
H2Pack: High-Performance H 2 Matrix Package for Kernel
Matrices Using the Proxy Point Method

HUAHUANG, XIN XING, and EDMONDCHOW, School of Computational Science and Engineering,
Georgia Institute of Technology

Dense kernel matrices represented in H2 matrix format typically require less storage and have faster matrix-
vector multiplications than when these matrices are represented in the standard dense format. In this paper, we
present H2Pack, a high-performance, shared-memory library for constructing and operating withH2 matrix
representations for kernel matrices defined by non-oscillatory, translationally-invariant kernel functions.
Using a hybrid analytic-algebraic compression method called the proxy point method, H2Pack can efficiently
construct an H2 matrix representation with linear computational complexity. Storage and matrix-vector
multiplication also have linear complexity. H2Pack also introduces the concept of “partially admissible blocks”
for H2 matrices to make H2 matrix-vector multiplication mathematically identical to the fast multipole
method (FMM) if analytic expansions are used. We optimize H2Pack from both the algorithm and software
perspectives. Compared to existing FMM libraries, H2Pack generally has much faster H2 matrix-vector
multiplications since the proxy point method is more effective at producing block low-rank approximations
than the analytic methods used in FMM. As a trade-off,H2 matrix construction in H2Pack is typically more
expensive than the setup cost in FMM libraries. Thus, H2Pack is ideal for applications that need a large number
of matrix-vector multiplications for a given configuration of data points.

CCS Concepts: • Mathematics of computing→ Mathematical software;

Additional Key Words and Phrases: rank-structured matrix, H2 matrix, proxy point method, N-body problem,
fast multipole method, high-performance computing

ACM Reference Format:
Hua Huang, Xin Xing, and Edmond Chow. 2020. H2Pack: High-Performance H2 Matrix Package for Kernel
Matrices Using the Proxy Point Method. ACM Trans. Math. Softw. 0, 0, Article 0 (2020), 30 pages. https:
//doi.org/10.xxxx/xxxxxxx.xxxxxxx

1 INTRODUCTION
Many problems in scientific computing and data analytics, such as particle simulations with long-
range interactions, the numerical solution of integral equations, and Gaussian process modeling
lead to dense kernel matrices. Given two sets of points, X and Y , and a non-compact kernel function
K(x ,y), the kernel matrix K(X ,Y) has entries defined as K(xi ,yj) with all (xi ,yj) ∈ X × Y . Usually,
kernel matrices have block low-rank structure, i.e., certain blocks of the matrices are numerically
low-rank. For such a kernel matrix, representing these blocks in low-rank form gives a rank-
structured matrix representation that asymptotically reduces the quadratic cost of matrix storage
and matrix-vector multiplication. Different kernel matrices can be effectively stored in different
rank-structured matrix representations such as H [18, 20], H 2 [19, 21], and HSS [8]. In this

Authors’ address: Hua Huang, huangh223@gatech.edu; Xin Xing, xxing33@gatech.edu; Edmond Chow, echow@cc.gatech.
edu, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0098-3500/2020/0-ART0 $15.00
https://doi.org/10.xxxx/xxxxxxx.xxxxxxx

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

https://doi.org/10.xxxx/xxxxxxx.xxxxxxx
https://doi.org/10.xxxx/xxxxxxx.xxxxxxx
https://doi.org/10.xxxx/xxxxxxx.xxxxxxx

0:2 Hua Huang, Xin Xing, and Edmond Chow

paper, we focus on the development of a library for efficiently constructing and usingH 2 matrix
representations defined by non-oscillatory, translationally-invariant kernel functions with points
in low-dimensional space (e.g., 2D or 3D).

H 2 matrix representations are constructed by compressing specific matrix blocks into low-rank
form via a nested approach. The compression of these blocks can be computed either analytically
based on degenerate approximations of the kernel function such as multipole expansions and
polynomial expansions, or algebraically based on matrix decomposition methods such as such as
SVD, QR, and ACA [2]. It is worth noting that, when analytic compression methods are used, the
fast matrix-vector multiplication of the constructedH 2 matrix can be viewed as an algebraic variant
of the fast multipole method (FMM) [11, 15, 16, 32]. Compared to algebraic compression, analytic
compression usually requires less intermediate storage and computation, but is limited to specific
kernel functions and can give approximation rank much larger than the numerical rank of the
matrix block to be compressed. Algebraic compression, instead, is usually more effective in terms
of range of applicability and optimality of the approximation rank. Due to these differences, the
matrix-vector multiplication with an H 2 matrix constructed by algebraic methods is usually faster
than FMM, since a lower-rank approximation leads to more cost reduction in the multiplication. As
a sacrifice, algebraic methods usually lead to much more expensiveH 2 matrix construction than
analytic methods. For example, simply evaluating all matrix entries has quadratic cost, making
many algebraic methods such as SVD unfavorable.

To balance between analytic methods and algebraic methods, we use a hybrid analytic-algebraic
compression method called the proxy point method [31] to constructH 2 matrix representations.
For kernel functions from potential theory, such as the Laplace and Stokes kernels, Martinsson and
Rokhlin [24] introduced the proxy surface method to efficiently compress specific kernel blocks into
a low-rank form called interpolative decomposition (ID) [17]. Two variants of the proxy surface
method were proposed later by Corona [10] and Minden [26]. All three methods belong to the class
of the proxy point methods that has been formalized and studied in recent work [31]. Compared
to algebraic methods, the proxy point method avoids forming a kernel block explicitly before
compressing it and also requires far less data communication in parallelH 2 matrix construction.
Compared to analytic methods, the proxy point method can obtain better approximation ranks and
is kernel-independent. As a result, it can efficiently construct anH 2 matrix representation with
linear complexity, while the constructed H 2 matrix can have faster matrix-vector multiplications
than FMM. Another common hybrid analytic-algebraic approach is to combine an analytic method
with algebraic recompression [1, 4, 6]. Such an approach gives better approximation rank but is
also restricted to certain kernels, like analytic methods. In comparison, the proxy point method
incorporates the kernel function numerically when constructing the H 2 matrix representation.
This allows the construction to be kernel-independent.

H2Pack is a shared-memory parallel library for kernel matrices based on constructingH 2 matrix
representations using the proxy point method. The kernel functions must be non-oscillatory and
translationally-invariant (i.e., K(x ,y) = k(x − y) with a univariate function k(·)) with points in
low-dimensional space. H2Pack library works for both scalar and tensor kernel functions. Presently,
the library further requires the input kernel function to be symmetric, i.e, K(x ,y) = K(y,x), and
the kernel matrix to be defined by one set of points X , i.e., K(X ,X). These two requirements can be
easily lifted via a simple extension of H2Pack which will be addressed in the next version.

More precisely, H2Pack implements the following two components:

• H 2 matrix construction based on the proxy point method with inputs being a kernel function
K(x ,y), a set of points X , and an error threshold for the low-rank approximations;

• H 2 matrix-vector multiplication.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:3

We optimize H2Pack from both the algorithm and software perspectives. Different parallelization
and load-balancing strategies are applied for different computation phases in H2Pack. Moreover,
two running modes for H2Pack are available to adapt to different computing platforms and different
problem settings for better performance. The ahead-of-time mode precomputes and stores all the
components of an H 2 matrix. The just-in-time mode calculates a large portion of the components
dynamically when needed inH 2 matrix-vector multiplication. These two modes provide a trade-off
between storage and computation. The performance difference between the two modes depends
on the memory bandwidth, CPU speed, and the complexity of the kernel function evaluations. It is
worth noting that this two-mode approach has been proposed before in Refs [6, 25]. Lastly, we also
exploit intrinsic functions for better vectorization to further improve the performance of H2Pack
on multi-core and many-core processors.
Our numerical tests with H2Pack show that its H 2 matrix construction cost is only around

5 to 15 times the corresponding H 2 matrix-vector multiplication cost. Comparisons of H2Pack
with two state-of-the-art FMM libraries, PVFMM [23] and FMM3D [13], show that H2Pack has
asymptotically more expensiveH 2 matrix construction but fasterH 2 matrix-vector multiplications.
More precisely, theH 2 matrix construction cost in H2Pack is similar to the FMM setup costs in
FMM3D and PVFMM for a low or moderate relative multiplication accuracy, e.g., 10−5 and 10−8, and
is just 2 to 5 times more expensive for a high relative multiplication accuracy, e.g., 10−11. Meanwhile,
the approximation ranks of blocks in H2Pack are 5 to 10 times smaller than those in PVFMM and
FMM3D. As a result, the H 2 matrix-vector multiplication in H2Pack is 1.5 to 5 times faster than in
PVFMM and 5 to 25 times faster than in FMM3D in various tests. In practice, H2Pack is ideal for
problems where many matrix-vector multiplications are required per configuration of data points,
e.g., numerical solution of integral equations and Gaussian process modeling, so that the relatively
expensive H 2 matrix construction cost can be amortized.

Related work. There are several libraries for FMM and its variants. FMM3D [13] implements
the classical FMM [14, 16] for three key kernel functions in 3D from potential theory, the Laplace,
Helmholtz, and Stokes kernels. PVFMM [23] implements the kernel-independent FMM [32] and
works for kernel functions from potential theory. BBFMM3D [29] implements the black-box
FMM [11] and works for smooth, translationally-invariant kernel functions. All these FMM libraries
support OpenMP shared memory parallelization. PVFMM further supports MPI distributed memory
parallelization and GPU acceleration of major FMM subroutines.

There are also several libraries for working with rank-structured matrices. H2Lib [3] constructs
H 2 matrix representations algebraically but only works for matrices from the boundary element
method whose entries are kernel-defined interactions between compact basis functions in integral
form. H2Lib supports OpenMP shared memory parallelization. SMASH [6] uses a heuristic hybrid
compression method to construct both H 2 and HSS matrix representations for kernel matrices.
SMASH is written in MATLAB and its C language implementation is still under development.
STRUMPACK [12, 28] uses a randomized algebraic compression method to efficiently construct HSS
matrix representations for a general class of dense matrices. STRUMPACK supports MPI distributed
memory parallelization for fast matrix-vector multiplications and fast matrix solve. Recently, an
H 2 matrix library for GPUs has also been developed [5].

2 H 2 MATRIX REPRESENTATION AND H 2 MATRIX-VECTOR MULTIPLICATION
Consider a kernel matrix K(X ,X) defined by a non-oscillatory kernel function K(x ,y) that is
translationally-invariant and symmetric, and a set of points X in a low-dimensional space. This
section describes anH 2 matrix representation of K(X ,X),H 2 matrix construction based on the

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:4 Hua Huang, Xin Xing, and Edmond Chow

proxy point method, andH 2 matrix-vector multiplication. The following discussion applies to both
scalar and tensor kernel functions K(x ,y), e.g., both the Laplace and the Stokes kernels.

2.1 H 2 matrix representation
Interpolative decomposition. An interpolative decomposition (ID) [9, 17] represents or approx-

imates a matrix A ∈ Rn×m in the low-rank form UAJ , where U ∈ Rn×k has bounded entries,
AJ ∈ R

k×m contains k rows of A, and k is the rank. An ID approximation defined this way is said
to have error below the error threshold ε0 if the 2-norm of each row of A −UAJ is bounded by ε0.
Using an algebraic approach, an ID approximation with a given rank or a given error threshold
can be calculated using the strong rank-revealing QR (SRRQR) decomposition [17] or using the
pivoted QR decomposition. Specifically, an ID approximation of a kernel matrix block K(X0,Y0) can
be written as K(X0,Y0) ≈ UK(Xid,Y0) where K(Xid,Y0) contains a subset of the rows in K(X0,Y0)
and Xid is a subset of X0.

Hierarchical partitioning of X and K(X ,X). To construct an H 2 matrix representation, the first
step is to hierarchically partition the points inX . AssumeX is in a d-dimensional space and let B be
a box with equal-length edges that encloses X . The box B is partitioned into 2d smaller same-sized
boxes by bisecting all its edges. Each smaller box is further partitioned recursively in the same way
until the number of points in a box is less than a prescribed constant. This hierarchical partitioning
of B can be represented by a 2d -ary partition tree T whose nodes correspond to the boxes. We
define the root node of T to be at level 0, its children nodes to be at level 1, etc. We also define the
leaf level to be level L.

Each level of the partition tree defines a non-overlapping partitioning of the set of points X . This
partitioning is defined using the set of nodes at a given level of the partition tree. To generalize the
concept of the set of nodes at a given level to the case of possibly non-perfect partition trees, let
level+(l) denote the union of all the nodes in level l and all the leaf nodes above level l (toward the
root). The caption of Figure 1 gives examples of level+(l) for an example partition tree.
Now, let Xi denote the set of points lying in box i and corresponding to node i in the tree. At

any level l , {Xi }i ∈level+(l) defines a non-overlapping partitioning of the set of points X , i.e.,
Xi ∩ X j = ∅ for distinct i, j ∈ level+(l) and ∪i ∈level+(l) Xi = X .

For the kernel matrix itself, {K(Xi ,X j)}i, j ∈level+(l) defines a non-overlapping partitioning ofK(X ,X).
See Figure 1 for an example of a partition tree and the associated matrix partitioning at each level.

Fig. 1. Illustration of a 3-level hierarchical partitioning of a set of points X in 1-dimensional space and
the associated partitioning of a kernel matrix K(X ,X). In this partition tree, level+(1) = {1, 2}, level+(2) =
{3, 4, 5, 6}, and level+(3) = {7, 8, 9, 10, 5, 6}. In each level l , K(X ,X) is partitioned into non-overlapping blocks
K(Xi ,X j) with i, j ∈ level+(l).

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:5

Inadmissible, admissible, and partially admissible blocks. In anH 2 matrix representation, a kernel
block K(X∗,Y∗) is considered numerically low-rank if X∗ is in a box and Y∗ is in the far field of the
box. The far field of a box is defined as the area of all the boxes that are least one box width away
from the box. For any box i in some level l , we split boxes in level+(l) into two subsets Fi andNi as

Fi = {k ∈ level+(l) | box k is in the far field of box i} and Ni = level+(l) \ Fi .

Let Yi = ∪k ∈FiXk be the set of all points in the far field of box i . Then, K(Xi ,Yi) for each box i with
nonempty Fi is considered to be numerically low-rank. Thus, the numerically low-rank blocks at
each level can be denoted as K(Xi ,Yi) or K(Yi ,Xi) for all nodes i ∈ level+(l). Note that if K(X ,X)

is symmetric, then K(Yi ,Xi) = K(Xi ,Yi)
T . See Figure 2 for an illustration of these low-rank blocks.

A block K(Xi ,X j) that is contained in the low-rank blocks K(Xi ,Yi) or K(Yj ,X j) is thus also
low-rank. Based on this observation, the blocks in {K(Xi ,X j)}i, j ∈level+(l) can be categorized into
three classes:

• inadmissible blocks, if K(Xi ,X j) is not within K(Xi ,Yi) and not within K(Yj ,X j) (equivalent
to X j ∩ Yi = ∅ and Xi ∩ Yj = ∅);

• admissible blocks, if K(Xi ,X j) is within both K(Xi ,Yi) and K(Yj ,X j) (equivalent to X j ⊆ Yi
and Xi ⊆ Yj);

• partially admissible blocks, ifK(Xi ,X j) is withinK(Xi ,Yi) but not withinK(Yj ,X j) (equivalent
to X j ⊆ Yi and Xi ∩ Yj = ∅), or if K(Xi ,X j) is not within K(Xi ,Yi) but within K(Yj ,X j)

(equivalent to X j ∩ Yi = ∅ and Xi ⊆ Yj).
See the hatched block in Figure 2 for an example of a partially admissible block.
The concept of “partially admissible blocks” is new to the standardH 2 matrix representation.

More details follow later in this section.

(a) blocks K(Xi ,Yi) with i ∈ level+(l), l = 2 or 3 (b) blocks K(Yi ,Xi) with i ∈ level+(l), l = 2 or 3

Fig. 2. Illustrations of the low-rank blocks K(Xi ,Yi) and K(Yi ,Xi) for the partition tree in Figure 1. The
low-rank blocks are colored yellow for level 2 and green for level 3. For level 2, these blocks are labeled
explicitly. In level 3, note that some of these blocks are not contiguous. The hatched block K(X9,X5) is a
partially admissible block since it is within K(X9,Y9) in (a) but not within K(Y5,X5) in (b).

Compression of low-rank blocks. We express a low-rank approximation of each K(Xi ,Yi) in an
ID form,

K(Xi ,Yi) ≈ UiK(X
id
i ,Yi), (1)

where X id
i is a subset of Xi and K(X id

i ,Yi) contains a subset of the rows in K(Xi ,Yi). For a non-leaf
box i with children {i1, i2, . . . , is }, the above ID approximation is formed and computed by a nested

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:6 Hua Huang, Xin Xing, and Edmond Chow

approach (to be described in Section 2.2) in an H 2 matrix representation. Precisely, the two ID
componentsUi and X id

i are recursively defined in the nested form,

Ui =

Ui1

. . .

Uis

 Ri and X id
i ⊆ X id

i1 ∪ X id
i2 . . . ∪ X id

is ⊆ Xi , (2)

with some matrix Ri to be computed. Based on eq. (2),Ui for each non-leaf node is not explicitly
formed but can be recovered recursively from quantities at all the descendants of node i .

Each inadmissible block K(Xi ,X j) is considered to be full-rank. Each admissible block K(Xi ,X j)

is numerically low-rank and can be compressed as

K(Xi ,X j) ≈ UiK(X
id
i ,X

id
j)U

T
j , (3)

based on the compression of K(Xi ,Yi) and K(Yj ,X j) in eq. (1). Each partially admissible block
K(Xi ,X j) can be compressed as

K(Xi ,X j) ≈

{
UiK(X

id
i ,X j) if K(Xi ,X j) is within K(Xi ,Yi)

K(Xi ,X
id
j)U

T
j if K(Xi ,X j) is within K(Yj ,X j)

, (4)

based on the compression of K(Xi ,Yi) or K(Yj ,X j) in eq. (1).

H 2 matrix representation. The H 2 matrix representation of K(X ,X) consists of three parts:
• dense inadmissible blocks K(Xi ,X j) with both i and j being leaf nodes.
• low-rank approximations eq. (3) of all the admissible blocks K(Xi ,X j) that are not contained
in larger admissible or partially admissible blocks.

• low-rank approximations eq. (4) of all the partially admissible blocks K(Xi ,X j) that are not
contained in larger admissible or partially admissible blocks.

Denote the three sets of the node pairs (i, j) associated with the above three sets of kernel blocks as
D, A, and Ap , respectively. See Figure 3 for an example of these three sets of blocks making up an
H 2 matrix representation. As can be easily verified, these three sets of kernel blocks exactly form a
non-overlapping partitioning of K(X ,X). The components stored by anH 2 matrix include:

• Ui and X id
i for each leaf node i with nonempty Fi ;

• Ri and X id
i for each non-leaf node i with nonempty Fi ;

• intermediate blocks denoted by Bi, j for each (i, j) ∈ A ∪ Ap . Block Bi j is one of blocks
K(X id

i ,X
id
j), K(X id

i ,X j), or K(Xi ,X
id
j) in the low-rank approximation eq. (3) or eq. (4) of

K(Xi ,X j);
• inadmissible blocks K(Xi ,X j) denoted by Di, j for each (i, j) ∈ D.

All the intermediate and inadmissible blocks can be computed using only the sets {Xi } and {X id
i }

for all i , which can be stored economically. Instead of precomputing and storing these intermediate
and inadmissible blocks, they can be dynamically computed when needed, using only {Xi } and
{X id

i }. This provides a trade-off between storage and computation.

More details on partially admissible blocks. In the standard H 2 matrix representation, all the
partially admissible blocks characterized above are treated as admissible blocks and are compressed
into the form eq. (3) (instead of eq. (4)) where the corresponding Ui and X id

i for each node i are
computed by the ID approximation of K(Xi , Ỹi) with Ỹi defined as some superset of Yi .
Taking the partially admissible block K(X5,X9) in Figure 3 as an example, we have Y5 = X3,

Ỹ5 = X3 ∪ X9, and Ỹ9 = Y9 = X7 ∪ X5 ∪ X6. Note that K(X5,X9) is within K(X5, Ỹ5) but not within
K(X5,Y5). Thus, by the ID approximation of K(X5,Y5) and K(X9,Y9), the block K(X5,X9) can only

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:7

Fig. 3. Illustration of a 3-level H2 matrix representation associated with the partition tree in Figure 1.
Inadmissible blocks are white in all levels, level 2 has admissible blocks (yellow), and level 3 has admissible
blocks (green) and partially admissible blocks (blue). TheH2 matrix representation is made up of specific
inadmissible and admissible blocks in levels 2 and 3 and the partially admissible blocks in level 3.

be compressed into the form eq. (4). Meanwhile, by the ID approximation of K(X5, Ỹ5) and K(X9, Ỹ9)
in the standard H 2 matrix representation, the block K(X5,X9) can be compressed into the form
eq. (3).
Since Ỹi in the standardH 2 matrix representation is defined as a superset of Yi for each node

i , K(Xi , Ỹi) has larger numerical rank than K(Xi ,Yi) (can be much larger in rare cases), leading
to a larger rank for the approximation of each admissible or partially admissible block K(Xi ,X j).
Thus, the H 2 matrix representation using partially admissible blocks introduced in this paper
typically has smaller storage cost and faster matrix-vector multiplications than the standardH 2

matrix representation. The concept of partially admissible blocks has a counterpart in FMM and is
necessary for the exact equivalence between H 2 matrix-vector multiplication and FMM [30].

2.2 H 2 matrix construction
H 2 matrix construction consists of two parts: (1) computing the ID approximation of K(Xi ,Yi) for
each node i with non-empty Fi via a nested approach and (2) computing the intermediate blocks
associated with A ∪ Ap and the inadmissible blocks associated with D. As just mentioned in
the previous paragraph, the second part is optional. The nested approach to computing these ID
approximations is as follows.
For a leaf node i , the ID approximation of K(Xi ,Yi) is directly computed using the proxy point

method (to be described in Section 2.3). For a non-leaf node i with children {i1, i2, . . . , is }, the
ID approximations associated with all these children nodes must be computed first. Then, since
Xi = Xi1 ∪ . . . ∪ Xis , K(Xi ,Yi) can be split into blocks K(Xia ,Yi) with ia ∈ {i1, i2, . . . , is }. By
definition, the points in Yi are in the far field of box i and thus are also in the far field of each
child box ia , i.e., Yi ⊆ Yia . As a result, the computed ID approximation K(Xia ,Yia) ≈ UiaK(X

id
ia ,Yia)

associated with ia gives the approximation K(Xia ,Yi) ≈ UiaK(X
id
ia ,Yi). Together, K(Xi ,Yi) is split

and approximated as,

K(Xi ,Yi) =

K(Xi1 ,Yi)
K(Xi2 ,Yi)
...

K(Xis ,Yi)

≈

Ui1K(X

id
i1 ,Yi)

Ui2K(X
id
i2 ,Yi)
...

UisK(X
id
is ,Yi)

=

Ui1

Ui2
. . .

Uis

K(X id

i1 ,Yi)

K(X id
i2 ,Yi)
...

K(X id
is ,Yi)

. (5)

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:8 Hua Huang, Xin Xing, and Edmond Chow

Denoting X̂i = X id
i1 ∪ X id

i2 ∪ . . . ∪ X id
is , an ID approximation of the last block above K(X̂i ,Yi) is

computed using the proxy point method as,

K(X̂i ,Yi) ≈ RiK(X
id
i ,Yi), X id

i ⊆ X̂i ⊆ Xi .

Plugging this approximation into eq. (5), we get the ID approximation K(Xi ,Yi) ≈ UiK(X
id
i ,Yi)

withUi defined in the nested form eq. (2) using the computed Ri .

2.3 The proxy point method
TheH 2 matrix construction above is dominated by the ID approximation of K(Xi ,Yi) for leaf nodes
i and K(X̂i ,Yi) for non-leaf nodes i . All these approximated kernel blocks share the same form
K(X∗,Y∗) where X∗ is a set of points in a box X and Y∗ is a set of points in a compact subdomain Y

of the far field of X, as illustrated in Figure 4. In general, Y∗ has far more points than X∗. The proxy
point method [31] can efficiently construct an ID approximation of K(X∗,Y∗) with X∗ × Y∗ lying in
a pair of compact domains X ×Y as follows.

First select a set of so-called proxy points Yp in Y following the selection scheme Algorithm 1 (to
be described later). Then compute an ID approximation of K(X∗,Yp) algebraically using the pivoted
QR decomposition as K(X∗,Yp) ≈ U∗K(X

id
∗ ,Yp) with X id

∗ ⊆ X∗. Using the computedU∗ and X id
∗ , the

ID approximation of K(X∗,Y∗) is then directly defined as K(X∗,Y∗) ≈ U∗K(X
id
∗ ,Y∗). In most cases,

Yp has far fewer points that Y∗ and thus the above proxy point method is far more efficient than
the direct ID approximation of K(X∗,Y∗). Numerically, when a relative error threshold εid is used
for the algebraic ID approximation of K(X∗,Yp), the defined ID approximation of K(X∗,Y∗) usually
has relative error approximately εid.

Selection of the proxy points. The selection scheme given in Algorithm 1 was proposed in Ref. [31].
The basic idea is to first discretize K(x ,y) in X × Y into matrix K(X1,Y1). Steps 2 and 3 in this
algorithm compresses this matrix as K(X1,Y1) ≈ K(X1,Yp)K(Xp ,Yp)

−1K(Xp ,Y1) with O(εp) error.
Due to the low-rank property of K(x ,y), it can be proved that, if |X1 | and |Y1 | are sufficiently large,

K(x ,y) ≈ K(x ,Yp)K(Xp ,Yp)
−1K(Xp ,y) +O(εp), (x ,y) ∈ X × Y,

plug in X∗,Y∗
−−−−−−−−−−→ K(X∗,Y∗) ≈ K(X∗,Yp)K(Xp ,Yp)

−1K(Xp ,Y∗) +O(εp).

The proxy point method exactly computes an ID approximation of K(X∗,Yp) and thus can also
be viewed as a recompression of the above O(εp)-accuracy approximation of K(X∗,Y∗). Usually,
the parameter εp can be set to one or two orders of magnitudes smaller than the error threshold
specified for the proxy point method. The sizes of X1 and Y1 should be large enough to guarantee
the accuracy O(εp) of the above function approximation to K(x ,y), and also to guarantee well-
boundedness of this specific vector function K(Xp ,Yp)

−1K(Xp ,y) in Y which is critical for the
accuracy of the proxy point method. More explanations can be found in [31].

This selection scheme is computationally expensive and only depends onK(x ,y) andX×Y. With
more sample points X1 and Y1, the set of proxy points Yp selected by Algorithm 1 is more effective
in terms of controlling the accuracy of the proxy point method based on Yp , but Algorithm 1
becomes more expensive. In H2Pack, the numbers of sample points in X1 and Y1 in Algorithm 1 are
heuristically chosen. We used |X1 | = 1000 and |Y1 | = 15000 for the various kernel functions and
pairs of domains that were tested numerically (see Section 4). An adaptive choice of the number
of sample points can be developed and applied if necessary. The ID approximation of K(X1,Y1)
at Step 2 of Algorithm 1 is computed using a randomized method [22] instead of the pivoted QR
decomposition, for better efficiency. Figure 4 illustrates several examples of the selected proxy
points for different kernel functions.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:9

Algorithm 1 Proxy point selection scheme
Input: K(x ,y), X, Y, εp .
Output: proxy points Yp .
1: Sample domains X and Y to obtain two sets of uniformly distributed points X1 and Y1 with

high point density, respectively.
2: Compute an ID approximation K(X1,Y1) ≈ U1K(Xp ,Y1) with error threshold εp

√
|Y1 |.

3: Compute a pivoted QR decomposition K(Xp ,Y1)P = Q(R1,R2) where P is a permutation matrix,
Q is an orthogonal matrix, and R1 is an |Xp | × |Xp | upper-triangular matrix.

4: LetYp be the subset of points inY1 that corresponds to the |Xp | columns of R1 after permutation.

(a) K(x ,y) = log(|x − y |) (b) K(x ,y) = exp(−|x − y |2) (c) K(x ,y) = exp(−0.1|x − y |2)

Fig. 4. Examples of the proxy points selected by Algorithm 1 for various kernel functions with X = [−1, 1]2,
Y = [−7, 7]2 \ [−3, 3]2, and εp = 10−10. The three sets have 37, 103, and 58 proxy points, respectively.

Applying Algorithm 1 to select proxy points for each ID approximation inH 2 matrix construction
is expensive and impractical. Instead, we can reuse a set of selected proxy points Yp for all the ID
approximations associated with nodes in one level of the construction. Specifically, note that all the
boxes in the same level are of the same size and K(x ,y) is assumed to be translationally-invariant.
Thus, at each level l , we select X as a box in level l and Y as a large compact subdomain of the far
field of X, and apply Algorithm 1 with X × Y to select a set of proxy points Y l

p . For each node i
in level l , let zi be a translation vector such that Xi + zi lies in X and Yi + zi lies in Y (Y should
be selected large enough to contain Yi + zi for each node i). Since K(Xi ,Yi) = K(Xi + zi ,Yi + zi),
we can apply the proxy point method with the shifted proxy points Y l

p − zi to compute the ID
approximation of K(Xi ,Yi) (or K(X̂i ,Yi)).

As a result, at each level, we only need to construct a set of proxy points Y l
p for just one pair of

domains X ×Y. The corresponding proxy points for all the nodes in one level can be obtained by
proper translation of Y l

p . Also, another option is to precompute and store multiple sets of proxy
points for box domains X of different sizes (with sufficiently large domains Y) given a kernel
function. In H 2 matrix construction, we simply need to load the corresponding proxy point set
based on the box domain size in each level. Combining the proxy point method with theH 2 matrix
construction described in the last subsection, the overallH 2 matrix construction for a kernel matrix
K(X ,X) is summarized in Algorithm 2.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:10 Hua Huang, Xin Xing, and Edmond Chow

Algorithm 2H 2 matrix construction for K(X ,X)

1: • construct a hierarchical partitioning of X which gives a L-level partition tree T .
2: for l = L,L − 1, . . . , 1 do
3: • construct a set of proxy points Y l

p for just one box in level l .
4: parfor all nodes i in level l do (dynamic scheduling)
5: if i is a leaf node then
6: • computeUi and X id

i from an ID approximation of K(Xi ,Yi) using the proxy point
method with a proper translation of Y l

p .
7: else if i is a non-leaf node with children {i1, i2, . . . , is } then
8: • construct X̂ id

i = X id
i1 ∪ . . . ∪ X id

is .
9: • compute Ri and X id

i from an ID approximation of K(X̂i ,Yi) using the proxy point
method with a proper translation of Y l

p .
10: end if
11: end parfor
12: end for
13: • (optional, can be dynamically computed) compute the inadmissible blocksDi, j for all (i, j) ∈ D

and compute the intermediate blocks Bi, j for all (i, j) ∈ A ∪ Ap .

2.4 H 2 matrix-vector multiplication
Consider computing b = K(X ,X)q. For each node i ∈ T , let qi and bi denote the subvectors of q
and b, respectively, corresponding to the point subset Xi in X . TheH 2 matrix-vector multiplication
algorithm [21], summarized in Algorithm 3, traverses all three sets of kernel blocks K(Xi ,X j)

corresponding to D, A, and Ap in theH 2 matrix representation and accumulates the products
K(Xi ,X j)qj .

First, initialize the result vector b to zero. For each inadmissible block K(Xi ,X j) with (i, j) ∈ D,
the dense matrix computation is straightforward: bi = bi + K(Xi ,X j)qj . For each admissible block
K(Xi ,X j) with (i, j) ∈ A, the computation

bi = bi + K(Xi ,X j)qj ≈ bi +UiBi, jU
T
j qj ,

can be computed in three steps UT
j qj , Bi, j (UT

j qj), and bi = bi + Ui

(
Bi, j

(
UT
j qj

))
giving three

phases inH 2 matrix-vector multiplication: forward transformation, intermediate multiplication,
and backward transformation.

Forward transformation. This phase computes yj = UT
j qj for all the nodes j ∈ T . Note that yj can

be used for all the admissible blocks with columns defined by X j . For each leaf node j , yj is directly
computed. For each non-leaf node j with children {j1, j2, . . . , js }, yj is recursively computed using
yj1 ,yj2 , . . . ,yjs associated with the children as

yj = U
T
j qj = RTj

UT
j1
. . .

UT
js

qj1
...
qjs

 = RTj

UT
j1qj1
...

UT
jsqjs

 = RTj

yj1
...

yjs

 .
Intermediate multiplication. This phase computes zi, j = Bi, jyj for each admissible blockK(Xi ,X j)

with (i, j) ∈ A. Note that all the zi, j sharing the node i are to be multiplied byUi and added to bi as

bi = bi +
∑

(i, j)∈A Uizi, j = bi +Ui
(∑

(i, j)∈A zi, j
)
, for each node i ∈ T .

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:11

Only multiplying Ui once, it is more efficient to first sum over all these zi, j , then apply Ui , and
lastly add to bi . Thus, for each node i ∈ T , this phase further computes zi =

∑
(i, j)∈A zi, j .

Backward transformation. This phase computes bi = bi +Uizi for each node i ∈ T . For a non-leaf
node i with children {i1, i2, . . . , is }, bi is recursively accumulated as

bi = bi +Uizi = bi +

Ui1

. . .

Uis

 Rizi = bi +

Ui1 [Rizi]i1

...
Uis [Rizi]is

where [Rizi]ia denotes the subvector of Rizi associated withUia . Thus, bi = bi +Uizi is reduced to
bia = bia +Uia [Rizi]ia with all the children ia . Meanwhile, bia = bia +Uiazia needs to be computed
as well. Only multiplyingUia once, it is more efficient to first overwrite zia by zia = zia + [Rizi]ia
and then multiplyUia by zia . Recursively, this phase traverses the tree from the root to the leaves
to overwrite each zi by zi = zi + [Rpzp]i with p the parent of i . As a result, for each leaf node i , zi
accumulates the intermediate multiplication results from all its ancestors. Adding Uizi to bi for all
the leaf nodes in T finishes this phase. See the lines 21-28 in Algorithm 3 for the exact calculation.

For each partially admissible block K(Xi ,X j) with (i, j) ∈ Ap , its multiplication by pj ,

bi = bi +UiBi, jqj or bi = bi + Bi, jU
T
j qj

can be similarly computed following the above process for the admissible blocks. In fact, these
multiplications can be merged into the above three phases for admissible blocks.

H 2 matrix-matrix multiplication. Consider computing C = K(X ,X)Q . It is straightforward to
extend the above H 2 matrix-vector multiplication to the multiplication by multiple vectors simul-
taneously. We only need to replace vectors qi , bi , yi , and zi in Algorithm 3 by matrices Qi , Ci , Yi ,
and Zi , respectively, where Qi and Ci are the row subsets of Q and C associated with Xi .

3 PARALLEL IMPLEMENTATION
3.1 Parallelization and load-balancing
In Section 2, we presentedH 2 matrix construction (H 2-construction) andH 2 matrix-vector mul-
tiplication (H 2-matvec). For the parallel implementation of these two operations, we consider
calculation dependencies associated with each node in the partition tree. In H 2-construction, the
first step is to compute specific ID approximations associated with each node i with nonempty
Fi . In this step, the ID approximation at a non-leaf node cannot be computed until the ID ap-
proximations at all its children nodes are computed, corresponding to a post-order traversal of
the partition tree. The optional step of computing inadmissible and intermediate blocks has no
restriction on calculation orders for each block. In H 2-matvec, the forward transformation phase
has the same calculation order as the ID approximations in H 2-construction, i.e., the calculation of
yi for a non-leaf node i requires the calculation of {yik } with the children {ik } of i . The backward
transformation phase has calculation order reverse to that of the forward transformation phase,
corresponding to a pre-order traversal of the partition tree. Meanwhile, there is no restriction on
the calculation order in the intermediate and dense multiplication phases, since the matrix-vector
multiplications by different Bi, j and Di, j are completely independent.
Based on the above observations, the calculations in H 2-construction and H 2-matvec can be

categorized into two types. The first type is level-by-level calculation, where the calculation at node
i rely on the calculations at nodes on the level above or below. The second type is independent
calculation, where the calculations associated with different Bi, j or Di, j are independent. We apply
different strategies to parallelize these two types of calculations within the OpenMP framework.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:12 Hua Huang, Xin Xing, and Edmond Chow

Algorithm 3H 2 matrix-vector multiplication
1: • Initialize result vector b to zero.
2: • Initialize temporary vectors zi ,∀i ∈ T to zero.
▷ Step 1: Forward transformation

3: for l = L,L − 1, . . . , 1 do
4: parfor all nodes i in level l do (greedy static partitioning)
5: if i is a leaf node then
6: yi = U

T
i qi .

7: else
8: yi = RTi (y

T
i1 ,y

T
i2 , . . . ,y

T
is)

T with children {i1, i2, . . . , is } of node i .
9: end if
10: end parfor
11: end for
▷ Step 2: Intermediate multiplication

12: parfor all (i, j) ∈ A do (hybrid load balancing)
13: zi = zi + Bi, jyj .
14: end parfor
15: parfor all (i, j) ∈ Ap do (hybrid load balancing)
16: if K(Xi ,X j) ≈ UiBi, j then
17: zi = zi + Bi, jqj .
18: else (note: K(Xi ,X j) ≈ Bi, jU

T
j)

19: bi = bi + Bi, jyj .
20: end if
21: end parfor
▷ Step 3: Backward transformation

22: for l = 1, 2, . . . ,L do
23: parfor all non-leaf node i in level l do (greedy static partitioning)
24: zia = zia + [Rizi]ia with all children ia ∈ {i1, i2, . . . , is } of node i .
25: end parfor
26: end for
27: parfor all leaf node i in T do (hybrid load balancing)
28: bi = bi +Uizi .
29: end parfor
▷ Step 4: Dense multiplication

30: parfor all (i, j) ∈ D do (hybrid load balancing)
31: bi = bi + Di, jqj .
32: end parfor

Level-by-level calculations. Let the calculation at node i in a level-by-level computation phase be
referred to as task i . In the following phases, task i needs the results of multiple tasks in a lower
level or the result of a task in an upper level:

• the ID approximations inH 2-construction (lines 2-12 in Algorithm 2),
• the forward transformation inH 2-matvec (lines 3-11 in Algorithm 3),
• the backward transformation inH 2-matvec (lines 22-29 in Algorithm 3).

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:13

In these computational tasks, the accessed matrices K(Xi ,Yp), K(X̂i ,Yp),Ui , and Ri usually have
size smaller than 1000 × 1000. For such small matrices, the column-pivoted QR and matrix-vector
multiplications usually have poor parallel performance when using a large number of processors.
Instead of parallelizing these elementary computational kernels, we choose to parallelize across
the tasks in each level of T . Specifically, we parallelize the for-loops in line 4 of Algorithm 2 and in
lines 4, 23, and 27 of Algorithm 3 with OpenMP.
We use different load-balancing strategies for the three computation phases listed above. In

H 2-construction, since the size of K(X̂i ,Yp) at each non-leaf node is not known in advance, we use
OpenMP dynamic scheduling to balance the workload in the parallel loop of ID approximations in
each level. InH 2-matvec, the performance bottleneck of the forward and backward transformations
is the transfer ofUi and Ri from memory to processors. Since the sizes of Ui and Ri are known at
this stage, we use a greedy static partitioning scheme to approximately balance the total sizes of
matrices that each processor needs to load from memory.

Independent calculations. Let calculations associated with a block Bi, j or Di, j in an independent
computation phase be referred to as task (i, j) with (i, j) in the node pair sets A ∪Ap or D. In the
following phases, all tasks are independent and can be performed in parallel without restriction:

• the optional construction of Bi, j and Di, j inH 2-construction (lines 13 in Algorithm 2),
• the intermediate multiplication phase inH 2-matvec (lines 12-21 in Algorithm 3),
• the dense multiplication phase inH 2-matvec (lines 30-32 in Algorithm 3).

Note that, for each Bi, j or Di, j , both the computation cost of forming it and the communication cost
of transferring it from memory to a processor are proportional to its block size which is known
after the ID approximations in H 2-construction.

We first consider exploiting the symmetry property of these blocks Bi, j and Di, j . Since K(X ,X) is
symmetric, Bi, j = BTj,i if (i, j) is in A ∪Ap (corresponding to an admissible or partially admissible
block) andDi, j = DT

j,i if (i, j) is inD (corresponding to an inadmissible block). Thus, for each pair of
(i, j) and (j, i) inA∪Ap , only Bi, j is computed and the following two matrix-vector multiplications
in the intermediate multiplication phase will be performed on one processor simultaneously:

zi = zi + Bi, jyj , zj = zj + B
T
i, jyi .

The same approach applies to each pair of (i, j) and (j, i) in D with blocks Di, j .
We use a hybrid approach for parallelizing and load-balancing the independent calculations. In

this hybrid approach, a static partitioning is used for approximately balancing the workload on
each processor and a dynamic task scheduler is used for polishing the load balance. We use the
construction of blocks Bi, j to illustrate this approach. For P processors, we partition all tasks into
kP disjoint task units (1 ≤ k ≤ 20 is a prescribed constant) with a greedy algorithm such that the
total size of matrix blocks in each task unit is approximately the same. Each processor has k − 1
initial task units, which leads to approximately the same computation time for initial task units on
each processor. The last P task units form a task pool for dynamic task scheduling. After finishing
all its k − 1 initial task units, a processor starts to steal task units one by one from the task pool
until all task units have been consumed. If k = 1, the hybrid approach is equivalent to a static task
partitioning scheme. The construction of blocks Di, j , the intermediate multiplication phase, and
the dense multiplication phase are all parallelized in the same way.
Combining the utilization of the symmetry property and the hybrid parallelization approach

causes a new problem. In the intermediate and dense multiplication phases, two or more processors
may update the same zi or bi simultaneously, leading to incorrect results. Three solutions to this
problem are available. The first is to discard utilizing the symmetry property and then to partition
the corresponding tasks in a way that each zi and bi can be updated by only one processor. This

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:14 Hua Huang, Xin Xing, and Edmond Chow

approach is unfavorable since it leads to more data transfer between memory and processors and
higher computation cost. The second solution is to use atomic operations for updating zi and bi .
However, atomic operations are much slower than their non-atomic counterparts. In H2Pack, we
use the third solution that each processor uses local copies of zi and bi to accumulate local matrix-
vector multiplication results. All local copies of zi /bi are summed after the intermediate/dense
multiplication phase to form the actual zi /bi . The additional cost for summing local copies of zi
and bi is negligible compared to the main phases in H 2-matvec.

For multiplying multiple vectors simultaneously, H2Pack provides a separate H 2 matrix-matrix
multiplication (H 2-matmul) function. InH 2-matmul, vectors qi , bi , yi , and zi inH 2-matvec are
replaced by blocks Qi , Ci , Yi , and Zi , and the matrix-vector multiplications in H 2-matvec are
replaced by matrix-matrix multiplications. The multiplicand matrix Q could be stored in either
row-major or column-major format, with the output matrix C stored in the same format. H 2-
matmul adopts almost the same parallelization and load-balancing scheme as H 2-matvec. One
exception is thatH 2-matmul does not utilize the symmetry property of Bi, j and Di, j blocks. Instead,
independent calculation tasks with Bi, j and Di, j are partitioned in a way that each Zi andCi is only
updated by one processor. Processor-local Zi and Ci copies are not used since they could require a
large amount of memory.

3.2 Performance optimizations
We optimize H2Pack for state-of-the-art multi-core and many-core architectures. We first introduce
the H2Pack kernel function interface in Section 3.2.1. Next, we discuss two running modes of
H2Pack in Section 3.2.2. Then, we illustrate the use of intrinsic functions for better vectorization in
Section 3.2.3.

3.2.1 Kernel function interface. The performance of H2Pack relies on the performance of evaluat-
ing the kernel function. H 2-construction and H 2-matvec using just-in-time mode (to be discussed
in Section 3.2.2) both need to evaluate a large number of kernel matrix blocks. H2Pack provides
an optimized implementation of the 3D Laplace kernel K(x ,y) = 1/|x − y | which can be modified
easily for other kernel functions. In the following, we use the 3D Laplace kernel as an example to
show the H2Pack kernel function interface.
H2Pack provides a C language interface. A driver program must provide a pointer to a kernel

matrix evaluation (KME) function to use H2Pack. Listing 1 shows a KME function for the 3D Laplace
kernel. Lines 2-4 in Listing 1 are parameters of a KME function: two sets of point coordinates
coord0 and coord1 and the kernel matrix kmat to be returned. Input coord0 is a 3×n0 row-major
matrix with leading dimension ld0 and contains the coordinates of n0 points. Each column of
coord0 stores a point coordinate. The same storage scheme applies to coord1. The function returns
an n0×n1 kernel matrix stored in a row-major matrix kmat with leading dimension ldm. Note that
a KME function should be single-threaded and should only use variables or memory that can be
updated by the current thread.

The above design of a KME function is in order to facilitate the vectorization of multiple kernel
function evaluations. It would be easier for users to program a function evaluating the kernel
function for just a single pair of points. However, such a single-value function must be compiled
together with H2Pack so that the compiler can auto-vectorize multiple kernel function evaluations.
Using KME functions is more flexible: H2Pack only needs to be compiled once for different KME
functions, and a KME function can be auto-vectorized by the compiler (line 14 in Listing 1) or
manually vectorized (to be discussed in Section 3.2.3).

3.2.2 Ahead-of-time and just-in-time running modes. H2Pack provides two running modes of
H 2-construction and H 2-matvec: (1) ahead-of-time (AOT) mode computes and stores all Bi, j

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:15

Listing 1. Sample KME function for the 3D Laplace kernel

1 void Laplace_3D_krnl_eval(
2 const double *coord0 , const int ld0 , const int n0,
3 const double *coord1 , const int ld1 , const int n1,
4 double * restrict kmat , const int ldm
5)
6 {
7 const double *x0 = coord0 + ld0 * 0, *x1 = coord1 + ld1 * 0;
8 const double *y0 = coord0 + ld0 * 1, *y1 = coord1 + ld1 * 1;
9 const double *z0 = coord0 + ld0 * 2, *z1 = coord1 + ld1 * 2;
10 for (int i = 0; i < n0; i++)
11 {
12 double x0i = x0[i], y0i = y0[i], z0i = z0[i];
13 double *kmat_i = kmat + i * ldm;
14 #pragma omp simd / / R e q u i r e s t h e c omp i l e r t o v e c t o r i z e t h i s l o o p
15 for (int j = 0; j < n1; j++)
16 {
17 double dx = x1[j] - x0i;
18 double dy = y1[j] - y0i;
19 double dz = z1[j] - z0i;
20 double r2 = dx * dx + dy * dy + dz * dz;
21 double rinv = (r2 == 0.0) ? 0.0 : 1.0 / sqrt(r2);
22 kmat_i[j] = rinv;
23 }
24 }
25 }

and Di, j in H 2-construction, and (2) just-in-time (JIT) mode computes each Bi, j and Di, j when
needed in H 2-matvec without storing them. These two modes give flexibility in how to obtain
performance on different computing platforms for different kernel functions. We note that any
implementations ofH 2 matrix representations based on ID approximations, e.g., the SMASH library
and the STRUMPACK library, can also use both AOT and JIT modes.
The AOT mode is designed to avoid redundant calculation when the cost of kernel function

evaluation is high. To form Bi, j and Di, j , a large number of kernel function evaluations are needed.
Kernel functions with transcendental arithmetic (e.g., the Gaussian kernel K(x ,y) = exp(|x − y |2)
and the logarithm kernel K(x ,y) = log(|x − y |)) have much higher evaluation cost than those
without transcendental arithmetic. In such cases, using AOT mode could be more efficient than
using JIT mode forH 2-matvec. As a trade-off, AOT mode has much larger storage cost than JIT
mode due to the storage of Bi, j and Di, j .
The performance bottleneck of H 2-matvec in AOT mode is the transfer of Bi, j and Di, j from

memory to processors. Two optimizations are proposed forH 2-matvec in AOT mode, targeting
the intermediate and dense multiplication phases. First, we optimize for non-uniform memory
access (NUMA) architectures. The memory for Bi, j and Di, j blocks used by a processor is bound
to its NUMA node to reduce memory access latency and to fully utilize memory bandwidth of
all NUMA nodes in a computer. Second, we implement a bi-matrix-vector multiplication (BMV)
function that computes Ax0 and ATx1 with a matrix A and two input vectors x0, x1 simultaneously
to avoid loading the same Bi, j or Di, j block twice from memory or processor cache. This function
is not available in any existing optimized linear algebra library.
The JIT mode is designed to reduce the storage cost of an H 2 matrix representation. The total

size of all Bi, j and Di, j blocks is usually 10 to 100 times larger than that of other H 2 matrix

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:16 Hua Huang, Xin Xing, and Edmond Chow

Listing 2. Sample BKM function for the 3D Laplace kernel

1 void Laplace_3D_bi_krnl_matvec(
2 const double *coord0 , const int ld0 , const int n0,
3 const double *coord1 , const int ld1 , const int n1,
4 const double *xin0 , const double *xin1 ,
5 double * restrict xout0 , double * restrict xout1
6)
7 {
8 const double *x0 = coord0 + ld0 * 0, *x1 = coord1 + ld1 * 0;
9 const double *y0 = coord0 + ld0 * 1, *y1 = coord1 + ld1 * 1;
10 const double *z0 = coord0 + ld0 * 2, *z1 = coord1 + ld1 * 2;
11 for (int i = 0; i < n0; i++)
12 {
13 double x0i = x0[i], y0i = y0[i], z0i = z0[i], xin1_i = xin1[i];
14 double sum_i = 0.0;
15 #pragma omp simd / / R e q u i r e s t h e c omp i l e r t o v e c t o r i z e t h i s l o o p
16 for (int j = 0; j < n1; j++)
17 {
18 double dx = x1[j] - x0i;
19 double dy = y1[j] - y0i;
20 double dz = z1[j] - z0i;
21 double r2 = dx * dx + dy * dy + dz * dz;
22 double rinv = (r2 == 0.0) ? 0.0 : 1.0 / sqrt(r2);
23 sum_i += rinv * xin0[j];
24 xout1[j] += rinv * xin1;
25 }
26 xout0[i] += sum_i;
27 }
28 }

components. For a given memory size, by not storing Bi, j and Di, j blocks, H2Pack in JIT mode
can handle problems with far more points. We use the cache-blocking technique to optimize the
intermediate and dense multiplication phases in JIT mode. Specifically, we partition Bi, j or Di, j
into multiple subblocks such that each subblock and the coordinates associated with this subblock
can fit in processor L2 data cache. A small processor-private buffer is used for each processor to
temporarily store a dynamically generated subblock. Once a subblock is generated, we use this
subblock and the BMV function to compute two matrix-vector multiplications immediately. Since
only the point coordinates need to be transferred from memory to processors, the intermediate
and dense multiplication phases also have much smaller memory bandwidth pressure in JIT mode
than in AOT mode.
We further design a matrix-free approach forH 2-matvec in JIT mode using a bi-kernel matvec

(BKM) function (note that H 2-matmul does not use the BKM function). For two point sets X0 and
X1, a BKM function calculates two matrix-vector multiplications K(X0,X1)x0 and K(X1,X0)x1 at
the same time without explicitly storing any subblock of K(X0,X1) or K(X1,X0). Compared to using
a KME function, using a BKM function eliminates the transferring of the dynamically generated
subblocks of Bi, j and Di, j between a processor and its L2 data cache. Listing 2 shows a sample BKM
function for the 3D Laplace kernel. Lines 2-4 in Listing 2 are parameters of a BKM function: two
sets of point coordinates coord0 and coord1 stored in the same way as in the KME function, two
input vectors xin0, xin1, and two output vectors xout0, xout1. Input xin0 stores x0 and xout0
stores the result of K(X0,X1)x0. Input xin1 stores x1 and xout0 stores the result of K(X1,X0)x1.
The only difference between a KME function and a BKM function is that once a kernel function

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:17

Listing 3. Sample KME function for the 3D Laplace kernel using vector wrapper functions

1 void Laplace_3D_krnl_eval_vec(
2 const double *coord0 , const int ld0 , const int n0,
3 const double *coord1 , const int ld1 , const int n1,
4 double * restrict kmat , const int ldm
5)
6 {
7 const double *x0 = coord0 + ld0 * 0, *x1 = coord1 + ld1 * 0;
8 const double *y0 = coord0 + ld0 * 1, *y1 = coord1 + ld1 * 1;
9 const double *z0 = coord0 + ld0 * 2, *z1 = coord1 + ld1 * 2;
10 int n1_vec = (n1_vec / SIMD_LEN_D) * SIMD_LEN_D;
11 for (int i = 0; i < n0; i++)
12 {
13 double *kmat_i = kmat + i * ldm;
14 / / V e c t o r i z e d l o o p
15 vec_d x0i_v = vec_set1_d(x0[i]);
16 vec_d y0i_v = vec_set1_d(y0[i]);
17 vec_d z0i_v = vec_set1_d(z0[i]);
18 for (int j = 0; j < n1_vec; j += SIMD_LEN_D)
19 {
20 vec_d dx_v = vec_sub_d(vec_loadu_d(x1 + j), x0i_v);
21 vec_d dy_v = vec_sub_d(vec_loadu_d(y1 + j), y0i_v);
22 vec_d dz_v = vec_sub_d(vec_loadu_d(z1 + j), z0i_v);
23 vec_d r2_v = vec_mul_d(dx_v , dx_v);
24 r2_v = vec_fmadd_d(dy_v , dy_v , r2_v);
25 r2_v = vec_fmadd_d(dz_v , dz_v , r2_v);
26 vec_d rinv_v = vec_frsqrt_d(r2_v);
27 vec_storeu_d(kmat_i + j, rinv_v);
28 }
29 / / Remainder l o o p
30 double x0i = x0[i], y0i = y0[i], z0i = z0[i];
31 for (int j = n1_vec; j < n1; j++)
32 {
33 double dx = x1[j] - x0i;
34 double dy = y1[j] - y0i;
35 double dz = z1[j] - z0i;
36 double r2 = dx * dx + dy * dy + dz * dz;
37 double rinv = (r2 == 0.0) ? 0.0 : 1.0 / sqrt(r2);
38 kmat_i[j] = rinv;
39 }
40 }
41 }

value is calculated (line 21 in both Listing 1 and 2), a KME function stores this value to a matrix but
a BKM function consumes this value and discards it immediately. If the kernel function evaluation
is cheap (for example, for the 3D Laplace kernel) and we have fast processors but moderate memory
bandwidth, H 2-matvec in JIT mode using a BKM function could be faster than H 2-matvec in AOT
mode.

3.2.3 Vector intrinsics. Effectively vectorizing the KME and BKM functions is critical to high
performance of H2Pack. In general, KME and BKM functions for scalar kernels (kernels that return a
single value for a pair of points) using the same framework as Listing 1 and 2 can be auto-vectorized
by compilers. As an alternative, H2Pack provides a set of vector wrapper functions independent of

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:18 Hua Huang, Xin Xing, and Edmond Chow

the processor instruction set for manually vectorizing calculations with intrinsic functions. The
optimized KME and BKM functions provided in H2Pack for the 3D Laplace kernel use these vector
wrapper functions. Currently the vector wrapper functions supports AVX, AVX2, and AVX-512
instruction sets on x86 architecture. (Other architectures can also be supported in the future.)

Listing 3 shows a sample KME function for the 3D Laplace kernel using vector wrapper functions.
This function has two major parts in its inner loop: a manually vectorized loop using vector wrapper
functions (lines 15-28) and a remainder loop (lines 30-39) using scalar operations. All vector wrapper
functions are named as vec_{opname}_{d/s}, where opname is the operation name and the suffix
indicates the floating point data type (double (d) or float (s)). Constant value SIMD_LEN_D indicates
the number of double words in each vec_d vector data type. This constant is determined according
to the processor instruction set and H2Pack compilation options. Vector wrapper functions used in
Listing 3 are the most useful vector wrapper functions for programming KME and BKM functions.
A detailed list of all vector wrapper functions and their usage can be found in the H2Pack user
manual. For BKM functions, H2Pack automatically pads artificial points in coord0, coord1 and
pads extra zeros in xin0, xin1 to guarantee that n0 and n1 are multiples of SIMD_LEN_D. The
padding aims to simplify the programming of BKM functions since the remainder loop can be
eliminated.
Calculating the reciprocal square root (RSQRT) is an expensive step in evaluating 1/|x − y |,

which appears in many kernel functions. We thus implement a fast RSQRT function with x86
intrinsic functions based on the approach proposed in Ref. [27]. In this fast RSQRT function, a
dedicated intrinsic function is first used to calculate an approximate RSQRT value with relative
error less than 4×10−4. Then, two Newton-Raphson iterations are performed using the approximate
RSQRT value as an initial guess to obtain a more accurate RSQRT result with O(10−14) relative
error. The same or similar approaches to computing RSQRT have also been used in some existing
FMM implementations [7, 23].

4 NUMERICAL EXPERIMENTS
We consider two types of point distributions: random distributions on the unit sphere in 3D
(sphere point sets) and random distributions in the unit ball in 3D (ball point sets). For experiments
in Sections 4.1 and 4.5, we use an Intel Skylake node on the Stampede2 supercomputer at Texas
Advanced Computing Center. This node has two sockets and 192 GBDDR4memory. Each socket has
an Intel Xeon Platinum 8160 processor with 24 cores and 2 hyperthreads per core. For experiments
in Section 4.2, we use an Intel Skylake node described above and an Intel Knights Landing node.
The latter has an Intel Xeon Phi 7210 many-core processor with 64 cores and 4 hyperthreads per
core, 16 GB MCDRAM high-bandwidth memory, and 96 GB DDR4 memory. H2Pack is compiled
using Intel C compiler 2018.0.2 with optimization flags “-xHost -O3” on both nodes. Intel MKL
2018.0.2 is used in H2Pack to perform general matrix-vector multiplications (xGEMV) and general
matrix-matrix multiplications (xGEMM). Double precision floating point is used for storage and
calculations in H2Pack.

4.1 Accuracy tests
We first measure the accuracy ofH 2 matrix representations constructed by H2Pack under different
settings. We consider three kernel functions:

• 3D Laplace kernel: K(x ,y) = 1
|x−y | ,

• 3D Gaussian kernel: K(x ,y) = exp(−|x − y |2),
• 3D Stokes kernel: K(x ,y) = 1

|x−y | I +
(x−y)(x−y)T

|x−y |3 .

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:19

Table 1 shows the relative error of H 2-matvec for the two types of point sets with different
prescribed relative error thresholds for the ID approximation in H 2-construction. Both the sphere
and ball point sets contain 1 × 106 points. All the multiplicand vectors for H 2-matvec have entries
randomly and uniformly generated between [−1, 1]. Each reported relative error is the average
result obtained by 10 independent H 2-matvec tests. The prescribed relative error threshold varies
from 1 × 10−2 to 1 × 10−12. As can be observed, for all tested kernel functions and types of point
sets, the relative errors ofH 2-matvec are controlled by the prescribed threshold. Further, when the
relative error threshold is above 1 × 10−8, the actual relative error is usually an order of magnitude
smaller than the threshold.

Table 1. Relative error of H2-matvec in H2Pack for several kernel functions with different prescribed relative
error thresholds for the ID approximation in H2-construction (“ID approx. relerr”). Both sphere and ball
points sets are tested. Each point set contains 1 × 106 points.

ID approx. relerr 1.00E-2 1.00E-4 1.00E-6 1.00E-8 1.00E-10 1.00E-12

3D Laplace sphere 8.42E-4 3.68E-6 4.30E-8 6.35E-10 2.97E-11 9.20E-13
ball 8.21E-4 4.13E-6 4.54E-8 8.05E-10 4.27E-11 5.30E-13

3D Gaussian sphere 3.38E-3 1.89E-5 2.35E-7 4.25E-9 1.73E-11 2.38E-13
ball 3.57E-3 1.53E-5 1.46E-7 1.13E-9 1.09E-11 3.85E-12

3D Stokes sphere 1.26E-3 7.06E-6 6.02E-8 3.73E-10 2.46E-12 2.71E-12
ball 1.42E-3 7.72E-6 3.20E-7 2.61E-9 2.69E-11 2.76E-12

4.2 Scalability tests
We now demonstrate the strong scalability (fixed problem size) of H2Pack. We test the 3D Laplace
kernel with a ball point set of size 2 × 105 points and with 1 × 10−6 prescribed matvec relative error.
Under this setting, the constructed H 2 matrix representation in AOT mode can be completely
stored in the 16 GB MCDRAM high-bandwidth memory of the Knights Landing node. On the
Skylake node, we run H2Pack using one thread per core on all 48 cores. On the Knights Landing
node, we run H2Pack using one thread per core on all 64 cores. Figure 5 shows the timings of
H 2-construction (“build”) and H 2-matvec (“matvec”) of H2Pack in AOT and JIT modes on the two
different nodes.

For H 2-construction, JIT mode is faster than AOT mode on both types of compute nodes since
AOT mode additionally calculates and stores Bi, j and Di, j blocks. For both modes, however,H 2-
construction does not fully scale to all the cores on both types of nodes. The reason is that the
performance of H 2-construction is limited by memory bandwidth. The major computational
kernel inH 2-construction in both modes is the column-pivoted QR factorization to compute ID
approximations (lines 6 and 9 in Algorithm 2). On both nodes, this computational kernel takes more
than 95% and 50% ofH 2-construction time in JIT mode and AOT mode, respectively. Meanwhile,
this computational kernel has a low computation-to-memory-access ratio and thus its performance
is determined by the memory access bandwidth. Intel VTune (Intel performance profiling software)
reports that the achieved memory bandwidth of this computational kernel is more than 80% of the
peak memory bandwidth when using all cores on both nodes.
For H 2-matvec, JIT mode is faster than AOT mode on the Skylake node while AOT mode is

faster than JIT mode on the Knights Landing node, which is due to hardware differences between
the Skylake node and the Knights Landing node. The Knights Landing node has high memory

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:20 Hua Huang, Xin Xing, and Edmond Chow

1 2 4 8 16 24 48

Number of cores on the Skylake node

10-1

100

101

S
ec

on
ds

AOT build
AOT matvec
JIT build
JIT matvec
JIT matvec projected

1 2 4 8 16 32 64

Number of cores on the Knights Landing node

10-1

100

101

S
ec

on
ds

AOT build
AOT matvec
JIT build
JIT matvec

Fig. 5. H2Pack H2 construction (“build”) and H2 matvec (“matvec”) timings in AOT mode and JIT mode
on an Intel Skylake node (left) and an Intel Knights Landing node (right) using different numbers of cores.
ProjectedH2-matvec time in JIT mode assuming all processors always run at 3.5GHz (“JIT matvec projected”)
on the Skylake node is also plotted as a reference. A ball point set with 2 × 105 points and a 10−6 prescribed
matvec relative error are used.

bandwidth but its single core performance is only moderate. On this node, the parallel efficiencies of
H 2-matvec in JIT and AOT modes are 89.0% and 70.5%, respectively, showing excellent scalability.
Intel VTune reports that H 2-matvec in AOT mode only utilizes about 65% of the peak MCDRAM
memory bandwidth on the Knights Landing node when using all 64 cores. The Skylake node has
powerful processor cores with moderate memory bandwidth. On this node, the parallel efficiencies
ofH 2-matvec in JIT and AOT modes are only 33.1% and 42.3%, respectively. Intel VTune reports
thatH 2-matvec in AOT mode achieved 79% and 90% of the peak memory bandwidth when using 24
and 48 cores on the Skylake node, suggesting that the lower parallel efficiency in AOT mode than
in JIT mode is caused by the memory bandwidth limit. Furthermore, the lower parallel efficiency in
JIT mode on the Skylake node than on the Knights Landing node (i.e., 33.1% v.s. 89.0%) is due to
Intel Turbo Boost technology on Intel Xeon Platinum processors. If only one core is active on a
Xeon Platinum 8160 processor (on the Skylake node), this core runs at 3.5 GHz. The more active
cores, the lower the clock frequency of the cores. If all 24 cores are active, all the cores run at only
2.0 GHz. In comparison, all cores on the Knights Landing node always run at 1.4 GHz. This decrease
of core frequency reduces the parallel efficiency of H 2-matvec in JIT mode which requires a large
number of kernel function evaluations. In Figure 5, we also plot the projected execution time for
H 2-matvec in JIT mode on the Skylake node assuming that all its cores always run at 3.5 GHz. The
projected parallel efficiency of H 2-matvec in JIT mode is 72.5% when using 48 cores.

Lastly, we also measure the performance ofH 2-matvec in JIT mode in terms of giga floating-point
operations per second (GFLOPS). To measure this performance, we note that evaluating one value
of the 3D Laplace kernel requires 19 floating-point operations (8 for the squared distance, 1 for
the approximate RSQRT and 10 for two Newton iterations). On the Skylake node,H 2-matvec in
JIT mode achieved 1047 GFLOPS (34.9% of the peak performance). On the Knights Landing node,
H 2-matvec in JIT mode achieved 651 GFLOPS (24.5% of the peak performance).

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:21

Table 2. Timing results (in seconds) of H2-construction and H2-matvec using different implementations of
KME and BKM functions for 3D Gaussian kernel: no vectorization (“no-vec”), automatic vectorization by the
Intel C compiler (“auto-vec”), and manual vectorization by vector wrapper functions (“wrap-vec”). The JIT
mode and relative error threshold 10−6 are used in all the tests.

#pts ×105 ball sphere
1 4 16 1 4 16

H 2-construction
KME no-vec 0.046 0.142 0.583 0.051 0.127 0.400
KME auto-vec 0.045 0.131 0.574 0.049 0.123 0.396
KME wrap-vec 0.043 0.128 0.566 0.050 0.123 0.394
H 2-matvec
KME no-vec 0.086 0.211 0.504 0.035 0.117 0.499
KME auto-vec 0.028 0.075 0.188 0.012 0.041 0.172
KME wrap-vec 0.018 0.057 0.146 0.008 0.035 0.119
BKM no-vec 0.092 0.264 0.735 0.040 0.138 0.586
BKM auto-vec 0.028 0.076 0.209 0.012 0.041 0.178
BKM wrap-vec 0.013 0.037 0.118 0.006 0.029 0.089

4.3 Performance improvements by BKM and vectorization
The efficient evaluation of kernel functions is crucial to the overall performance ofH 2-construction
andH 2-matvec (in JIT mode). In this section, we study the performance improvements brought
by the BKM interface and vector wrapper functions. Table 2 shows the timing results of H 2-
construction and H 2-matvec using different implementations of KME and BKM functions for the
3D Gaussian kernel K(x ,y) = exp(−|x −y |2): no vectorization, automatic vectorization by the Intel
C compiler, and our manual vectorization by vector wrapper functions.

As explained in Section 4.2,H 2-construction in JIT mode is dominated by the column-pivoted QR
factorization, and thus only gains minor performance improvements from vectorization. Meanwhile,
both automatic andmanual vectorization of KME and BKM functions can lead to 300%-400% speedup
inH 2-matvec, with the manual vectorization being 20%-50% faster than the automatic vectorization.
Comparing KME and BKM functions forH 2-matvec, using KME functions without vectorization
or with automatic vectorization can be even faster than using BKM functions. This is because the
dense matrix-vector multiplication after evaluating a kernel block by KME functions is vectorized
in the BLAS library. On the other hand, based on the manual vectorization, using BKM functions is
20%-35% faster than using KME functions.

4.4 Comparison between H 2-matvec and H 2-matmul
In this section, we compare the performance of H 2-matvec and H 2-matmul in H2Pack for multi-
plying multiple vectors. In the latter, the vectors are assumed to be available at the same time and
the multiplications are performed simultaneously. Figure 6 shows the timings ofH 2-matvec and
H 2-matmul to multiply different numbers of vectors in both AOT and JIT modes. The runtime of
H 2-matmul increases much more slowly with the number of vectors compared toH 2-matvec. This
indicates that calculating Bi, j and Di, j blocks in JIT mode or transferring these blocks from main
memory to processor cache in AOT mode are very expensive compared to the actual multiplication.
For a single vector, H 2-matmul is slower than H 2-matvec because the symmetry property of
Bi, j and Di, j is not exploited (see Section 3.1). In AOT mode, the performance of H 2-matmul is

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:22 Hua Huang, Xin Xing, and Edmond Chow

further affected by NUMA. H 2-matvec uses a fixed workload partitioning and Bi, j and Di, j blocks
are optimized for this fixed partitioning using the first-touch policy.H 2-matmul uses a different
workload partitioning, making it hard to optimize for NUMA without almost doubling the storage.

1 2 4 8 12 16 20 24 28 32

Number of vectors

0

1

2

3

4

5

6

T
im

e
(s

ec
on

ds
)

JIT matvec
JIT matmul
AOT matvec
AOT matmul

Fig. 6. Timings ofH2-matvec andH2-matmul (in seconds) in AOT and JIT modes for multiplying different
numbers of vectors. The test settings are: the 3D Laplace kernel, a ball point set with 1.6×106 points, prescribed
relative error threshold 10−6, and the Skylake node with 48 cores. The results are qualitatively similar for
other kernel functions and point sets. Column-major format for the matrix of vectors was used; the timings
for row-major format are very similar. The correspondingH2-construction in AOT and JIT modes take 2.54
seconds and 1.11 seconds, respectively.

4.5 Comparison with fast multipole methods
In this section, we compare the performance of H2Pack with two fast multipole method (FMM)
libraries: the FMM3D library implements the standard FMM and the PVFMM library implements
the kernel independent FMM (KIFMM). We note that FMM3D works for the 3D Laplace, Stokes,
and Helmholtz kernels, PVFMM works for kernel functions from potential theory, and H2Pack
can work for non-oscillatory kernel functions in general. For all the libraries, we use the same sets
of points and test using the 3D Laplace kernel. The number of points in X ranges from 1 × 105
to 1.6 × 106. For all three libraries, we specify that a box is further partitioned into smaller boxes
if it contains more than 400 points in the hierarchical partitioning of X . For H2Pack, JIT mode is
used. All three libraries are compiled using Intel C/C++/Fortran compilers and Intel MPI 2018.0.2
with optimization flags “-xHost -O3”. Intel MKL 2018.0.2 is used to perform optimized general
matrix-vector multiplications (xGEMV), general matrix-matrix multiplications (xGEMM), and fast
Fourier transformations that appear in these three libraries. Double precision floating point is used
for storage and calculations in all three libraries.
We run all three libraries using one thread per core on all 48 cores on a Skylake node. Tables 3

to 5 show the test results corresponding to relative multiplication accuracy of approximately 10−5,
10−8, and 10−11, respectively. The tables show results for the following quantities:

• Precomputation cost. The runtime of specific precomputations in H2Pack and PVFMM
that can be reused for different sets of points but not for different accuracy requirements
and for different kernel functions. (FMM3D does not have precomputations.) In H2Pack,

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:23

the precomputation involves computing the proxy points. In PVFMM, the precomputation
involves computing fixed translation operators in KIFMM and storing them into a file.

• Setup cost. The runtime of all the computations other than the precomputations above
before matrix-vector multiplications, i.e., hierarchical partitioning of X in all the libraries
andH 2-construction in H2Pack.

• Peak memory. The peak memory usage recorded by the operating system during the entire
program execution (precomputation, setup, and matrix-vector multiplication).

• Storage cost. The storage cost of the translation operators in PVFMM and of the H 2 matrix
components in H2Pack. (FMM3D does not report its storage cost.)

• Runtime and relative error of the multiplication. These results are averaged over 5
multiplications by random vectors for each point set X . For each multiplication, denoted as
an approximation AH2v ≈ b = K(X ,X)v , its relative error is measured as

relerr =
√∑

i ∈S (bi − (AH2v)i)2√∑
i ∈S b

2
i

,

where S is a set of 10000 indices randomly chosen from 1 to the length of b and the entries
{bi }i ∈S are computed via direct matrix-vector multiplication.

• Degree and rank. The “degree” in PVFMM and FMM3D is an input parameter characterizing
the number of expansion terms used for analytic compression of kernel matrix blocks. In
PVFMM, a degree of k corresponds to a rank-6k2 analytic approximation of each block to be
compressed in the equivalentH 2 matrix representation. In FMM3D, a degree of k corresponds
to the approximation rank being (k + 1)2. For H2Pack, the resulting maximum and average
ranks of all the low-rank approximations in each constructedH 2 matrix are listed.

From the results, the cost for H 2-construction (“setup”) in H2Pack scales linearly in the number
of points and increases with higher relative multiplication accuracy. For points in a unit ball, the
H2Pack setup cost can be much more expensive than the setup costs in PVFMM and FMM3D.
However, the setup cost of H2Pack is much cheaper for points on the unit sphere than in the unit ball.
This is due to the smaller approximation ranks for all the blocks compressed in H 2-construction.

The maximum and average approximation ranks in H2Pack are all much smaller than those
in PVFMM and FMM3D. The approximation ranks in H2Pack are different with different point
distributions, while PVFMM and FMM3D have fixed approximation ranks for both types of point
distributions. As a result, H2Pack is the fastest library for matrix-vector multiplications among the
three and this efficiency advantage becomes even greater when dealing with points on the unit
sphere, i.e., around 5 times faster than PVFMM and 25 times faster than FMM3D.
The storage cost of H2Pack is proportional to the number of points and the approximation

ranks in the constructed H 2 matrices. In comparison, the storage cost of PVFMM changes very
mildly under different problem settings. H2Pack has much smaller storage cost for small problems
compared with PVFMM but ultimately can have larger storage cost when the number of points or
the relative accuracy increases. For example, H2Pack begins to have more storage cost for 8 × 105
points in the unit ball with relative accuracy 10−11. FMM3D does not report its storage cost but
theoretically only has very small storage cost for temporary components.

It is worth noting that the peak memory recorded by the operating system depends on the actual
implementations of these libraries and can only be used as a rough reference for comparing the
three different methods. As can be noted, H2Pack has its peak memory increasing much faster than
PVFMM and eventually has larger peak memory than PVFMM when dealing with large numbers
of points and high relative accuracy, e.g., 8× 105 points in the unit ball with relative accuracy 10−11.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:24 Hua Huang, Xin Xing, and Edmond Chow

Meanwhile, FMM3D also has increasing peak memory with more points but has the smallest peak
memory among the three libraries when dealing with a large number of points.

Compared to FMM3D, both H2Pack and PVFMM have relatively expensive precomputations. For
H2Pack, the precomputation involves the kernel-related proxy point selection. However, for a given
kernel function, the selected proxy points in H2Pack can be saved to a file and reused in future
computations. For certain kernel functions such as the Laplace and Stokes kernels, H2Pack can also
apply the proxy surface method [24] to generate the proxy points with negligible computation cost.
For PVFMM, the precomputation involves computing fixed translation operators and its complexity
depends on the kernel function and the degree parameter (which controls the relative accuracy).
These precomputed results in PVFMM are stored in files for reuse. Since the precomputations in
H2Pack and PVFMM can be reused when the kernel function and the relative accuracy are fixed,
the precomputation costs typically make no impact in practice.
Figure 7 shows the timings and parallel efficiencies of the “setup” and “matvec” procedures of

the three tested libraries. For H2Pack, the results in Figure 7 are similar to the results in Figure 5,
but the parallel efficiency ofH 2-matvec when using 48 cores is higher in Figure 7 (49.9% v.s. 33.1%)
due to more points and a larger parallelism. The setup procedure is not parallelized in FMM3D and
not fully parallelized in PVFMM, leading to poor parallel efficiencies in FMM3D and PVFMM for
the setup. Although FMM3D has slightly better parallel efficiency in matvec compared to PVFMM
and H2Pack, its absolute matvec time is much larger than the matvec time of PVFMM and H2Pack.

1 2 4 8 16 24 48

Number of cores on the Skylake node

10-1

100

101

S
ec

on
ds

H2Pack setup
PVFMM setup
FMM3D setup
H2Pack matvec
PVFMM matvec
FMM3D matvec

1 2 4 8 16 24 48

Number of cores on the Skylake node

0

10

20

30

40

50

60

70

80

90

100

P
ar

al
le

l e
ffi

ci
en

cy
 (

pe
rc

en
ta

ge
)

Fig. 7. Setup and matvec timings (in seconds) and parallel efficiency (in percentage) using different numbers
of cores on a Skylake node for FMM3D, PVFMM, and H2Pack. A ball point set with 4 × 105 points and a 10−8
prescribed matvec relative error threshold are used.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:25

Table 3. Numerical results of the three libraries with relative accuracy around 10−5. “Precomp” refers to
the precomputations in H2Pack and PVFMM. “Mem” refers to the peak memory usage recorded by the
operating system. “Storage” refers to the storage cost of translation operators in PVFMM and that of H2

matrix components in H2Pack.

H2Pack
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr max/avg rank
sphere 1 0.185 0.062 0.005 519 15 1.63E-05 29/15
sphere 2 0.194 0.082 0.010 436 30 1.91E-05 28/15
sphere 4 0.187 0.125 0.018 569 59 2.12E-05 28/15
sphere 8 0.239 0.223 0.037 839 119 2.34E-05 28/15
sphere 16 0.278 0.444 0.075 1345 234 2.64E-05 28/15
ball 1 0.159 0.073 0.010 669 43 1.68E-05 69/40
ball 2 0.162 0.160 0.019 823 89 1.86E-05 69/35
ball 4 0.157 0.173 0.035 836 163 2.14E-05 71/39
ball 8 0.194 0.249 0.090 1181 308 2.56E-05 70/38
ball 16 0.189 0.784 0.149 2418 723 2.84E-05 70/37

PVFMM
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr degree rank
sphere 1 1.161 0.069 0.020 1164 1138 7.51E-06 5 150
sphere 2 1.117 0.087 0.027 1388 1186 8.85E-06 5 150
sphere 4 1.114 0.134 0.056 1799 1271 6.41E-06 5 150
sphere 8 1.163 0.328 0.132 2753 1461 9.91E-06 5 150
sphere 16 1.115 0.686 0.230 4528 1845 9.70E-06 5 150
ball 1 1.113 0.042 0.035 1128 1134 1.99E-05 5 150
ball 2 1.113 0.083 0.030 1355 1186 1.49E-05 5 150
ball 4 1.114 0.113 0.075 1751 1252 1.85E-05 5 150
ball 8 1.113 0.221 0.267 2547 1394 2.98E-05 5 150
ball 16 1.115 0.691 0.219 4518 1832 1.54E-05 5 150

FMM3D
#pts ×105 setup(s) matvec(s) mem(MB) relerr degree rank
sphere 1 0.041 0.120 238 8.81E-06 15 256
sphere 2 0.085 0.163 414 8.88E-06 15 256
sphere 4 0.183 0.329 747 9.41E-06 15 256
sphere 8 0.441 0.626 1397 8.61E-06 15 256
sphere 16 1.025 1.259 2784 9.56E-06 15 256
ball 1 0.042 0.167 302 6.55E-06 15 256
ball 2 0.081 0.168 353 6.85E-06 15 256
ball 4 0.170 0.192 554 6.77E-06 15 256
ball 8 0.443 1.266 1830 6.84E-06 15 256
ball 16 0.955 1.261 2025 6.75E-06 15 256

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:26 Hua Huang, Xin Xing, and Edmond Chow

Table 4. Numerical results of the three libraries with relative accuracy around 10−8.

H2Pack
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr max/avg rank
sphere 1 0.349 0.095 0.006 778 47 1.20E-08 77/39
sphere 2 0.419 0.143 0.012 717 90 1.43E-08 78/36
sphere 4 0.612 0.199 0.023 908 176 1.74E-08 78/36
sphere 8 0.727 0.326 0.047 1320 352 1.83E-08 79/37
sphere 16 0.948 0.589 0.097 2046 687 2.04E-08 77/36
ball 1 0.417 0.135 0.021 857 137 1.71E-08 194/96
ball 2 0.352 0.247 0.044 1294 331 1.68E-08 201/78
ball 4 0.339 0.312 0.078 1652 561 2.19E-08 203/94
ball 8 0.500 0.417 0.141 2246 984 2.58E-08 206/90
ball 16 0.438 1.190 0.340 4642 2362 3.07E-08 205/78

PVFMM
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr degree rank
sphere 1 2.981 0.048 0.030 1397 1211 2.35E-08 8 384
sphere 2 2.967 0.089 0.052 1597 1266 2.46E-08 8 384
sphere 4 2.966 0.138 0.122 2112 1358 1.75E-08 8 384
sphere 8 2.966 0.471 0.201 3288 1574 2.57E-08 8 384
sphere 16 2.967 0.658 0.420 4927 1994 2.70E-08 8 384
ball 1 2.970 0.043 0.041 1233 1205 3.57E-08 8 384
ball 2 2.957 0.087 0.058 1530 1264 2.48E-08 8 384
ball 4 2.955 0.115 0.118 1948 1331 3.55E-08 8 384
ball 8 2.959 0.336 0.330 2800 1477 4.07E-08 8 384
ball 16 2.954 0.883 0.454 5052 1971 3.97E-08 8 384

FMM3D
#pts ×105 setup(s) matvec(s) mem(MB) relerr degree rank
sphere 1 0.041 0.156 298 1.10E-08 21 484
sphere 2 0.084 0.295 454 1.21E-08 21 484
sphere 4 0.184 0.535 860 1.14E-08 21 484
sphere 8 0.418 1.099 1615 1.19E-08 21 484
sphere 16 1.027 2.138 3235 1.28E-08 21 484
ball 1 0.042 0.172 366 1.13E-08 21 484
ball 2 0.081 0.210 359 1.10E-08 21 484
ball 4 0.171 0.863 632 1.11E-08 21 484
ball 8 0.452 1.037 2113 1.11E-08 21 484
ball 16 0.926 1.322 2330 1.18E-08 21 484

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

H2Pack: High-PerformanceH 2 Matrix Package 0:27

Table 5. Numerical results of the three libraries with relative accuracy around 10−11.

H2Pack
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr max/avg rank
sphere 1 0.962 0.159 0.009 1222 114 5.66E-12 165/73
sphere 2 1.018 0.203 0.019 1160 236 6.06E-12 165/70
sphere 4 1.151 0.292 0.035 1616 437 7.90E-12 165/69
sphere 8 1.022 0.493 0.072 2398 864 8.43E-12 165/69
sphere 16 1.728 0.903 0.144 4035 1707 9.13E-12 166/68
ball 1 0.906 0.590 0.035 1676 391 2.35E-12 444/184
ball 2 0.873 0.847 0.082 2270 796 6.65E-12 450/109
ball 4 0.792 1.502 0.177 3590 1604 9.93E-12 444/168
ball 8 1.011 2.438 0.305 5426 2709 1.86E-11 450/167
ball 16 0.941 4.057 0.633 9442 5539 2.50E-11 449/109

PVFMM
#pts ×105 precomp(s) setup(s) matvec(s) mem(MB) storage(MB) relerr degree rank
sphere 1 9.700 0.055 0.054 1953 1445 1.29E-11 12 864
sphere 2 9.559 0.104 0.126 2196 1517 1.47E-11 12 864
sphere 4 9.558 0.159 0.234 2555 1624 9.75E-12 12 864
sphere 8 9.562 0.600 0.491 3535 1893 1.44E-11 12 864
sphere 16 9.575 1.014 0.890 5496 2392 1.69E-11 12 864
ball 1 9.547 0.056 0.060 1527 1434 2.76E-11 12 864
ball 2 9.578 0.158 0.151 2086 1510 2.22E-11 12 864
ball 4 9.652 0.180 0.181 2514 1578 2.73E-11 12 864
ball 8 9.595 0.410 0.430 3552 1880 4.31E-11 12 864
ball 16 9.607 0.784 1.123 5544 2351 2.17E-11 12 864

FMM3D
#pts ×105 setup(s) matvec(s) mem(MB) relerr degree rank
sphere 1 0.034 0.272 278 9.90E-12 29 900
sphere 2 0.078 0.472 553 1.08E-11 29 900
sphere 4 0.167 0.899 907 1.09E-11 29 900
sphere 8 0.375 1.698 1780 1.12E-11 29 900
sphere 16 0.917 3.541 3366 1.11E-11 29 900
ball 1 0.037 0.238 208 9.55E-12 29 900
ball 2 0.098 0.522 678 1.07E-11 29 900
ball 4 0.163 0.654 728 1.10E-11 29 900
ball 8 0.346 2.117 994 1.08E-11 29 900
ball 16 0.947 3.106 4502 1.14E-11 29 900

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

0:28 Hua Huang, Xin Xing, and Edmond Chow

To summarize, the numerical comparisons above show that FMM libraries typically have less cost
for setup and storage but also typically have slowermatrix-vectormultiplications thanH2Pack. Thus,
FMM libraries are more suitable for problems where only a few matrix-vector multiplications are
required per set of points, e.g., particle simulations. Meanwhile, H2Pack ismore suitable for problems
where many matrix-vector multiplications are required per set of points, e.g., numerical solution of
integral equations and Gaussian processes, so that the relatively expensiveH 2 construction cost
can be amortized by many multiplications.

5 CONCLUSION
H2Pack provides linear-scaling matrix-vector multiplication for kernel matrices defined by non-
oscillatory kernel functions. Such multiplications are needed on their own in many applications,
but can also be used in iterative solvers for kernel matrix systems. The critical step for linear-scaling
matrix-vector multiplication is constructing the H 2 matrix representation of the kernel matrix.
In H2Pack, this is done by using the recently-developed proxy point method. The advantages of
using the proxy point method are (1) greater generality compared to other methods (e.g., it works
for Gaussian kernels), and (2) more effective block low-rank compression compared to analytic
methods such as those used in FMM. The latter is what makes H2Pack matrix-vector multiplication
faster than kernel summation in FMM libraries. On the other hand, constructing the H 2 matrix
representation in H2Pack is often more expensive than the setup phase in FMM libraries.

We have focused on translationally-invariant kernels. This allows the proxy points for each box
(in a given level of the partition tree) to be translates of each other, thus reducing the overall cost
of proxy point selection. We have also focused on 2D and 3D problems, as is common for FMM
libraries. H2Pack can be extended to higher dimensions if a cheap method of selecting proxy points
in higher dimensions is available.
In standardH 2 matrix representations, blocks of the matrix are either admissible (represented

as a low-rank block) or inadmissible (represented as a dense block). In H2Pack, we introduce the
concept of partially admissible blocks. Such blocks arise with non-uniform distributions of points,
leading to non-perfect partition trees. By treating partially admissible blocks in the appropriate
way (rather than as either admissible or inadmissible), the representation of these blocks is more
efficient. The same technique exists in FMM libraries but not in existing H 2 matrix libraries.
H2Pack has been optimized for high-performance on shared-memory parallel computers. Im-

portant considerations are vectorization of kernel function evaluations, reducing memory traffic,
and load balancing. Just-in-time and ahead-of-time modes are provided to trade computation with
storage and memory traffic. Vectorization of kernel function evaluations is particularly important
in just-in-time mode, and a kernel function interface is described. Numerical tests show good
scaling of H2Pack matrix-vector multiplication with the number of cores. For constructing the
H 2 matrix representations, the performance with large numbers of cores is limited by the high
memory bandwidth requirement of the column-pivoted QR factorization used in the code.

ACKNOWLEDGMENTS
Funding from the National Science Foundation grant ACI-1609842 is gratefully acknowledged.

REFERENCES
[1] Mario Bebendorf and Stefan Kunis. 2009. Recompression techniques for adaptive cross approximation. The Journal of

Integral Equations and Applications 21, 3 (2009), 331–357.
[2] Mario Bebendorf and Sergej Rjasanow. 2003. Adaptive low-rank approximation of collocation matrices. Computing 70,

1 (2003), 1–24.
[3] Steffen Börm. 2017, accessed: 2019-12-05. H2Lib. (2017, accessed: 2019-12-05). https://github.com/H2Lib/H2Lib/tree/

community

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

https://github.com/H2Lib/H2Lib/tree/community
https://github.com/H2Lib/H2Lib/tree/community

H2Pack: High-PerformanceH 2 Matrix Package 0:29

[4] Steffen Börm and Lars Grasedyck. 2005. Hybrid cross approximation of integral operators. Numer. Math. 101, 2 (2005),
221–249.

[5] Wajih Boukaram, George Turkiyyah, and David Keyes. 2019. Hierarchical matrix operations on GPUs: Matrix-vector
multiplication and compression. ACM Trans. Math. Softw. 45, 1, Article 3 (2019), 28 pages.

[6] Difeng Cai, Edmond Chow, Lucas Erlandson, Yousef Saad, and Yuanzhe Xi. 2018. SMASH: Structured matrix approxi-
mation by separation and hierarchy. Numerical Linear Algebra with Applications 25, 6 (2018), e2204.

[7] Aparna Chandramowlishwaran, Samuel Williams, Leonid Oliker, Ilya Lashuk, George Biros, and Richard Vuduc. 2010.
Optimizing and tuning the fast multipole method for state-of-the-art multicore architectures. In 2010 IEEE International
Symposium on Parallel Distributed Processing (IPDPS). 1–12.

[8] Shiv Chandrasekaran, Ming Gu, and Timothy P. Pals. 2006. A fast ULV decomposition solver for hierarchically
semiseparable representations. SIAM J. Matrix Anal. Appl. 28, 3 (2006), 603–622.

[9] Hongwei Cheng, Zydrunas Gimbutas, Per-Gunnar Martinsson, and Vladimir Rokhlin. 2005. On the compression of
low rank matrices. SIAM Journal on Scientific Computing 26, 4 (2005), 1389–1404.

[10] Eduardo Corona, Per-Gunnar Martinsson, and Denis Zorin. 2015. An O (N) direct solver for integral equations on the
plane. Applied and Computational Harmonic Analysis 38, 2 (2015), 284–317.

[11] William Fong and Eric Darve. 2009. The black-box fast multipole method. J. Comput. Phys. 228, 23 (2009), 8712–8725.
[12] Pieter Ghysels, Xiaoye S. Li, Francois-Henry Rouet, Samuel Williams, and Artem Napov. 2016. An efficient multicore

implementation of a novel HSS-structured multifrontal solver using randomized sampling. SIAM Journal on Scientific
Computing 38, 5 (2016), S358–S384.

[13] Zydrunas Gimbutas, Leslie Greengard, JeremyMagland, Manas Rachh, and Vladimir Rokhlin. 2019, accessed: 2019-12-05.
FMM3D. (2019, accessed: 2019-12-05). https://fmm3d.readthedocs.io

[14] Leslie F. Greengard and Jingfang Huang. 2002. A new version of the fast multipole method for screened Coulomb
interactions in three dimensions. J. Comput. Phys. 180, 2 (2002), 642–658.

[15] Leslie F. Greengard and Vladimir Rokhlin. 1987. A fast algorithm for particle simulations. J. Comput. Phys. 73, 2 (1987),
325–348.

[16] Leslie F. Greengard and Vladimir Rokhlin. 1997. A new version of the fast multipole method for the Laplace equation
in three dimensions. Acta Numerica 6 (1997), 229–269.

[17] Ming Gu and Stanley C. Eisenstat. 1996. Efficient algorithms for computing a strong rank-revealing QR factorization.
SIAM Journal on Scientific Computing 17, 4 (1996), 848–869.

[18] Wolfgang Hackbusch. 1999. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices.
Computing 62, 2 (1999), 89–108.

[19] Wolfgang Hackbusch and Steffen Börm. 2002. Data-sparse approximation by adaptive H2-matrices. Computing 69, 1
(2002), 1–35.

[20] Wolfgang Hackbusch and Boris N. Khoromskij. 2000. A sparse H-matrix arithmetic. Part II: Application to multi-
dimensional problems. Computing 64, 1 (2000), 21–47.

[21] Wolfgang Hackbusch, Boris N. Khoromskij, and Stefan A. Sauter. 2000. On H2-matrices. In Lectures on Applied
Mathematics: Proceedings of the Symposium Organized by the Sonderforschungsbereich 438 on the occasion of Karl-Heinz
Hoffmann’s 60th birthday, Munich, June 30 - July 1, 1999, Hans-Joachim Bungartz, Ronald H. W. Hoppe, and Christoph
Zenger (Eds.). Springer, Berlin, 9–29.

[22] N. Halko, P. Martinsson, and J. Tropp. 2011. Finding structurewith randomness: probabilistic algorithms for constructing
approximate matrix decompositions. SIAM Rev. 53, 2 (2011), 217–288.

[23] Dhairya Malhotra and George Biros. 2015. PVFMM: A parallel kernel independent FMM for particle and volume
potentials. Communications in Computational Physics 18, 3 (2015), 808–830.

[24] Per-Gunnar Martinsson and Vladimir Rokhlin. 2005. A fast direct solver for boundary integral equations in two
dimensions. J. Comput. Phys. 205, 1 (2005), 1–23.

[25] Per-Gunnar Martinsson and Vladimir Rokhlin. 2007. An accelerated kernel-independent fast multipole method in one
dimension. SIAM Journal on Scientific Computing 29, 3 (2007), 1160–1178.

[26] Victor Minden, Anil Damle, Kenneth L. Ho, and Lexing Ying. 2017. Fast spatial Gaussian process maximum likelihood
estimation via skeletonization factorizations. Multiscale Modeling & Simulation 15, 4 (2017), 1584–1611.

[27] Keigo Nitadori, Junichiro Makino, and Piet Hut. 2006. Performance tuning of N-body codes on modern microprocessors:
I. Direct integration with a hermite scheme on x86_64 architecture. New Astronomy 12, 3 (2006), 169 – 181.

[28] François-Henry Rouet, Xiaoye S. Li, Pieter Ghysels, and Artem Napov. 2016. A distributed-memory package for
dense hierarchically semi-separable matrix computations using randomization. ACM Trans. Math. Softw. 42, 4 (2016),
27:1–27:35.

[29] Ruoxi Wang. 2018, accessed: 2019-12-05. BBFMM3D. (2018, accessed: 2019-12-05). https://github.com/ruoxi-wang/
BBFMM3D

[30] Xin Xing. 2019. The proxy point method for rank-structured matrices. Ph.D. Dissertation. Georgia Institute of Technology.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

https://fmm3d.readthedocs.io
https://github.com/ruoxi-wang/BBFMM3D
https://github.com/ruoxi-wang/BBFMM3D

0:30 Hua Huang, Xin Xing, and Edmond Chow

[31] Xin Xing and Edmond Chow. 2020. Interpolative decomposition via proxy points for kernel matrices. SIAM J. Matrix
Anal. Appl. 41 (2020), 221–243.

[32] Lexing Ying, George Biros, and Denis Zorin. 2004. A kernel-independent adaptive fast multipole algorithm in two and
three dimensions. J. Comput. Phys. 196, 2 (2004), 591–626.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0. Publication date: 2020.

	Abstract
	1 Introduction
	2 H2 matrix representation and H2 matrix-vector multiplication
	2.1 H2 matrix representation
	2.2 H2 matrix construction
	2.3 The proxy point method
	2.4 H2 matrix-vector multiplication

	3 Parallel Implementation
	3.1 Parallelization and load-balancing
	3.2 Performance optimizations

	4 Numerical Experiments
	4.1 Accuracy tests
	4.2 Scalability tests
	4.3 Performance improvements by BKM and vectorization
	4.4 Comparison between H2-matvec and H2-matmul
	4.5 Comparison with fast multipole methods

	5 Conclusion
	Acknowledgments
	References

