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a b s t r a c t

Asynchronous iterative methods for solving linear systems are gaining renewed interest due to the
high cost of synchronization points in massively parallel codes. Historically, theory on asynchronous
iterative methods has focused on asymptotic behavior, while the transient behavior remains poorly
understood. In this paper, we study a model of the asynchronous Jacobi method without commu-
nication delays, which we call simplified asynchronous Jacobi. Simplified asynchronous Jacobi can be
used to model asynchronous Jacobi implemented in shared memory or distributed memory with
fast communication networks. Our analysis uses the idea of a propagation matrix, which is similar in
concept to an iteration matrix. We show that simplified asynchronous Jacobi can continue to reduce
the residual when some processes are slower than other processes. We also show that simplified
asynchronous Jacobi can converge when synchronous Jacobi does not. We verify our analysis of
simplified asynchronous Jacobi using results from asynchronous Jacobi implemented in shared and
distributed memory.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Modern supercomputers are continually increasing in core
count and will soon achieve exascale performance. One problem
that will arise for exascale-capable machines is the negative
impact synchronization will have on program execution time.
Implementations of current state-of-the-art iterative methods for
solving the sparse linear system Ax = b suffer from this problem.

In stationary iterative methods, the operation M−1(b−Ax(k)) is
required, where x(k) is the iterate and M is usually far easier to in-
vert than A. For the Jacobi method, M is a diagonal matrix, so the
primary operation is Ax(k), a sparse matrix–vector product. If A is
partitioned such that each parallel process is responsible for some
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number of non-overlapping rows (or subdomains), each pro-
cess requires values of x(k−1), i.e., information from the previous
iteration, so all processes need to be up-to-date. In typical dis-
tributed memory implementations, processes are generally idle
for some period of time while they wait to receive information
from other processes.

Asynchronous iterative methods remove the constraint of
waiting for information from the previous iteration. When these
methods were conceived, it was thought that continuing compu-
tation may be faster than spending time to synchronize. However,
synchronization time was less of a problem when asynchronous
methods were first proposed because the amount of parallelism
was quite low, so asynchronous methods did not gain popularity
in practice [13]. Since then, it has been shown experimentally that
asynchronous methods can be faster than synchronous methods.
However, most existing theory is concerned with asymptotic con-
vergence, and does not study properties of the transient behavior
of asynchronous iterative methods.
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In this paper, we study a model of the asynchronous Jacobi
method with no communication delays, which we call the simpli-
fied asynchronous Jacobi method. While not completely realistic,
this simplified model can be used to approximate asynchronous
Jacobi in shared memory or distributed memory with fast com-
munication networks, where data transfers are fast compared
with computation time. More importantly, simplifying the model
to neglect communication delays allows us to write the update
of rows in each iteration of simplified asynchronous Jacobi using
a propagation matrix, which is similar in concept to an iteration
matrix. A propagation matrix has properties that give us insight
into the transient behavior of simplified asynchronous Jacobi. By
analyzing these matrices, and by experimenting with shared and
distributed memory implementations of asynchronous Jacobi, we
show two results:

1. Let A be weakly diagonally dominant. If some processes
are slower than others, which, for example, may be due to
slower cores in heterogeneous architectures or load imbal-
ance in the problem being solved, iterating asynchronously
can result in considerable speedup.

2. When A is symmetric positive definite, simplified asyn-
chronous Jacobi can converge when synchronous Jacobi
does not. This is a surprising result because the classical
theory predicts that asynchronous Jacobi will not con-
verge in general (precisely, there exists a sequence of
asynchronous iterations that does not converge) if syn-
chronous Jacobi does not converge.

2. Background

2.1. The Jacobi and Gauss–Seidel methods

A general stationary iterative method for solving the sparse
linear system Ax = b can be written as

x(k+1)
= Bx(k) + f , (1)

where the recurrence is started with an initial approximation x(0).
We define the update of the ith component from x(k)i to x(k+1)

i as
the relaxation of row i.

If the exact solution is x∗, then we can write the error e(k) =

x∗
− x(k) at iteration k as

e(k+1)
= Be(k), (2)

where B is the error iteration matrix. It is well known that a
stationary iterative method will converge to the exact solution for
any x(0) as k → ∞ if the spectral radius ρ(B) < 1. Analyzing ∥B∥
is also important since the spectral radius only tells us about the
asymptotic behavior of the error. In the case of normal iteration
matrices, the error decreases monotonically in the consistent
norm if ρ(B) < 1 since ρ(B) ≤ ∥B∥. If B is not normal, ∥B∥ can
be ≥ 1 when ρ(B) < 1. This means that although convergence to
the exact solution will be achieved, the reduction in the norm of
the error may not be monotonic.

Stationary iterative methods are sometimes referred to as
splitting methods where a splitting A = M − N is chosen with
nonsingular M . Eq. (1) can be written as

x(k+1)
= (I − M−1A)x(k) + M−1b, (3)

where B = I − M−1A. Just like in Eq. (2), we can write

r (k+1)
= Cr (k), (4)

where the residual is defined as r (k) = b−Ax(k) and C = I −AM−1

is the residual iteration matrix.
For the Gauss–Seidel method, M = L, where L is the lower

triangular part of A, and for the Jacobi method, M = D, where

D is the diagonal part of A. Gauss–Seidel is an example of a
multiplicative relaxation method, and Jacobi is an example of an
additive relaxation method. In practice, Jacobi is one of the few
stationary iterative methods that can be efficiently implemented
in parallel since the inversion of a diagonal matrix is a highly par-
allel operation. In particular, for some machine with n processors,
all n rows can be relaxed completely in parallel with processes
p1, . . . , pn using only information from the previous iteration.
However, Jacobi often does not converge, even for symmetric
positive definite (SPD) matrices, a class of matrices for which
Gauss–Seidel always converges. When Jacobi does converge, it
can converge slowly, and usually converges more slowly than
Gauss–Seidel.

2.2. Asynchronous iterative methods

We now consider a general model of an asynchronous sta-
tionary iterative method as presented in Chapter 5 of [2]. For
simplicity, let us consider n processes, i.e., one process per row
of A. The general form of a stationary iterative method as defined
in Eq. (1) can be thought of as synchronous. In particular, all
elements of x(k) must be computed before iteration k + 1 starts.
Removing this requirement results in an asynchronous method,
where each process relaxes its row using whatever information
is available. An asynchronous stationary iterative method can be
written element-wise as

x(k+1)
i =

⎧⎪⎨⎪⎩
n∑

j=1

Bijx
(sij(k))
j + fi, if i ∈ Ψ (k),

x(k)i , otherwise.

(5)

The set Ψ (k) is the set of rows that are relaxed at step k. The
mapping sij(k) denotes the components of other rows that process
i reads from memory. The following assumptions are standard for
the convergence theory of Eq. (5):

1. The mapping sij(k) ≤ k. This means no future information
is read from memory.

2. As k → +∞, sij(k) → +∞. This means rows will eventu-
ally read new information from other rows.

3. As k → +∞, the number of times i appears in Ψ (k) →

+∞. This means that all rows eventually relax in a finite
amount of time.

3. Related work

An overview of asynchronous iterative methods can be found
in Chapter 5 of [2]. Reviews of the convergence theory for asyn-
chronous iterative methods can be found in [2,6,8,13]. Asyn-
chronous iterative methods were first introduced as chaotic
relaxation methods by Chazan and Miranker [10]. This pioneering
paper provided a definition for a general asynchronous itera-
tive method with various conditions, and the main result of
the paper is that for a given stationary iterative method with
iteration matrix B, if ρ(|B|) < 1, then the asynchronous version
of the method will converge. Other researchers have expanded
on suitable conditions for asynchronous methods to converge us-
ing different asynchronous models [3–5,14,20–22]. One of these
models introduces the idea of propagation matrices, which is
what we analyze in this paper [22]. There are also papers that
show that asynchronous methods can converge faster than their
synchronous counterparts [7,15]. In [15], it is shown that for
monotone maps, asynchronous methods are at least as fast as
their synchronous counterparts, assuming that all components
eventually update. This was also shown in [7], and was extended
to contraction maps. The speedup of asynchronous Jacobi was
studied in [19] for random 2 × 2 matrices, where the main result
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is that, most of the time, asynchronous iterations do not improve
the convergence compared with synchronous. This result is spe-
cific for 2 × 2 matrices, and we will discuss in Section 4.3 why
speedup is not often suspected in this case. In [14], the authors
use the idea of a directed acyclic graph (DAG) to show that the
convergence rate of asynchronous Jacobi is exponential when the
synchronous iteration matrix is non-negative. While the authors
in [14] do not prove anything for the non-negative case, exam-
ples in which asynchronous Jacobi converges when synchronous
Jacobi does not are shown, which is also explored in this paper.
The authors in [14] also provide numerical experiments that
show that asynchronous Jacobi has a higher convergence rate for
certain problems. As in [22], the idea of propagation matrices are
used in [14].

Experiments using asynchronous methods have given mixed
results, and it is not clear whether this is implementation or al-
gorithm specific. It has been shown that in shared memory, asyn-
chronous Jacobi can be significantly faster [3,9]. Jager and Bradley
reported results for several distributed implementations of asyn-
chronous inexact block Jacobi (where blocks are solved using a
single iteration of Gauss–Seidel) implemented using ‘‘the MPI-2
asynchronous communication framework’’ [12], which may refer
to one-sided MPI. They showed that asynchronous ‘‘eager’’ Jacobi
can converge in fewer relaxations and less wall-clock time. Their
eager scheme can be thought of as semi-synchronous, where a
process updates its rows only if it has received new informa-
tion. Bethune et al. reported mixed results for several different
implementations of asynchronous Jacobi [9]. The ‘‘racy’’ scheme
presented in [9] is what we consider in our paper, but we use
one-sided MPI with passive target completion where as Bethune
et al. used SHMEM and two-sided MPI. The results in [9] show
that asynchronous Jacobi implemented with MPI was faster in
terms of wall-clock time, but in some experiments with large core
counts, synchronous Jacobi was significantly faster.

We also note that some research has been dedicated to sup-
porting portable asynchronous communication for MPI, including
the JACK and JACK2 APIs [17,18], and Casper [23], which provides
asynchronous progress control in certain cases. We are not using
any of these tools in our implementations.

4. Asynchronous iterative methods without communication
delays

4.1. Mathematical formulation

If there are no communication delays, and processes are only
delayed in their computation (some processes take longer than
others to relax their rows), we can write Eq. (5) as

x(k+1)
i =

⎧⎪⎨⎪⎩
n∑

j=1

Bijx
(k)
j + fi, if i ∈ Ψ (k),

x(k)i , otherwise.

(6)

We define this as the simplified asynchronous iterative method
model, and for asynchronous Jacobi, we define this as the sim-
plified asynchronous Jacobi model. We can now write an asyn-
chronous iterative method in matrix form as

x(k+1)
= (I − M̂ (k)A)x(k) + M̂ (k)b (7)

where

M̂ (k)(i, :) =

{
M−1(i, :), if i ∈ Ψ (k),
0, otherwise,

(8)

where M̂ (k)(i, :) is row i of M̂ (k), and M−1(i, :) is row i of M−1.
Similar to the iteration matrix, we define the error and residual
propagation matrices as

B̂(k)
= I − M̂ (k)A and Ĉ (k)

= I − AM̂ (k), (9)

Fig. 1. Example of four processes carrying out three iterations of an asyn-
chronous iterative method without communication delays. Relaxations are
denoted by red dots, and information used for relaxations is denoted by blue
arrows.

respectively.
For Ĝ(k) and Ĥ (k) in simplified asynchronous Jacobi, M̂ (k) is the

diagonal matrix D̂(k) where

D̂(k)
ii =

{
1/Aii, if i ∈ Ψ (k),
0, otherwise.

(10)

It is important to notice the structure of B̂(k) and Ĉ (k) matrices.
For row i that is not relaxed at time k, row i of B̂(k) is zero
except for a one in the diagonal position of that row. Similarly,
column i of Ĉ (k) is zero except for a one in the diagonal position
of that column. We can construct the error propagation matrix by
starting with B and ‘‘replacing’’ rows of B with unit basis vectors
if a row is not in Ψ (k). Similarly, we replace columns of C to get
the residual propagation matrix.

An example of a sequence of asynchronous relaxations is
shown in Fig. 1 for the simplified model. In this example, four
processes, p1, . . . , p4, are each responsible for a single row, and
relax just once. The red dots (except at k = 0) denote relaxations
and the blue arrows denote data transfer needed for relaxations.
Asynchronous iteration count moves from left to right. There are
three iterations in this example, which means we have three sets
Φ(1) = {4}, Φ(2) = {1, 2}, and Φ(3) = {3}. This gives us the three
error propagation matrices for simplified asynchronous Jacobi,

Ĝ(1)
=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 × × 0

⎤⎥⎥⎦ , Ĝ(2)
=

⎡⎢⎢⎣
0 × × 0
× 0 0 ×

0 0 1 0
0 0 0 1

⎤⎥⎥⎦,

Ĝ(3)
=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
× 0 0 ×

0 0 0 1

⎤⎥⎥⎦,

where the × symbol denotes a non-zero value.

4.2. Connection of simplified asynchronous Jacobi to an inexact mul-
tiplicative block relaxation method

Simplified asynchronous Jacobi can be viewed as an inexact
multiplicative block relaxation method, where the number of
blocks and block sizes change at every iteration. A block corre-
sponds to a coupled set of equations that are relaxed simultane-
ously. By ‘‘inexact’’ we mean that Jacobi relaxations are applied to
the blocks of equations (rather than an exact solve, for example).
By ‘‘multiplicative’’, we mean that not all blocks are relaxed at the
same time, i.e., the updates build on each other multiplicatively
like in the Gauss–Seidel method.
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If a single row j is relaxed at time k, then

D̂(k)
ii =

{
1/Aii, if i = j,
0, otherwise.

(11)

Relaxing all rows in ascending order of index is precisely Gauss–
Seidel with natural ordering. For multicolor Gauss–Seidel, where
rows belonging to an independent set (no rows in the set are
coupled) are relaxed in parallel, D̂(k) can be expressed as

D̂(k)
ii =

{
1/Aii, if i ∈ Γ ,

0, otherwise.
(12)

where Γ is the set of indices belonging to the independent set.
Similarly, Γ can represent a set of independent blocks, which
gives the block multicolor Gauss–Seidel method.

4.3. Simplified asynchronous Jacobi can reduce the residual when
some processes are delayed in their computation

For this section only, we will assume A is weakly diagonally
dominant (W.D.D.), i.e., |Aii| ≥

∑
j̸=i |Aij| for all i = 1, . . . , n

and thus ρ(G) ≤ 1. Then the error and residual for simplified
asynchronous Jacobi monotonically decreases in the infinity and
L1 norms, respectively.

In general, the error and residual do not converge monotoni-
cally for asynchronous methods (assuming the error and residual
at snapshots in time are available, as we do in our model discrete
time points k). However, monotonic convergence is possible in
the infinity and L1 norms for the error and residual, respectively,
if the propagation matrices are bounded by one in these norms.
This is guaranteed when A is W.D.D. A norm of one means that
the error or residual does not grow but may still decrease. Such a
monotonic convergence result may be useful to help detect con-
vergence of the asynchronous method in a distributed memory
setting.

The following theorem supplies the norm of the propagation
matrices.

Theorem 1. Let A be W.D.D. and at least one process is delayed
in its computation at step k. Then ρ(Ĝ(k)) = ∥Ĝ(k)

∥∞ = 1 and
ρ(Ĥ (k)) = ∥Ĥ (k)

∥1 = 1 for simplified asynchronous Jacobi.

Proof. Let the number of equations be n, and let ξ1, . . . , ξn be
the n unit (coordinate) basis vectors. Without loss of generality,
consider a single equation i to be not relaxed at step k. The proof
of ∥Ĝ(k)

∥∞ = 1 is straightforward. Since row i in Ĝ(k) is ξ T
i , and

since A is W.D.D., ∥Ĝ(k)
∥∞ = 1. Similarly, for ∥Ĥ (k)

∥1, column i is
ξi and so ∥Ĥ (k)

∥1 = 1. To prove ρ(Ĝ(k)) = 1, consider the splitting
Ĝ(k)

= I + Y , where I is the identity matrix. The matrix Y has the
same elements as Ĝ(k) except the diagonal is diag(Ĝ(k))− I and the
ith row of Y is all zeros. Since Y has a row of zeros, it must have
nullity ≥ 1. Therefore, an eigenvector of Ĝ(k) is v = null(Y ) with
eigenvalue of 1 since (I + Y )v = v. To prove ρ(Ĥ (k)) = 1, it is
clear that ξi is an eigenvector of Ĥ (k) since column i of Ĥ (k)

= ξi.
Therefore, Ĥ (k)ξi = ξi. □

We can say that, asymptotically, asynchronous Jacobi will be
faster than synchronous Jacobi because inexact multiplicative
block relaxation methods are generally faster than additive block
relaxation methods. However, it is not clear if the error will
continue to reduce if the same processes are delayed in their
computation for a long period of time (equivalently, if some
rows are not relaxed for a long period of time). An important
consequence of Theorem 1 is that the error will not increase in
the infinity norm no matter what the error propagation matrix
is, which is also is true for the L1 norm of the residual. A more

important consequence is that any residual propagation matrix
will decrease the L1 norm of the residual with high probability
(for a large enough matrix). This is due to the fact that the
eigenvectors of Ĥ (k) corresponding to eigenvalues of one are unit
basis vectors. Upon multiplying Ĥ (k) by the residual many times,
the residual will converge to a linear combination of the unit basis
vectors, where the number of these unit basis vectors is equal to
the number of rows that are not relaxed. Since the eigenvalues
corresponding to these unit basis vectors are all one, components
in the direction of the unit basis vectors will not change, and
all other components of the residual will go to zero. The case in
which the residual will not change is when these components are
already zero, which is unlikely given that the residual propagation
matrix is constantly changing.

In the case of 2 × 2 random matrices, which was studied
in [19], relaxing the same row after immediately relaxing that
row will not change the current approximation since the error
and residual propagation matrices have the form

Ĝ(k)
=

[1 0
α 0

]
, Ĥ (k)

=

[1 α
0 0

]
, (13)

if the first row is not relaxed, where α = A12/A11. Since the only
information needed by row two comes from row one, row two
cannot continue to change without new information from row
one. For larger matrices, iterating while having a small number
of rows are not relaxed will reduce the error and residual.

For larger matrices, how quickly the residual converges de-
pends on the eigenvalues that do not correspond to unit basis
eigenvectors. If these eigenvalues are very small in absolute value
(i.e., close to zero), convergence will be quick, and therefore the
error/residual will not continue to reduce if some rows continue
to not relax. To gain some insight into the reduction of the error
and residual, we can use the fact that the components of the
current approximation that are not relaxed do not change with
successive applications of the same propagation matrix.

As an example, consider just the first row to not be relaxed
starting at step k. We can write the iteration as

e(k+1)
= Ĝ(k)e(k) =

[
1 oT

g (k)
1 G̃(k)

][
e(k)1

ẽ(k)

]
(14)

where o is the (n−1)×1 zero vector, g (k)
1 is an (n−1)×1 vector,

and G̃(k) is a (n−1)×(n−1) symmetric principal submatrix of the
synchronous iteration matrix G. Since G̃(k) is a principal submatrix
of G, which is symmetric since A is symmetrically scaled to
have unit diagonal values, we can use the interlacing theorem to
bound the eigenvalues of G̃(k) with eigenvalues of G. Specifically,
if λ1, . . . , λn are the eigenvalues of G, the ith eigenvalue µi of G̃(k)

can be bounded as λi ≤ µi ≤ λi+1.
For the general case in which m rows are being relaxed at step

k, we can consider the system P (k)AP (k)TP (k)x = P (k)b, which has
the iteration

P (k)x(k+1)
= P (k)Ĝ(k)P (k)TP (k)x(k) + P (k)D̂(k)P (k)TP (k)b. (15)

The matrix P (k) is a permutation matrix that is chosen such that
all rows that are not being relaxed are ordered first, resulting in
the propagation matrix and error

e(k+1)
= Ĝ(k)e(k) =

[
I OT

G(k)
I G̃(k)

][
e(k)I

ẽ(k)

]
, (16)

where I is the (n − m) × (n − m) identity matrix, O is the
m × (n − m) zero matrix, G(k)

I is m × (n − m), and G̃(k) is m × m.
For an eigenvalue µi of G̃(k), λi ≤ µi ≤ λi+n−m for i = 1, . . . ,m.
This means that convergence for the propagation matrix will be
slow if the convergence for synchronous Jacobi is slow. In other
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words, if eigenvalues of G are spaced somewhat evenly, or if
many eigenvalues are clustered near one, we can expect a similar
spacing of the eigenvalues of G̃(k).

4.4. Simplified asynchronous Jacobi can converge when synchronous
Jacobi does not

A well known result, known as early as Chazan and Mi-
ranker [10], is that if G is the iteration matrix of a synchronous
method then ρ(|G|) < 1 implies that the corresponding asyn-
chronous method converges. From the fact that ρ(G) < ρ(|G|) for
all matrices G, it appears that convergence of the asynchronous
method is harder than convergence of the synchronous method.
However, this is an asymptotic result only, and does not capture
any transient behavior. The following theorem provides a condi-
tion on G̃(k) that results in the decrease of the A-norm of the error
at iteration k for the simplified asynchronous Jacobi method.

Theorem 2. Let A be SPD and symmetrically scaled to have unit
diagonal values. For simplified asynchronous Jacobi, if ρ(G̃(k)) < 1,
and ẽ(k) ̸= 0, then the A-norm of the error ∥e(k)∥A decreases at step k.

Proof. We can write the squared A-norm of the error as

∥e(k+1)
∥
2
A = e(k+1)TAe(k+1)

= e(k)
T
Ĝ(k)TAĜ(k)e(k)

= e(k)
T
(I − AD̂(k))A(I − D̂(k)A)e(k)

= ∥e(k)∥2
A − e(k)

T
A(2D̂(k)

− D̂(k)AD̂(k))Ae(k).

(17)

Let m be the number of rows being relaxed at step k. Without
loss of generality, we can consider the ordering from Eq. (16), and
write

D̂(k)
=

[
0 OT

O I

]
, (18)

where I is the m × m identity matrix, O is the (n − m) × m zero
matrix, and 0 is the (n − m) × (n − m) zero matrix. Therefore,

2D̂(k)
− D̂(k)AD̂(k)

=

[
0 OT

O 2I − Ã(k)

]
, (19)

where Ã(k) is anm×m principal submatrix of A. This means ∥e(k)∥2
A

is reduced when 2I − Ã(k) is SPD. The eigenvalues of 2I − Ã(k) are
2 − α, where α is an eigenvalue of Ã. Since α > 0, 2I − Ã(k) is
SPD when 2 > α > 0. The eigenvalues of G̃(k) are µ = 1 − α, so
1 > µ > −1, i.e., |µ| < 1 or ρ(G̃(k)) < 1. □

The proof of Theorem 2 can also be used to show that a single
Gauss–Seidel relaxation reduces ∥e(k)∥2

A. This is because

2D̂(k)
− D̂(k)AD̂(k)

=

[
0 OT

O I

]
, (20)

where I is the m × m identity. If we consider Gauss–Seidel with
natural ordering, I is 1 × 1. When using red–black Gauss–Seidel
on a 5-point or 7-point stencil, I is approximately or exactly of
size n/2×n/2. In general, for a method in which an independent
set of rows are relaxed in parallel, e.g., multicolor Gauss–Seidel,
∥e(k+1)

∥
2
A < ∥e(k)∥2

A.
Returning to the discussion of simplified asynchronous Jacobi,

it can happen that ∥e(k+1)
∥
2
A < ∥e(k)∥2

A since ρ(G̃(k)) ≤ ρ(G) by
the interlacing theorem. Matrix G̃(k) decreases in size when fewer
rows are relaxed in parallel, which happens when the number of
threads or processes is increased. Furthermore, G̃(k) can be block
diagonal since removing rows can create blocks that are decou-
pled. The interlacing theorem can be further applied to these

Fig. 2. Spectral radius of G̃(k) versus the fraction of rows being relaxed. Max,
min, and mean spectral radius is shown for 200 different choices of G̃(k) , where
the rows selected to be relaxed are chosen randomly. The test problem is the
FE matrix.

blocks, resulting in ρ(G̃(k)
i ) ≤ ρ(G̃(k)), where G̃(k)

i is block i of G̃(k)

with the largest spectral radius. If many processes are used, it may
happen that G̃(k) will have many blocks, resulting in ρ(G̃(k)

i ) ≪

ρ(G̃(k)). This can explain why increasing the concurrency can
result in simplified asynchronous Jacobi converging faster than
synchronous Jacobi, and converging when synchronous Jacobi
does not. This is a result we will show experimentally.

An example of how ρ(G̃(k)) changes as the fraction of rows that
are being relaxed decreases is shown in Fig. 2. The matrix used
is the FE matrix (see Section 7.1). For each fraction of rows being
relaxed, the max, min, and mean spectral radius of 200 different
choices of G̃(k) is shown, where rows selected to be relaxed are
chosen randomly. When the fraction of rows being relaxed is ≈ .7
or less, the max of all ρ(G̃(k)) < 1. Additionally, when the fraction
of rows being relaxed is ≈ .9 or less, the mean of all ρ(G̃(k)) < 1.
This suggests that we would likely see a consistent reduction in
the error when the fraction of rows that are relaxed in parallel is
≈ .9 or less.

5. Implementing asynchronous Jacobi in shared memory

Our implementations use a sparse matrix–vector multiplica-
tion (SpMV) kernel to compute the residual, which is then used to
correct the approximate solution. A single iteration of both syn-
chronous and asynchronous Jacobi can be written in the following
way:

1. For each row i, compute the residual r (k)i = bi −
∑n

j=1 Aijx
(k)
j

(this is the SpMV step).
2. For each row i, correct the approximation x(k+1)

i = x(k)i +

r (k)i /Aii.
3. Check for convergence (detailed below and in Section 6 for

distributed memory).

Since more than one row is assigned to each thread, each thread
only computes Ax(k), r (k) and x(k) for the rows assigned to it.
The contiguous set of rows assigned to a thread is defined as
its subdomain, which is determined using a graph partitioner in
general.

OpenMP was used for our shared memory implementation.
The vectors x(k) and r (k) are stored in shared arrays. The only
difference between the asynchronous and synchronous imple-
mentations is that the synchronous implementation uses a barrier
after step 1 and a reduction for step 3. Since each element in
either x(k) or r (k) is updated by writing to memory (not by using
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a fetch-and-add operation), atomic operations can be avoided.
Writing or reading a double precision word is atomic on modern
Intel processors if the array containing the word is aligned to a
64-bit boundary.

For synchronous Jacobi, the iteration is stopped if the relative
norm of the global residual falls below a specified tolerance
(determined using a reduction), or if a specified number of it-
erations has been carried out. For asynchronous Jacobi, a shared
array is_done is used to determine when the iteration should
stop. is_done is of size equal to the number of threads, and is
initialized to zero. If thread i satisfies the local stopping criterion,
element i − 1 (zero based indexing) of is_done is set to one.
Once a thread reads a one in all elements of is_done, that thread
stops iterating. For the local stopping criterion, a thread has either
carried out a specified number of iterations, or the residual norm
for its subdomian has dropped below some tolerance.

6. Implementing asynchronous Jacobi in distributed memory

The program structure for our distributed implementation
is the same as that of the shared memory implementation as
described in the first paragraph of Section 5. However, there are
no shared arrays. Instead, a process i stores a ghost layer of values
received from its neighbors. A neighbor of i is determined by
inspecting the non-zero pattern in the off-diagonal blocks that
belong to i. Process j is a neighbor of i if an off-diagonal block
belonging to row i contains a column index in the subdomain of j.
The column indices in that block are the indices of the ghost layer
values that j sends to i. Fig. 3 shows an example of a partitioned
matrix when using four processes. The red diagonal blocks denote
the connections among points in a subdomain. The off-diagonal
blocks denote the connections of points in a subdomain to points
in other subdomains. We note that multiple rows in a subdomain
may require the same information from a different subdomain,
i.e., off-diagonal column indices may be repeated across multiple
rows in a subdomain. Therefore, a subdomain only requires data
corresponding to the unique set of off-diagonal column indices.

We overlapped computation and communication in our SpMV.
More specifically, we can write SpMV in the following steps,
which are carried out in parallel on each process:

1. Send values of x⃗(k)i to neighbors.
2. Compute y⃗i = Aiix⃗

(k)
i .

3. Receive values of x⃗qij from neighbor qij, where j = 1, . . . ,Ni.
4. Compute

x⃗(k+1)
i = y⃗i +

Ni∑
j=1

Aiqij x⃗
(k)
qij . (21)

The matrix Aii is the diagonal block that belongs to process
i (red blocks in Fig. 3), and x⃗i is the part of x that belongs to i.
Ni is the number of neighbors of i, Aiqij is the off-diagonal block
corresponding to neighbor qij of process i (blue blocks in Fig. 3),
and x⃗(k)qij is the vector of values in the subdomain of process qij
(ghost layer values). Remember that process i only requires values
of x⃗qij corresponding to the off-diagonal blocks, so the entirety of
x⃗qij is not sent to process i.

A process terminates once it has carried out a specified num-
ber of iterations. For the synchronous case, all processes will
terminate at the same iteration. For the asynchronous case, some
processes can terminate even when other processes are still it-
erating. This naive scheme requires no communication. If it is
desired that some global criterion is met, e.g., the global resid-
ual norm has dropped below some specified tolerance, a more
sophisticated scheme must be employed. However, since we are

Fig. 3. Sparsity pattern for an unstructured finite element matrix partitioned
into four parts. The red points denote the non-zero values of the diagonal blocks
of the matrix, and the blue points denote the non-zero values of the off-diagonal
blocks. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

only concerned with convergence rate rather than termination
detection, we leave this topic for future research.

We used MPI for communication in our distributed implemen-
tations to communicate ghost layer values. For our synchronous
implementation, two-sided communication was used. Here, both
the sending and receiving processes take part in the exchange of
data. We implemented this using MPI_Isend(), which carries
out a non-blocking send, and MPI_Recv(), which carries out a
blocking receive. MPI_Waitall() is then used to complete all
outstanding communication calls.

For our asynchronous implementation, remote memory access
(RMA) communication was used [1], specifically, one-sided MPI
with passive target completion (passive one-sided MPI). For RMA,
each process must first allocate a region of memory that is acces-
sible by remote processes. This is known as a memory window,
and is allocated using the function MPI_Win_allocate(). For
our implementation, we used a one dimensional array for the
window, where each neighbor of a process writes to a subarray
of the window. The size of each subarray is equal to the number
of ghost layer values needed from that neighbor. The subarrays
do not overlap so race conditions do not occur.

The origin process writes to the memory of the target process
using MPI_Put(). For passive target completion, MPI_Put() is
carried out without the involvement of the target. This is done by
initializing an access epoch on a remote memory window using
a lock operation. We used MPI_Win_lock_all(), which allows
access to windows of all processes until MPI_Win_unlock_all()
is called. Another option is to use MPI_Win_lock() and
MPI_Win_unlock(), which locks and unlocks a specific tar-
get process. We found that MPI_Put() operations completed
faster when using lock_all() functions instead of using
MPI_Win_lock() and MPI_Win_unlock(). If using the
lock_all() commands, completing messages must be done in
the following way:

• At the origin, MPI_Win_flush() or MPI_Win_flush_
local() must be called. The former blocks until the
MPI_Put() is completed at the target, and the latter
blocks until the send buffer can be reused. The functions
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MPI_Win_flush_all() and MPI_Win_flush_local_
all() can also be used, which complete all outstanding
messages. These flush_all() functions are faster, which
we will show later.

• In MPI implementations that use a ‘‘separate’’ memory
model, MPI_Win_sync() must be used at the target in
order for data from incoming messages to be transferred
from the network card to the memory window.

It is important to note that MPI_Put() does not write an array
of data from origin to target atomically, but is atomic for writing
single elements of an array. We do not need to worry about
writing entire messages atomically, which can be done using
MPI_Accumulate() with MPI_REPLACE as the operation. This
is because we are parallelizing the relaxation of rows, so blocks
of rows do not need to be relaxed all at once, i.e., information
needed for a row is independent of information needed by other
rows.

To compare the different options for passive one-sided MPI,
we created a benchmark. The goal of the benchmark is to measure
how fast messages complete when using passive one-sided MPI.
Another goal is to see if MPI_Put() will complete if we do
not flush or use MPI_Win_sync(). Our benchmark simulates
the communication pattern of a series of SpMV operations that
require only nearest neighbor communication in a 2D mesh. Here,
the 2D mesh is virtual, i.e., a process p is assigned an (x, y) coor-
dinate on the virtual mesh using the MPI cartesian grid topology
routines. Each process has two to four neighbors, one per cardinal
direction.

Processes carry out a fixed number of iterations, and each pro-
cess sends a single message to each neighbor in each iteration. In
each iteration, starting with iteration zero, all processes execute
the following steps in parallel:

1. Call MPI_Put(sendbuff[i], sendcount, . . . , tar-
get_rank[i], . . . ), where i ranges from 0 to the num-
ber of neighbors minus one. Here, sendcount is the size of
the message being sent, and sendbuff[i] is the data be-
ing sent to neighbor i (array of double precision numbers).
sendbuff is a 2D array, which is why we need to reference
the ith row. sendbuff[i] is initialized to zero at iteration
zero.

2. Poll the memory window until all information has been
received. If a process does not receive a message after
polling for s seconds, then the program exits, indicating
a MPI_Put() did not complete. We set s to 60 for the
experiments shown below.

3. Update the send buffers: sendbuff[i][j]++, where j =

0, . . . , (sendcount − 1).

From the steps above, in each iteration, we can see that each
process expects to read the current iteration number at each
element of its memory window. Step 2 means that if a process
does not read the current iteration number after s seconds, the
program terminates.

For our first experiment, we used nine Haswell nodes (3 × 3
mesh) of the Cori supercomputer at NERSC (see Section 7.1),
with one MPI process per node. We found that some MPI_Put()
operations did not complete when not using MPI_Win_sync()
and flush() functions. Table 1 shows the total wall-clock time
for 100 iterations by each process with a message size of 288 dou-
bles. We chose 288 because this is the largest message size used
in our distributed memory experiments with asynchronous Ja-
cobi. The table shows results for using different passive one-sided
MPI functions. The mean of 20 runs was taken for each entry
in the table. With the exception of the lock target and two-sided

Table 1
Benchmark wall-clock times in seconds for sending 100 messages of size 288
doubles. A 3 × 3 processor mesh is used.

Wall-clock time (s)

None 0.00077
Flush 0.00134
Flush local 0.00133
Flush all 0.00084
Flush local all 0.00086
Lock target 0.00853
Two-sided 0.00151

entries in the table, MPI_Win_lock_all(), MPI_Win_unlock_
all(), and MPI_Put() is used. When using any kind of flush()
command, MPI_Win_sync()was also used. For lock target, MPI_
Win_lock() was used before each MPI_Put() and MPI_Win_-
unlock() is used after. At the target, MPI_Win_sync() is used.
The none entry denotes the absence of flushing and MPI_Win_
sync(), which is what we used for our asynchronous Jacobi im-
plementation. The time for two-sided MPI using MPI_Isend(),
MPI_Recv() and MPI_Wait_all() is also shown. The results
show that locking each target is over 10 times slower than none,
which is the fastest, and two-sided is almost two times slower
than none. Additionally, using either flush_all() function is
faster than flushing each target, even if there are at most four
targets for the 2D mesh used in our benchmark. Therefore, if
we wanted to write a code where all MPI_Put() operations are
guaranteed to complete, we would use one of the flush_all()
functions. However, we found that asynchronous Jacobi con-
verged when not flushing and using MPI_Win_sync(). This is
because although some information is overwritten before it is
sent, information in subsequent iterations is still delivered.

Fig. 4(a) shows how the overall wall-clock time of our bench-
mark is affected by different message sizes. In this figure, 32
nodes with 1024 total MPI processes are used, and each process
must send and successfully receive 100 messages. For each data
point, the mean of 50 samples is taken. The legend entries refer
to the same set of MPI functions as described for Table 1. We
can see that for smaller messages, two-sided is the fastest. For
larger messages, the flush target functions perform the worst due
to the time that the unlock operation takes to complete, as shown
in Fig. 4 (b). Fig. 4(b) also shows that, when using lock_all()
functions, the time for the lock operations dominates the overall
time except for large message sizes. For the largest message size,
the lock_all() functions take a similar amount of time as two-
sided. The reason the lock_all() functions are more costly for
the smaller message size than what is shown in Table 1 is because
more MPI processes are used in Fig. 4. The wall-clock time for
lock_all() functions increases with increasing number of MPI
processes. This suggests that some form of global communica-
tion may be happening when using the lock_all() functions.
However, since we only need to call MPI_Win_lock_all()
and MPI_Win_unlock_all() once, we consider this to be a
cost that impacts only the setup phase of our code. Fig. 4(c)
shows the timing for only the solve phase, where we do not
include the time it takes to call MPI_Win_lock_all() and
MPI_Win_unlock_all(). This figure shows that MPI_Put()
operations complete most quickly when using the lock_all()
functions. As stated earlier, this is why we chose the lock_all()
functions for our distributed memory asynchronous Jacobi
method instead of locking the target. In our distributed memory
asynchronous Jacobi method, we did not include the time it takes
to execute lock_all() functions when recording the overall
wall-clock time.
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Fig. 4. Wall-clock time as a function of message size for our benchmark. The benchmark measures how long it takes for communication operations to complete when
using one-sided MPI with passive target completion. Figure (a) shows the overall wall-clock time, Figure (b) shows the wall-clock time for locking and unlocking
windows, and Figure (c) shows the total wall-clock time again but without including the time it takes to execute the lock_all() functions. The purpose of (c) is
to show only the time it takes to carry out some number of iterations, where we consider calls to lock_all() functions as part of the setup phase. 32 nodes with
1024 total MPI processes are used, and each process must send and successfully receive 100 messages. For each data point, the mean of 50 samples is taken. Each
curve denotes a different configuration of MPI functions used.

7. Results

7.1. Test framework

All experiments were run on NERSC’s Cori supercomputer.
Shared memory experiments were run on an Intel Xeon Phi
Knights Landing (KNL) processor with 68 cores and 272 threads
(four hyperthreads per core), and distributed memory experi-
ments were run on up to 128 nodes, each node consisting of two
16-core Intel Xeon E5-2698 ‘‘Haswell’’ processors. In all cases, we
used all 32-cores of each Haswell node with one process per core.
We used a random initial approximation x(0) and a random right-
hand side b with elements in the range [−1,1], and the following
test matrices:

1. Matrices arising from a five-point centered difference dis-
cretization of the Poisson equation with Dirichlet boundary
conditions on a rectangular domain with a uniform grid.
These matrices are irreducibly W.D.D., symmetric positive-
definite, and ρ(G) < 1. We refer to these matrices as
FD.

2. An unstructured finite element discretization of the Poisson
equation with Dirichlet boundary conditions on a square
domain. The matrix has 3081 rows and 20,971 non-zero
values. The matrix is not W.D.D. The matrix is symmetric
positive-definite and ρ(|G|) > ρ(G) > 1. We refer to this
matrix as FE.

Table 2
Test problems from the SuiteSparse matrix collection. All matrices are symmetric
positive definite.
Matrix Non-zeros Equations

Thermal2 8,579,355 1,227,087
Parabolic_fem 3,674,625 525,825
Thermomech_dM 1,423,116 204,316
Dubcova2 1,030,225 65,025

3. Matrices listed in Table 2 from the SuiteSparse matrix
collection [11].

Matrices are partitioned using METIS [16], including for FD, and
are stored in compressed sparse row (CSR) format.

7.2. Simplified asynchronous Jacobi compared to openMP asynchr-
onous Jacobi

The primary goal of this section is to validate the simplified
asynchronous Jacobi model presented in Section 4 by compar-
ing its behavior to OpenMP asynchronous Jacobi. OpenMP asyn-
chronous Jacobi is our implementation of asynchronous Jacobi in
shared memory using OpenMP. The model is simulated using a
sequential implementation.

For our first experiment, we look at how simplified asyn-
chronous Jacobi and OpenMP asynchronous Jacobi compare to the
synchronous case. We consider the scenario where all threads
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Fig. 5. Speedup of simplified and OpenMP asynchronous Jacobi over syn-
chronous Jacobi for 68 threads (on the KNL platform) as a function of the
artificial delay in computation δ experienced by one thread. For OpenMP, the
delay is varied from zero to 3000 microseconds. For the simplified asynchronous
Jacobi, δ is varied from zero to 100, which is shown on the x-axis. A relative
residual norm tolerance of .001 is used. The test problem is an FD matrix with
68 rows and 298 non-zeros. The mean of 100 samples is taken for each data
point. We can see that a speedup of over 40 is achieved for larger delays.

run at the same speed, except one thread that runs at a slower
speed. This could simulate a system in which one core is slower
than others. We assign a computational delay, δ, to thread pi
corresponding to row i near the middle of a test matrix. For
OpenMP asynchronous Jacobi, the delay corresponds to having pi
sleep for a certain number of microseconds. Since synchronous
Jacobi must use a barrier when using OpenMP, all threads have
to wait for pi to finish sleeping and relaxing its rows before they
can continue. For simplified asynchronous Jacobi, row i is delayed
by δ iterations. This means row i only relaxes at multiples of δ
iterations, while all other rows relax at every iteration. In the case
of synchronous Jacobi, all rows relax at iteration numbers that are
multiples of δ to simulate waiting for the slowest process.

We first look at how much faster simplified and OpenMP asyn-
chronous Jacobi can be compared to synchronous Jacobi when
we vary the delay in computation δ. The test matrix is an FD
matrix with 68 rows (17 × 4 mesh) and 298 non-zero values,
and we use 68 threads (available on the KNL platform), giving
one row per thread. A relative residual 1-norm tolerance of .001
is used. For OpenMP, we varied the delay from zero to 3000
microseconds, and recorded the mean wall-clock time for 100
samples for each delay. For the simplified asynchronous Jacobi,
we varied δ from zero to 100. Fig. 5 shows the speedup for
simplified and OpenMP asynchronous Jacobi as a function of
the delay parameter. The speedup for OpenMP is defined as the
total wall-clock time for synchronous Jacobi divided by the total
wall-clock time for asynchronous Jacobi. Similarly, for simplified
asynchronous Jacobi, the speedup is defined as the total number
of iterations for synchronous Jacobi divided by the total number
of iterations for simplified asynchronous Jacobi.

Fig. 5 shows a qualitative and quantitative agreement between
simplified and OpenMP asynchronous Jacobi. As the delay is
increased, both achieve a speedup above 40 before reaching a
plateau. In general, this maximum speedup depends on the prob-
lem, the number of threads, and which threads are delayed. In
the case of the FD problem for Fig. 5, for simplified asynchronous
Jacobi, the speedup is based on how fast the components of the
residual corresponding to non-delayed rows tend to zero. If one
row is never relaxed, the residual propagation matrix Ĥ (k) is fixed
and thus, from Eq. (14),

r (k+1)
= Ĥ (k)r (k) =

[
1 h(k)

1
o H̃ (k)

][
r (k)1
r̃ (k)

]
. (22)

In this equation, Ĥ (k) has just one eigenvalue equal to one cor-
responding to the eigenvector ξ1 (first unit basis vector). The
remaining eigenvalues are the eigenvalues of H̃ (k). From the proof
of Theorem 1, r (k) converges to

[
γ oT

]T when applying Ĥ (k) to
r (k) many times, where γ is some scalar. The remaining n − 1
eigenvectors of Ĥ (k) corresponding to the eigenvalues of H̃ (k) are
exactly

[
0 vTj

]
, where vj is an eigenvector of H̃ (k) with j =

1, . . . , n−1. Therefore, for this FD matrix, with a starting residual
of r̃ (k), the speedup of simplified asynchronous Jacobi will always
increase until the iteration governed by the residual iteration ma-
trix H̃ (k) converges, at which point the speedup will stay constant.
Since any FD matrix is W.D.D., the reason the speedup will always
increase is due to Theorem 1. Another way of thinking about this
is that rows 2 to n eventually need the information of the first
row in order for the iteration to not stall, but the iteration can
still progress for many iterations using old information from the
first row.

Note that without artificially slowing down a thread, OpenMP
asynchronous Jacobi is still slightly faster than synchronous Ja-
cobi, as shown by values corresponding to a delay of zero. This
is due to the fact that natural delays in computation occur
that make some threads faster than others. For example, some
rows have fewer non-zeros (load imbalance), which means some
threads finish relaxing their rows more quickly. Another example
is operating system jitter, where some cores are also responsible
for background events related to the operating system.

Fig. 6(a) and (b) show the relative residual 1-norm as a func-
tion of number of iterations for simplified and OpenMP asyn-
chronous Jacobi, respectively. The test matrix is again an FD
matrix with 68 rows and 298 non-zero values, and we use 68
threads (available on the KNL platform), giving one row per
thread. For each ‘‘Async’’ curve in (b) (‘‘Async’’ in the legend refers
to OpenMP asynchronous Jacobi), we recorded the mean wall-
clock time of 100 runs for each number of iterations 1, 2, . . . , 100.
To create a residual 1-norm history (residual norm versus wall-
clock time), at each number of iterations, after the iteration stops,
the global residual norm is calculated and the total wall-clock
time is recorded. Since this is done 100 times, we take the mean
of 100 relative residual norm values and wall-clock times. To be
clear, when computing the residual norm and wall-clock time
for some number iterations, e.g., 50 iterations, we restart from
iteration zero instead of using the approximate solution from
iteration 49.

Fig. 6 shows that simplified asynchronous Jacobi approximates
the behavior of OpenMP asynchronous Jacobi quite well. A major
similarity is the convergence curves for the two largest delays.
For both the simplified and OpenMP asynchronous Jacobi, we can
see that even when a single row is delayed until convergence
(this corresponds to the largest delay shown, which is 100 for the
model, and 10000 microseconds for OpenMP), the residual norm
can still be reduced by simplified and OpenMP asynchronous
Jacobi. As explained in the analysis of the results shown in Fig. 5,
the stall in convergence for a delay of 100 is due to the conver-
gence of the iteration corresponding to using H̃ (k) as the residual
iteration matrix. However, it takes ≈ 50 iterations to reach a
stall, which is large compared to the size of the matrix. For other
delays, we see a ‘‘saw tooth’’-like pattern corresponding to the
delayed row being relaxed. The existence of this pattern for both
simplified and OpenMP asynchronous Jacobi further confirms the
suitability of the model. Additionally, we see that with no delay,
OpenMP asynchronous Jacobi converges faster than synchronous
Jacobi.

Fig. 7 shows how OpenMP asynchronous Jacobi scales when
increasing the number of threads from one to 272, and without
adding any artificial delays in computation. For these results, we
used an FD matrix with 4624 rows (17 × 16 mesh) and 22,848
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Fig. 6. Relative residual 1-norm as a function of number of iterations for simplified asynchronous Jacobi, shown in (a), and relative residual norm as a function
of OpenMP asynchronous Jacobi, shown in (b). Artificial delays in computation are added for both simplified and OpenMP asynchronous Jacobi, where ‘‘Async 10’’
denotes asynchronous with a delay of 10. The convergence for synchronous Jacobi with artificial delays is also shown. 68 threads on the KNL platform are used for
OpenMP asynchronous Jacobi. The test problem is an FD matrix with 68 rows and 298 non-zeros.

Fig. 7. OpenMP asynchronous Jacobi compared with synchronous Jacobi as the number of threads increases. Figure (a) shows the wall-clock time when both methods
reduce the relative residual 1-norm below .001. Figure (b) shows how much time is taken to carry out 100 iterations. The test problem is an FD matrix with 4624
rows (17 rows per thread in the case of 272 threads) and 22,848 non-zero values. These results show that OpenMP asynchronous Jacobi is faster than synchronous
Jacobi, especially when a specific reduction in the residual norm is desired.

non-zero values. When the number of threads does not divide
4624 evenly, METIS is used. As in the previous set of results,
we averaged the wall-clock time of 100 samples for each data
point. Fig. 7(a) shows the wall-clock time for achieving a relative
residual norm below .001. Fig. 7(b) shows the wall-clock time for
carrying out 100 iterations regardless of what relative residual
norm is achieved. Synchronous Jacobi is also shown.

Fig. 7(b) shows that, for OpenMP asynchronous Jacobi, us-
ing 136 threads is faster than using 272 threads when doing
a fixed number of iterations. However, OpenMP asynchronous
Jacobi is faster than synchronous Jacobi for 272 threads, even
though OpenMP asynchronous Jacobi does more work since a
thread only terminates once all threads have completed 100
iterations (see Section 7.1). This indicates that synchronization
points have a higher cost than the extra computation done by
OpenMP asynchronous Jacobi.

When comparing (a) and (b), we see another important result
for OpenMP asynchronous Jacobi: the convergence rate increases
as the concurrency increases. In particular, when reducing the
residual norm to .001, using 272 threads for OpenMP asyn-
chronous Jacobi gives the lowest wall-clock time compared to
using a smaller number of threads (it takes 874.56 iterations on
272 threads and 937.79 iterations on 136 threads for OpenMP
asynchronous Jacobi, and 2635 iterations for synchronous Jacobi).
This can be explained by the fact that multiplicative relaxation
methods often converge faster than additive methods, and in-
creasing the number of threads results in OpenMP asynchronous
Jacobi behaving more like a multiplicative relaxation scheme.
When increasing the number of threads, the likelihood of coupled
rows being relaxed in parallel is lower since the subdomains are
smaller. This is because coupled rows within a subdomain will
always be relaxed in parallel, but coupled rows that do not belong
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Fig. 8. Relative residual 1-norm as a function of iterations for different numbers of threads (68, 136, and 272) on the KNL platform. Figure (a) shows that for a
sufficient number of threads, asynchronous Jacobi can converge when synchronous Jacobi does not. Figure (b) shows that asynchronous Jacobi truly converges when
using 272 threads. The test problem is the FE matrix.

Fig. 9. In this experiment, a random number of random rows is selected to not be relaxed (delayed) at each iteration for simplified asynchronous Jacobi. The fraction
of delayed rows is varied from .02 to .32, where the cyan to purple gradient of the lines represents an increasing fraction of delayed rows. Figure (a) shows the
relative residual norm as a function of number of iterations. Figure (b) shows the relative residual norm as a function of number of iterations only for a fraction
of delayed rows of .32. Figure (c) shows ρ(G̃(k)) as a function of the number of iterations. The test problem is the FE matrix. These results show that with a large
enough fraction of delayed rows, e.g., .32, simplified asynchronous Jacobi will converge when synchronous Jacobi does not.
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Fig. 10. In this experiment, each row is assigned a delay in computation δi in the range [0, 1, . . . , δmax] (the row is only relaxed when δi divides the iteration
numbers evenly) for simplified asynchronous Jacobi. The maximum delay δmax is varied from one to four, where the cyan to purple gradient of the lines represents
an increasing δmax . Figures (a), (b) and (c) show the relative residual 1-norm, the fraction of delayed rows, and ρ(G̃(k)), respectively. The x-axis for all three figures is
the number of iterations. The test problem is the FE matrix. These results show that if each row is delayed by an average of just one iteration, simplified asynchronous
Jacobi will converge when synchronous Jacobi does not.

to the same subdomain may not be relaxed in parallel since
threads are updating at different times. When the subdomains
are smaller, a higher fraction of coupled rows do not belong to
the same subdomain, so a higher fraction of the relaxations may
be carried out in a multiplicative fashion.

We now look at a case in which OpenMP asynchronous Jacobi
converges when synchronous Jacobi does not. Our test problem
is the FE matrix. Fig. 8 shows the residual norm as a function
of the number of iterations. For OpenMP asynchronous Jacobi,
the process of producing the residual norm history is the same
as that of Fig. 6(b), but we only do one run per number of
iterations (we are not taking the average of multiple runs), and
we show the number of iterations instead of wall-clock time
on the x-axis. Furthermore, the number of iterations shown on
the x-axis is the average number of the local iterations carried
out by all the threads (see Section 5 for details on how threads
decide to stop iterating). In Fig. 8(a), we can see that as we
increase the number of threads to 272, OpenMP asynchronous
Jacobi starts to converge. This shows that the convergence rate of
OpenMP asynchronous Jacobi can be dramatically improved by
increasing the amount of concurrency, even to the point where
OpenMP asynchronous Jacobi will converge when synchronous
Jacobi does not. Fig. 8(b) shows that OpenMP asynchronous Jacobi
truly converges, and does not diverge at some later time.

We can also show this result for simplified asynchronous
Jacobi. Figs. 9 and 10 show the convergence for simplified asyn-
chronous Jacobi using the FE matrix. Fig. 9 shows results for an
experiment in which a random set of random rows are selected
to be relaxed at each iteration. In Fig. 9(a), the relative residual
1-norm as a function of the number of iterations is shown. The
fraction of rows selected to not be relaxed (delayed) is varied
from .02 to .32. We can see that with a high enough fraction
of delayed rows, simplified asynchronous Jacobi converges, as
observed in Fig. 8 for OpenMP asynchronous Jacobi. Just as in
Figs. 8(b), 9(b) shows that the simplified asynchronous Jacobi
truly converges. As discussed in Section 4.4, this convergence can
be explained by examining ρ(G̃(k)). Fig. 9(c) shows ρ(G̃(k)) as the
number of iterations increases. For a fraction of delayed rows of
.32, ρ(G̃(k)) is often less than one.

Fig. 10 is a slightly different experiment with simplified asyn-
chronous Jacobi. Again, the FE matrix is used. In this experiment,
instead of selecting a specific number of rows to be delayed, each
row i is assigned a random delay δi in the range [0, 1, . . . , δmax]

sampled from a uniform random distribution, and δi changes after
row i is relaxed. In other words, row i is relaxed after waiting δi
iterations from the last iteration in which it was relaxed, and then
δi is reset by again sampling a random integer from a uniform
distribution in the range [0, 1, . . . , δmax]. For this experiment, we
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Fig. 11. The first row shows the relative residual 1-norm as a function of relaxations/n for synchronous Jacobi and POS asynchronous Jacobi. For POS asynchronous
Jacobi, one to 128 nodes are shown (32 to 4096 MPI processes), where the green to blue color gradient of the lines represents an increasing number of nodes. The
second row shows wall-clock time in seconds as a function of number of MPI processes for reducing the relative residual norm to 0.1. Results for three different
problem sizes are given, where the size increases from left to right. These results show that POS asynchronous Jacobi is generally faster than synchronous Jacobi
when the number of rows per process is relatively small. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

vary the maximum delay δmax from one to four. Fig. 9(a) shows
the relative residual 1-norm as a function of iterations as the
delay is varied. The figure shows that with just a delay of one,
simplified asynchronous Jacobi converges. This can be explained
by looking at the fraction of delayed rows at each iteration
(Fig. 9(b)), and the resulting ρ(G̃(k)) corresponding to that fraction
(Fig. 9(c)). With a delay of one, the fraction of delayed rows is
between .3 and .4, and ρ(G̃(k)) is often less than one. For larger
delays, ρ(G̃(k)) is always less than one.

7.3. Asynchronous Jacobi in distributed memory

In this section, we show some similar results to that of the pre-
vious section, but for a distributed memory implementation. We
ask if asynchronous Jacobi can be faster than synchronous Jacobi,
and can it converge when synchronous Jacobi does not when a
distributed memory implementation is used. We define POS asyn-
chronous Jacobi as asynchronous Jacobi implemented using one-
sided MPI with passive target completion (here, POS stands for
‘‘passive one-sided’’). We look at how POS asynchronous Jacobi
compares with synchronous Jacobi for the problems in Table 2.

For each matrix and number of MPI processes, we recorded the
mean wall-clock time of 200 runs for each number of iterations
1, 2, . . . , 100. To create a residual 1-norm history (residual norm
versus number of iterations), at each number of iterations, after
the iteration stops, the global residual norm is calculated. Since
this is done 200 times, we take the mean of 200 relative residual
norm values. To be clear, when computing the residual norm
for some number iterations, e.g., 50 iterations, we restart from
iteration zero instead of using the approximate solution from
iteration 49. We used linear interpolation on the log10 of the
residual norm history in order to extract the wall-clock time for
a specific residual norm value.

The first row of figures in Fig. 11 show the relative residual
1-norm as a function of number of relaxations for three problems
(Dubcova2 is not included). The plots are organized such that the
problem size increases from left to right. Since the amount of
concurrency affects the convergence of POS asynchronous Jacobi,
several curves are shown for different numbers of nodes rang-
ing from one to 128 nodes (32 to 4096 MPI processes). This is
expressed in a green-to-blue color gradient, where green is one
node and blue is 128 nodes. We can see that in general, POS
asynchronous Jacobi tends to converge in fewer relaxations. More
importantly, as the number of nodes increases, the convergence
of POS asynchronous Jacobi is improved.

The second row of figures in Fig. 11 shows the wall-clock time
in seconds for reducing the residual norm by a factor of 10 as
the number of MPI processes increases. For POS asynchronous
Jacobi, in the case of thermomech_dM, we can see that at 512
MPI processes, the time starts to increase, which is likely due
to communication time outweighing computation time. However,
since increasing the number of MPI processes improves conver-
gence, wall-clock times for 2048 and 4096 MPI processes are
lower than for 1024 processes. This result is similar to that of
Fig. 7. In particular, the communication cost eventually outweighs
the computation cost as the number of processes increases, re-
sulting in the wall-clock time increasing if we fix the number of
iterations. However, if we wish to reduce the residual norm by a
fixed amount, the increase in convergence rate results in a lower
total wall-clock time. We suspect that we would see the same
effect in the cases of parabolic_fem if more processes were used.
In general, we can see that POS asynchronous Jacobi is faster than
synchronous Jacobi.

Improving the convergence with added concurrency is more
dramatic in Fig. 12, where the relative residual 1-norm as a
function of number of relaxations is shown for Dubcova2. This
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Fig. 12. Relative residual 1-norm as a function of relaxations/n for synchronous
Jacobi using two-sided communication and for POS asynchronous Jacobi. The
Dubcova2 matrix is used as the test problem. For POS asynchronous Jacobi,
results for one to 128 nodes are shown (32 to 4096 MPI processes), where
the green to blue color gradient of the lines represents an increasing number of
nodes. As in Fig. 8, increasing the number of processes improves the convergence
rate of asynchronous Jacobi. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

behavior is similar to the behavior shown in Fig. 8, where increas-
ing the number of threads resulted OpenMP asynchronous Jacobi
converging when synchronous Jacobi did not.

Lastly, while we do not show results from weak scaling ex-
periments in this paper, we would like to comment on the weak
scaling case. Since the problem size increases as the number
of processes increases, the convergence rate of Jacobi degrades.
Therefore, the wall-clock time will increase as the number of
processes increases. In the case of asynchronous Jacobi, since
we have seen that increasing concurrency results in a higher
convergence rate, the degradation in convergence rate will be
smaller.

8. Conclusion

The transient convergence behavior of asynchronous iterative
methods has not been well-understood. In this paper, we study
the transient behavior by analyzing the simplified asynchronous
Jacobi method, where simplified refers to assuming no commu-
nication delays. For simplified asynchronous Jacobi, we are able
to write an asynchronous iteration using propagation matrices,
which are similar in concept to iteration matrices. By analyzing
these propagation matrices, we showed that when the system
matrix is weakly diagonally dominant, simplified asynchronous
Jacobi can continue to reduce the residual even when some
processes are slower than others (delayed in their computation).
We also showed this result for asynchronous Jacobi implemented
in OpenMP.

When the system matrix is symmetric positive definite, we
showed the following properties: (a) simplified asynchronous
Jacobi can converge when synchronous Jacobi does not, and
(b) simplified asynchronous Jacobi will always converge if syn-
chronous Jacobi converges. We observed property (a) in our
shared and distributed memory experiments as well. This con-
trasts with the classical convergence theory for asynchronous
iterative methods, which gives an overly negative picture. The
classical theory predicts that in the worst case, asynchronous
iterative methods diverge even if their synchronous counter-
parts converge. We note that although our explanations in this
paper used a simplified model for asynchronous iterations assum-
ing no communication delays, we have also observed property

(a) when experimenting with nonsymmetric matrices and the
general model (Eq. (5)) of asynchronous iterative methods.
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