

se
co

nd
s Sync

Async

101 102 103
subdomains

10−10

10−8

re
si

du
al

no
rm

Sync
Async

106 107

DoFs

0.7

0.8

0.9

ρ̂ Sync
Async

Fig. 4.8. Weak scaling of synchronous and asynchronous two-level additive RAS for the 2D
test problem under load imbalance: one subdomain is 50% larger than all the other ones. From
top to bottom: Total solution time, final residual norm, and approximate contraction factor ρ̂.
The advantage of the asynchronous method over the synchronous one is increased, as compared to
Figure 4.6.

101 102

subdomains

100

101

se
co

nd
s

Sync
Async
optimal scaling

101 102

subdomains

100

101

se
co

nd
s

Sync
Async
optimal scaling

Fig. 4.9. Strong scaling of synchronous and asynchronous two-level additive RAS for the 2D
test problem. On top: load balanced subdomains. At the bottom: load imbalance, one subdomain is
50% larger than the others.

23

This manuscript is for review purposes only.

101

6× 100

2× 101
3× 101

se
co

n
d

s Sync

Async

102 103
subdomains

10−7

10−6

10−5

re
si

d
u

a
l

n
o
rm Sync

Async

107 108

DoFs

0.6

0.8

ρ̂ Sync

Async

Fig. 4.10. Weak scaling of synchronous and asynchronous two-level additive RAS, load balanced
3D case. From top to bottom: Total solution time, final residual norm, and approximate contraction
factor ρ̂. One can observe that for 64 and 512 subdomains, the asynchronous and the synchronous
method take almost the same time for the solve, with a slight advantage for the asynchronous method.
For 4096 subdomains, however, the synchronous method is seen to take significantly more time. The
reason for this is not the solution of the coarse-grid problem, as in 2D, but the cost of the data
exchange. The effect on the asynchronous method is much less pronounced.

5. Conclusion. In the present work, we have explored the use of asynchronous702

alternatives to conventional (synchronous) one-level and two-level domain decom-703

position solvers. To the best of our knowledge, we proposed the first truly asyn-704

chronous two-level method, where each processor can do different number of updates705

(iterations). Several options to achieve asynchronous communication were tested,706

and we found that our use case benefited most from using MPI_Win_lock_all /707

MPI_Win_unlock_all, remote MPI_Puts and local MPI_Gets. The numerical results708

presented demonstrate that asynchronous iterations can be considered a viable alter-709

native to synchronous methods, despite partial availability of information from neigh-710

bors. Asynchronous methods seem to be beneficial already at modest core count, even711

for load balanced scenarios. In the presence of load imbalance, their performance ad-712

vantage becomes even clearer, and we observed speedups up to 4x. While we focused713

our attention on a particular Schwarz method, it is of inherent interest to explore asyn-714

chronous variants of other, potentially more effective domain decomposition methods715

involving deflation or non-overlapping decompositions (such as FETI and BDDC) or716

more than two levels. The presented inclusion of a novel asynchronous coarse-grid717

correction paves the way for asynchronous methods to be used in extremely scalable718

parallel solvers.719

Acknowledgment. Sandia National Laboratories is a multimission laboratory720

managed and operated by National Technology and Engineering Solutions of San-721

dia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.722

Department of Energy’s National Nuclear Security Administration under contract723

24

This manuscript is for review purposes only.

DE-NA0003525.724

This paper describes objective technical results and analysis. Any subjective725

views or opinions that might be expressed in the paper do not necessarily represent726

the views of the U.S. Department of Energy or the United States Government.727

SAND Number: SAND2020-4049 O728

This material is based upon work supported by the U.S. Department of Energy,729

Office of Science, Office of Advanced Scientific Computing Research, Applied Mathe-730

matics program under Award Numbers DE-SC-0016564. This research used resources731

of the National Energy Research Scientific Computing Center, a DOE Office of Science732

User Facility supported by the Office of Science of the U.S. Department of Energy733

under Contract No. DE-AC02-05CH11231.734

REFERENCES735

[1] V. Ahlgren, S. Andersson, J. M. Brandt, N. Cardo, S. Chunduri, P. Fields, A. C. Gen-736
tile, R. Gerber, J. Greenseid, A. Greiner, et al., Cray system monitoring: Successes737
requirements and priorities., tech. report, Sandia National Lab.(SNL-NM), Albuquerque,738
NM (United States); Sandia . . . , 2018.739

[2] J. M. Bahi, S. Contassot-Vivier, R. Couturier, and F. Vernier, A decentralized conver-740
gence detection algorithm for asynchronous parallel iterative algorithms, IEEE Transac-741
tions on Parallel and Distributed Systems, 16 (2005), pp. 4–13.742

[3] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,743
A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley,744
D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith,745
S. Zampini, H. Zhang, and H. Zhang, PETSc users manual, Tech. Report ANL-95/11 -746
Revision 3.13, Argonne National Laboratory, 2020, https://www.mcs.anl.gov/petsc.747

[4] G. M. Baudet, Asynchronous iterative methods for multiprocessors, Journal of the ACM748
(JACM), 25 (1978), pp. 226–244.749

[5] D. P. Bertsekas, Distributed asynchronous computation of fixed points, Mathematical Pro-750
gramming, 27 (1983), pp. 107–120.751

[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical meth-752
ods, vol. 23, Prentice Hall Englewood Cliffs, NJ, 1989.753

[7] X.-C. Cai, M. Dryja, and M. Sarkis, Restricted additive Schwarz preconditioners with har-754
monic overlap for symmetric positive definite linear systems, SIAM Journal on Numerical755
Analysis, 41 (2003), pp. 1209–1231.756

[8] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse757
linear systems, SIAM Journal on Scientific Computing, 21 (1999), pp. 792–797.758

[9] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, Toward exascale759
resilience, International Journal of High Performance Computing Applications, 23 (2009),760
pp. 374–388, https://doi.org/10.1177/1094342009347767.761

[10] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir, Toward exascale762
resilience: 2014 update, Supercomputing frontiers and innovations, 1 (2014), pp. 5–28,763
https://doi.org/10.14529/jsfi140101.764

[11] D. Chazan and W. Miranker, Chaotic relaxation, Linear algebra and its applications, 2765
(1969), pp. 199–222.766

[12] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: Cholmod,767
supernodal sparse cholesky factorization and update/downdate, ACM Trans. Math. Softw.,768
35 (2008), https://doi.org/10.1145/1391989.1391995, https://doi.org/10.1145/1391989.769
1391995.770

[13] A. T. Chronopoulos and C. W. Gear, On the efficient implementation of preconditioned771
s-step conjugate gradient methods on multiprocessors with memory hierarchy, Parallel com-772
puting, 11 (1989), pp. 37–53.773

[14] A. T. Chronopoulos and C. W. Gear, s-step iterative methods for symmetric linear systems,774
J. Comput. Appl. Math., 25 (1989), pp. 153–168, https://doi.org/http://dx.doi.org/10.775
1016/0377-0427(89)90045-9.776

[15] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, A supernodal777
approach to sparse partial pivoting, SIAM J. Matrix Analysis and Applications, 20 (1999),778
pp. 720–755.779

[16] V. Dolean, P. Jolivet, and F. Nataf, An introduction to domain decomposition methods,780

25

This manuscript is for review purposes only.

https://www.mcs.anl.gov/petsc
https://doi.org/10.1177/1094342009347767
https://doi.org/10.14529/jsfi140101
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1391989.1391995
https://doi.org/http://dx.doi.org/10.1016/0377-0427(89)90045-9
https://doi.org/http://dx.doi.org/10.1016/0377-0427(89)90045-9
https://doi.org/http://dx.doi.org/10.1016/0377-0427(89)90045-9

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015, http://781
dx.doi.org/10.1137/1.9781611974065.ch1. Algorithms, theory, and parallel implementation.782

[17] M. El Haddad, J. C. Garay, F. Magoulès, and D. B. Szyld, Synchronous and Asyn-783
chronous optimized Schwarz Methods for one-way subdivision of bounded domains, Nu-784
merical Linear Algebra and Applications, 27 (2020), p. e2279. 30 pages.785

[18] A. Frommer and D. B. Szyld, On asynchronous iterations, Journal of Computational and786
Applied Mathematics, 123 (2000), pp. 201–216.787

[19] A. Frommer and D. B. Szyld, An algebraic convergence theory for restricted additive Schwarz788
methods using weighted max norms, SIAM Journal on Numerical Analysis, 39 (2001),789
pp. 463–479.790

[20] J. C. Garay, F. Magoulès, and D. B. Szyld, Synchronous and asynchronous optimized791
Schwarz method for Poisson’s equation in rectangular domains, Tech. Report 17-10-18,792
Department of Mathematics, Temple University, Oct. 2017. Revised April 2018.793

[21] J. C. Garay, F. Magoulès, and D. B. Szyld, Convergence of asynchronous optimized794
Schwarz methods in the plane, in Domain Decomposition Methods in Science and En-795
gineering XXIV, P. E. B. stard, S. C. Brenner, L. Halpern, H. H. Kim, R. Kornhuber,796
T. Rahman, and O. B. Widlund, eds., Lecture Notes in Computer Science and Engineer-797
ing, Berlin and Heidelberg, 2018, Springer, pp. 333–341.798

[22] P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose, Hiding global communica-799
tion latency in the GMRES algorithm on massively parallel machines, SIAM Journal on800
Scientific Computing, 35 (2013), pp. C48–C71.801

[23] P. Jolivet, F. Hecht, F. Nataf, and C. Prud’homme, Scalable domain decomposition pre-802
conditioners for heterogeneous elliptic problems, in Proceedings of the International Con-803
ference on High Performance Computing, Networking, Storage and Analysis, SC ’13, New804
York, NY, USA, 2013, Association for Computing Machinery, https://doi.org/10.1145/805
2503210.2503212, https://doi.org/10.1145/2503210.2503212.806

[24] P. Jolivet and F. Nataf, HPDDM – high-performance unified framework for domain decom-807
position methods, 2020, https://github.com/hpddm/hpddm (accessed March 27, 2020).808

[25] G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning809
Irregular Graphs, SIAM Journal on Scientific Computing, 20 (1998), pp. 359–392, https:810
//doi.org/10.1137/S1064827595287997.811

[26] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users’ guide: solution of large-scale812
eigenvalue problems with implicitly restarted Arnoldi methods, vol. 6, Siam, 1998.813

[27] X. Li, J. Demmel, J. Gilbert, iL. Grigori, M. Shao, and I. Yamazaki, SuperLU Users’814
Guide, Tech. Report LBNL-44289, Lawrence Berkeley National Laboratory, September815
1999. http://crd.lbl.gov/∼xiaoye/SuperLU/. Last update: August 2011.816

[28] J. Liu, J. Wu, and D. K. Panda, High performance RDMA-based MPI implementation over817
InfiniBand, International Journal of Parallel Programming, 32 (2004), pp. 167–198.818

[29] F. Magoulès and G. Gbikpi-Benissan, Distributed convergence detection based on global819
residual error under asynchronous iterations, IEEE Transactions on Parallel and Dis-820
tributed Systems, (2017).821

[30] F. Magoulès, D. B. Szyld, and C. Venet, Asynchronous optimized Schwarz methods with822
and without overlap, Numerische Mathematik, (2017), pp. 1–29, https://doi.org/10.1007/823
s00211-017-0872-z.824

[31] Z. Peng, Y. Xu, M. Yan, and W. Yin, ARock: An Algorithmic Framework for Asynchronous825
Parallel Coordinate Updates, SIAM Journal on Scientific Computing, 38 (2016), pp. A2851–826
A2879, https://doi.org/10.1137/15M1024950.827

[32] M. Si, A. J. Pena, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa, Casper: An asyn-828
chronous progress model for MPI RMA on many-core architectures, in Parallel and Dis-829
tributed Processing Symposium (IPDPS), 2015 IEEE International, IEEE, 2015, pp. 665–830
676.831

[33] B. Smith, P. Bjorstad, and W. Gropp, Domain decomposition: parallel multilevel methods832
for elliptic partial differential equations, Cambridge University Press, 2004.833

[34] A. Toselli and O. Widlund, Domain decomposition methods: algorithms and theory, vol. 34,834
Springer Science & Business Media, 2006.835

[35] J. Wolfson-Pou and E. Chow, Asynchronous multigrid methods, in 33rd IEEE International836
Parallel and Distributed Processing Symposium (IPDPS), IEEE Computer Society, 2019,837
pp. 101–110.838

[36] I. Yamazaki, E. Chow, A. Bouteiller, and J. Dongarra, Performance of Asynchronous839
Optimized Schwarz with One-sided Communication, Parallel Computing, 86 (2019), pp. 66–840
81.841

[37] I. Yamazaki, S. Rajamanickam, E. G. Boman, M. Hoemmen, M. A. Heroux, and S. To-842

26

This manuscript is for review purposes only.

http://dx.doi.org/10.1137/1.9781611974065.ch1
http://dx.doi.org/10.1137/1.9781611974065.ch1
http://dx.doi.org/10.1137/1.9781611974065.ch1
https://doi.org/10.1145/2503210.2503212
https://doi.org/10.1145/2503210.2503212
https://doi.org/10.1145/2503210.2503212
https://doi.org/10.1145/2503210.2503212
https://github.com/hpddm/hpddm
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
http://crd.lbl.gov/~xiaoye/SuperLU/
https://doi.org/10.1007/s00211-017-0872-z
https://doi.org/10.1007/s00211-017-0872-z
https://doi.org/10.1007/s00211-017-0872-z
https://doi.org/10.1137/15M1024950

mov, Domain decomposition preconditioners for communication-avoiding Krylov methods843
on a hybrid CPU/GPU cluster, in Proceedings of the International Conference for High844
Performance Computing, Networking, Storage and Analysis, IEEE Press, 2014, pp. 933–845
944.846

27

This manuscript is for review purposes only.

	Introduction
	Related work

	Domain decomposition methods
	One-level Restricted Additive Schwarz (RAS)
	Two-level synchronous RAS
	Two-level asynchronous RAS
	Convergence Analysis of Asynchronous Iterations

	One-sided Message Passing Interface
	Implementation and numerical experiments
	Comparison of one-sided MPI communication options
	Performance metrics
	Test problem
	Convergence detection
	Platform and implementation details
	Comparison against HPDDM
	One-level RAS, 2D test problem, strong scaling
	Two-level RAS, 2D test problem
	Weak scaling
	Strong scaling

	Two-level RAS with iterative sub-solves, 3D test problem

	Conclusion
	References

