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In fast direct solvers for integral equations with the Laplace kernel, a hierarchical 
compression process needs to compute interpolative decompositions of off-diagonal 
block rows of the discretized integral operators. This computation can be dramati-
cally accelerated by a technique called the proxy surface method, which is motivated 
by potential theory. We present a long overdue, rigorous error analysis of this accel-
eration technique. The analysis provides theoretical guidance for the discretization 
of the proxy surface used in the technique.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Integral equations are of great importance in engineering and physics. One of the challenges in their 
numerical solution is that the discretization of integral operators yields dense matrices. For integral equations 
with non-oscillatory kernels from potential theory, e.g., the Laplace and Stokes kernels, fast direct solvers 
[1–5] have been developed based on the “data-sparse” structure of the discretized integral operators. These 
solvers first compute an approximant of the discretized integral operator by a hierarchical compression 
process, sometimes called “recursive skeletonization” [4]. This approximant is in a data-sparse format such 
as hierarchically semi-separable (HSS) format [6,7] so that its exact inverse can be efficiently calculated, 
stored, and applied.

The main bottleneck of the hierarchical compression step in these solvers is the low-rank approximation 
of off-diagonal block rows (and columns) of the discretized integral operator. Each off-diagonal block row 
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Fig. 1. Illustration of the proxy surface method for an integral equation on a contour Γ.

corresponds to the interaction between a subdomain Γ0 ⊂ Γ and its complement Γ\Γ0, where Γ denotes 
the domain of the integral equation. Such a block is denoted as AΓ0,Γ\Γ0 in the following discussion. Purely 
algebraic approaches to obtaining low-rank approximations of these blocks can lead to a prohibitive quadratic 
cost for the hierarchical compression. Martinsson and Rokhlin [1] introduced an acceleration technique for 
this problem that dramatically reduces the cost of the hierarchical compression. Similar ideas have also been 
used in kernel-independent FMM [8,9] and the proxy point method [10] for general kernel functions that 
are not from potential theory.

Fig. 1 illustrates the acceleration technique with a diagram that has been commonly used in the literature 
[1–3]. The acceleration technique first partitions AΓ0,Γ\Γ0 into near field interactions AΓ0,Γnear

0 and far field 
interactions AΓ0,Γfar

0
by an artificial surface Γproxy

0 that encloses Γ0. Motivated by potential theory, the 
technique then seeks the low-rank approximation of AΓ0,Γnear

0 ∪Γproxy
0

which is usually a much smaller matrix 
than AΓ0,Γ\Γ0 . This low-rank approximation serves as an intermediate step to approximating AΓ0,Γ\Γ0 itself. 
The enclosing surface Γproxy

0 is called a proxy surface in [4] and thus we refer to this acceleration technique 
as the proxy surface method.

The error analysis of the proxy surface method, however, is only sketched in [1] and the discretization of 
the proxy surface Γproxy

0 is chosen heuristically in previous work [1–5]. In this paper, we provide a rigorous 
error analysis of the proxy surface method with the 3D Laplace kernel. The error analysis shows how the 
number of points needed to discretize Γproxy

0 depends on the desired accuracy of the low-rank approximation 
and on the ratio of the radius of Γproxy

0 to the radius of the subdomain Γ0.

2. Background

Interpolative decomposition (ID, a.k.a. skeletonization) [11,12] represents or approximates a matrix H ∈
Rn×m in the low-rank form UHJ , where U ∈ Rn×k has bounded entries, HJ ∈ Rk×m contains k rows of H, 
and k is the rank. The matrix HJ is called the row skeleton. An ID approximation defined this way is said to 
have precision ε0 if the norm of each row of the error matrix H−UHJ is bounded by ε0. Using an algebraic 
approach, an ID approximation with a given rank or a given precision threshold can be calculated using 
the strong rank-revealing QR (SRRQR) decomposition [12]. The matrix U obtained from this approach can 
have all its entries bounded by a prespecified parameter Cqr � 1.

Consider an integral equation with the 3D Laplace kernel K(x, y) = 1/|x − y|

a(x)u(x) +
∫
Γ

K(x, y)u(y)dy = f(x), x ∈ Γ ⊂ R3, (1)

where a(x) and f(x) are given functions and u(x) is the unknown function to be determined. The Nyström 
method [13,3] for discretizing the integral equation gives

a(xi)u(xi) +
∑

K(xi, xj)wju(xj) = f(xi), xi ∈ X, (2)

xj∈X



318 X. Xing, E. Chow / Appl. Comput. Harmon. Anal. 49 (2020) 316–327
Fig. 2. Relationship between X0, Y0, and a proxy surface Γproxy for the submatrix K(X0, Y0) to be approximated by the proxy 
surface method.

where X is the set of points used to discretize Γ and wj is the quadrature weight at xj. Any off-diagonal block 
row AΓ0,Γ/Γ0 of the discretized integral operator in (2) has its entries defined as AΓ0,Γ/Γ0(i, j) = K(xi, yj)wj

where X0 = {xi} and Y0 = {yj} are subsets of X and are used to discretize Γ0 and Γ/Γ0, respectively.
Ignoring the quadrature weights {wj} in AΓ0,Γ/Γ0 , we analyze the proxy surface method for approximating 

the submatrix K(X0, Y0) = (K(xi, yj))xi∈X0,yj∈Y0 . Our analysis can be naturally extended to the case with 
quadrature weights and to the case with other discretization methods. As illustrated in Fig. 2, we assume 
that the points in X0 lie in a bounded domain which we call X , and that the points in Y0 lie outside X . 
An artificial proxy surface Γproxy encloses X and is discretized by a set of points Yp. The domain outside 
Γproxy is called the far field of X and denoted as Y. The set of points Y0 is partitioned into Y near

0 and Y far
0

which are inside and outside Γproxy, respectively.
The proxy surface method calculates a low-rank approximation of the submatrix K(X0, Y0) in the form 

of an ID,

K(X0, Y0) ≈ UK(XS , Y0) (3)

where XS ⊂ X0 is the subset of points associated with the row skeleton of the ID approximation. The proxy 
surface method accelerates the purely algebraic computation (based on SRRQR alone) of such an ID approx-
imation, as shown in Algorithm 1. In practice, the set of points Yp used to discretize Γproxy in Algorithm 1
is usually much smaller than Y far

0 and the purely algebraic approximation of K(X0, Y near
0 ∪ Yp) is much 

cheaper than that of K(X0, Y0). Thus, the main idea of the method is to replace the columns K(X0, Y far
0 )

in the matrix K(X0, Y0) by the smaller matrix K(X0, Yp) while keeping K(X0, Y near
0 ) unchanged.

Algorithm 1 Proxy surface method.
Input: X0, Y0, Γproxy.
Output: U and XS for an ID approximation UK(XS , Y0) of K(X0, Y0).

Step 1: partition Y0 into Y near
0 and Y far

0 which are inside and outside Γproxy, respectively, as shown in Fig. 2.
Step 2: select a set of points Yp for discretizing Γproxy.
Step 3: calculate U and XS from an ID approximation of K(X0, Y near

0 ∪ Yp) using SRRQR as

K(X0, Y
near
0 ∪ Yp) ≈ UK(XS , Y

near
0 ∪ Yp). (4)

To simplify analysis, we first assume that the points in Y0 only lie outside Γproxy, i.e., Y near
0 is empty, 

and thus (4) in Algorithm 1 is replaced by

K(X0, Yp) ≈ UK(XS , Yp). (5)
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In this paper, we focus on the error analysis of this reduced case. The general case, removing the assumption 
that Y near

0 is empty, is handled in Section 5 using the analysis of this reduced case.
The effectiveness of the proxy surface method in the reduced case is explained as follows, which has been 

presented previously [1,2,4], although in a different form.
Recall that Y is the domain outside Γproxy as shown in Fig. 2. For any fixed x ∈ X , the function K(x, y)

is harmonic in the single variable y ∈ Y and thus K(x, y) is the solution to the exterior Dirichlet problem

−Δu(y) = 0, y ∈ Y,

u(y) = K(x, y), y ∈ Γproxy = ∂Y.

Using the Green’s function G(x, y) for the above Laplace boundary value problem, K(x, y) can be represented 
using a double layer potential as

K(x, y) = −
∫

Γproxy

K(x, z)∂G
∂ν

(z, y)dS(z), y ∈ Y,

where ν denotes the outer normal direction of Γproxy at point z. This representation can be further discretized 
through numerical quadrature as

K(x, y) ≈ K(x, Yp)W (Yp, y), x ∈ X , y ∈ Y (6)

where Yp here is a set of quadrature points on Γproxy and W (Yp, y) is −∂G
∂ν (Yp, y) times corresponding 

quadrature weights. Substituting X0 and Y0 into the above discretized representation gives the approxima-
tion

K(X0, Y0) ≈ K(X0, Yp)W (Yp, Y0). (7)

Based on (7), the ID approximation error of K(X0, Y0) in (3) can be bounded by that of K(X0, Yp) in 
(5) as

‖K(X0, Y0) − UK(XS , Y0)‖F ≈ ‖ (K(X0, Yp) − UK(XS , Yp))W (Yp, Y0)‖F
� ‖K(X0, Yp) − UK(XS , Yp)‖F ‖W (Yp, Y0)‖2. (8)

Note that the above explanation is only qualitative and not enough for an error analysis of the proxy 
surface method since the discretization of the integral representation in (6) and the boundedness of 
‖W (Yp, Y0)‖2 in (8) have not been rigorously studied.

Furthermore, the number of points in Yp used to discretize Γproxy is chosen heuristically in practice. 
Refs. [1,2] suggest using |Yp| ∼ O(|X0|). Ref. [4] claims correctly but without an explanation that, for the 
Laplace kernel with a fixed ratio of the radius of Γproxy to the radius of X , the number of points needed to 
discretize Γproxy depends on the desired precision of the low-rank approximation.

In this paper, to theoretically justify the proxy surface method, we address the following two problems: (a) 
the quantitative relationship between the ID approximation error of K(X0, Yp) in (5) and that of K(X0, Y0)
in (3); (b) how to choose the number of points in Yp to guarantee a given precision of the ID approximation 
of K(X0, Y0) in (3).

3. Main result

Denote the open ball of radius r centered at the origin in 3D as B(0, r). Consider X = B(0, r1), Γproxy =
∂B(0, r2), and Y = R3\B(0, r2) with r2 > r1 as illustrated in Fig. 3. For the 3D Laplace kernel K(x, y) =
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Fig. 3. 2D illustration of the 3D domains X and Y and the proxy surface Γproxy.

1/|x −y|, this section provides an error analysis for the proxy surface method in the reduced case that Y near
0

is empty and the points in Y0 are only in Y. The error analysis for the general case that Y near
0 is nonempty 

is discussed in Section 5 based on the results in this section.
Assume that a set of points Yp is used to discretize Γproxy and that the submatrix K(X0, Y0) to be 

approximated is associated with point sets X0 ⊂ X and Y0 ⊂ Y. In the proxy surface method, the obtained 
ID approximation K(X0, Y0) ≈ UK(XS , Y0) can be viewed row-by-row as

K(xi, Y0) ≈ uT
i K(XS , Y0), xi ∈ X0, (9)

where uT
i denotes the ith row of U . Since U and XS are computed from the ID approximation K(X0, Yp) ≈

UK(XS , Yp) and are not related to Y0, the approximation in (9) can be applied to any set of points Y0 in 
Y. Thus, the error of the approximation in (9) depends on the quality of the function approximation

K(xi, y) ≈ uT
i K(XS , y), xi ∈ X0, y ∈ Y.

Denote the error of this function approximation as

ei(y) = K(xi, y) − uT
i K(XS , y), xi ∈ X0, y ∈ Y. (10)

Note that the ith row of the error matrix K(X0, Y0) − UK(XS , Y0) from the ID approximation of 
K(X0, Y0) in (3) is exactly ei(Y0). Similarly, the ith row of the error in the ID approximation of K(X0, Yp) in 
(5) is ei(Yp). Later in this paper (in Theorem 1 at the end of this section), we will assume that the ID approx-
imation of K(X0, Yp) in (5), calculated using SRRQR, has precision ε

√
|Yp| and thus ‖ei(Yp)‖2 � ε

√
|Yp|

for any xi ∈ X0.
For an arbitrary set of points Y0 in Y, the best upper bound for ei(Y0) is

‖ei(Y0)‖2 �
√

|Y0|max
y∈Y

|ei(y)|, (11)

where equality holds when |ei(y)| reaches the same maximum in Y for all points in Y0. Our error analysis 
of the proxy surface method seeks an upper bound for |ei(y)| in the whole domain Y in terms of ‖ei(Yp)‖2
which itself can be bounded by specifying the precision of the SRRQR. The bulk of the analysis rests on 
the following proposition.

Proposition 1. If the set of points Yp ⊂ Γproxy = ∂B(0, r2) satisfies the condition that numerical quadrature 

with the points in Yp and equal weights 4πr2
2

|Yp| is exact for polynomials on Γproxy of degree up to 2c, then ei(y)
defined in (10) for any xi ∈ X0 can be bounded as

|ei(y)| � (c + 1)‖ei(Yp)‖2√
|Yp|

+ (c + 2)(1 + |XS |‖ui‖∞)
r2 − r1

(
r1
r2

)c+1

, y ∈ Y. (12)
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Proof. For any x ∈ X , the function K(x, y) is harmonic in the single variable y ∈ Y. Since ei(y) is a linear 
combination of K(xi, y) and {K(xj , y) : xj ∈ XS}, it is also harmonic in Y. By the maximum principle of 
harmonic functions, ei(y) satisfies

max
y∈Y

|ei(y)| = max
y∈Γproxy

|ei(y)|. (13)

Thus, it suffices to prove the upper bound (12) for y ∈ Γproxy.
The multipole expansion of K(x, y) with (x, y) ∈ X × Γproxy is written as

K(x, y) =
∞∑
l=0

l∑
m=−l

Mm
l (x) 1

rl+1
2

Y m
l (α, β), (14)

where (r2, α, β) denotes the polar coordinates of y on Γproxy, Y m
l (α, β) is the spherical harmonic function 

of degree l and order m, and {Mm
l (x)} is a set of known moment functions. Truncating the above infinite 

sum at index c, the remainder can be bounded as

∣∣∣∣∣K(x, y) −
c∑

l=0

l∑
m=−l

Mm
l (x) 1

rl+1
2

Y m
l (α, β)

∣∣∣∣∣ � 1
r2 − r1

(
r1
r2

)c+1

.

Substituting the multipole expansion (14) into (10), the multipole expansion for ei(y) with y ∈ Γproxy

can be written as

ei(y) =
∞∑
l=0

l∑
m=−l

(
Mm

l (xi) − uT
i M

m
l (XS)

) 1
rl+1
2

Y m
l (α, β)

=
c∑

l=0

l∑
m=−l

Em
l Y m

l (α, β) + Rc(y), (15)

where Em
l represents the coefficients collected for Y m

l (α, β) and the remainder Rc(y) can be bounded as

|Rc(y)| �
(1 + |XS |‖ui‖∞)

r2 − r1

(
r1
r2

)c+1

(16)

using the triangle inequality. Since {Y m
l (α, β)} is a set of orthonormal polynomial functions on the unit 

sphere S2, the coefficients Em
l in (15) can be calculated analytically as

Em
l =

∫
S2

(ei(r2y) −Rc(r2y))Y m
l (y)dS(y)

= 1
r2
2

∫
Γproxy

(ei(y) −Rc(y))Y m
l (y)dS(y),

where Y m
l (y) is defined as Y m

l (α, β) for any y = (|y|, α, β).
Note that (ei(y) − Rc(y))Y m

l (y) is a polynomial on Γproxy of degree at most c + l. Since numerical 
quadrature with the points in Yp and equal weights 4πr2

2
|Yp| is exact for polynomials on Γproxy of degree up to 

2c, Em
l with l � c can be further represented as
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Em
l = 1

r2
2

∫
Γproxy

(ei(y) −Rc(y))Y m
l (y)dS(y)

= 1
r2
2

∑
yj∈Yp

(ei(yj) −Rc(yj))Y m
l (yj)

4πr2
2

|Yp|

= 4π
|Yp|

(ei(Yp) −Rc(Yp))T Y m
l (Yp). (17)

Substituting (17) into (15), ei(y) with y ∈ Γproxy can be rewritten as

ei(y) = 4π
|Yp|

(ei(Yp)−Rc(Yp))T
(
Y 0

0 (Yp) Y −1
1 (Yp) . . . Y c

c (Yp)
)
⎛
⎜⎜⎜⎜⎝

Y 0
0 (y)

Y −1
1 (y)

...
Y c
c (y)

⎞
⎟⎟⎟⎟⎠+ Rc(y)

= 4π
|Yp|

(ei(Yp) −Rc(Yp))T MΦ(y) + Rc(y), (18)

where M and Φ(y) denote, respectively, the middle matrix and the last vector function of y in the first 
equation. Note that any two distinct columns of M , say Ym1

l1
(Yp) and Y m2

l2
(Yp), are orthogonal with each 

other, i.e.,

Y m1
l1

(Yp)TY m2
l2

(Yp) = |Yp|
4π

∫
S2

Y m1
l1

(y)Y m2
l2

(y)dS(y) = |Yp|
4π δl1,l2δm1,m2 ,

and thus the scaled matrix 
√

4π
|Yp|M has orthonormal columns. Therefore, it holds that

√
4π
|Yp|

‖MΦ(y)‖2 = ‖Φ(y)‖2. (19)

Meanwhile, by the addition theorem of spherical harmonics, the norm of the vector function Φ(y) at any 
y ∈ Γproxy is

‖Φ(y)‖2 =

√√√√ c∑
l=0

(
l∑

m=−l

|Y m
l (y)|2

)
=

√√√√ c∑
l=0

2l + 1
4π = c + 1√

4π
. (20)

Combining (16), (19), and (20) into (18), we obtain an upper bound on ei(y) as

|ei(y)| �
∣∣∣∣ 4π
|Yp|

ei(Yp)TMΦ(y)
∣∣∣∣ +

∣∣∣∣ 4π
|Yp|

Rc(Yp)TMΦ(y)
∣∣∣∣ + |Rc(y)|

� 4π
|Yp|

‖ei(Yp)‖2‖MΦ(y)‖2 + 4π
|Yp|

‖Rc(Yp)‖2‖MΦ(y)‖2 + |Rc(y)|

� (c + 1)‖ei(Yp)‖2√
|Yp|

+ (c + 1)‖Rc(Yp)‖2√
|Yp|

+ |Rc(y)|

� (c + 1)‖ei(Yp)‖2√
|Yp|

+ (c + 2)(1 + |XS |‖ui‖∞)
r2 − r1

(
r1
r2

)c+1

, (21)

using the Cauchy-Schwarz and triangle inequalities. �



X. Xing, E. Chow / Appl. Comput. Harmon. Anal. 49 (2020) 316–327 323
Combining Proposition 1 and the inequality (11), the error bound of the proxy surface method for the 
ID approximation of K(X0, Y0) in the reduced case can be stated as follows.

Theorem 1 (Error bound for the proxy surface method). If the set of points Yp satisfies the condition in 
Proposition 1 and the ID approximation of K(X0, Yp) in (5) has precision ε

√
|Yp|, i.e., ‖ei(Yp)‖2 � ε

√
|Yp|

for each xi ∈ X0, the ID approximation of K(X0, Y0) in (3), calculated by the proxy surface method, has 
error ei(Y0) in the ith row bounded as

‖ei(Y0)‖2√
|Y0|

� (c + 1)‖ei(Yp)‖2√
|Yp|

+ (c + 2)(1 + |XS |‖ui‖∞)
r2 − r1

(
r1
r2

)c+1

(22)

� (c + 1)ε + (c + 2)(1 + |XS |‖ui‖∞)
r2 − r1

(
r1
r2

)c+1

. (23)

When there are not many points in Yp, i.e., c is small, the error bound (22) is dominated by its second 
term which comes from the truncation error Rc(y) of the multipole expansion of ei(y) in (15). On the other 
hand, observe that the second term in (22) decays exponentially with c. Thus, with a sufficiently large 
number of points in Yp, the root-mean-square error ‖ei(Y0)‖2/

√
|Y0| of the ID approximation of K(X0, Y0)

is controlled by the first term in (22) which is proportional to the root-mean-square error ‖ei(Yp)‖2/
√

|Yp|
of the ID approximation of K(X0, Yp).

4. Selection of Yp

Using the quadrature point sets provided in Ref. [14], 2c2 +2c +O(1) points are needed in Yp to construct 
an exact quadrature for polynomials on Γproxy of degree up to 2c. Thus, the main question in the selection 
of Yp is choosing the smallest constant c that balances the precision and efficiency of the proxy surface 
method.

Since the error bound (23) contains |XS | and ‖ui‖∞ which depend on the ID approximation of K(X0, Yp), 
a priori estimates of these two quantities are needed for the selection of Yp. When using SRRQR to calculate 
the ID approximation of K(X0, Yp), entries of the obtained U can be bounded by a prespecified parameter 
Cqr � 1 and thus ‖ui‖∞ � Cqr for any xi ∈ X0. The size of XS is an estimate of the numerical rank 
of K(X0, Yp) and thus satisfies |XS | � min(|X0|, |Yp|). Plugging these estimates into (23), we obtain an a 
priori error bound as

‖ei(Y0)‖2√
|Y0|

� (c + 1)ε + (c + 2)Cqr min (|X0|, |Yp|) + 1
r2 − r1

(
r1
r2

)c+1

. (24)

In the upper bound (24), the second term decays exponentially in c while the first term increases linearly 
in c. Therefore, choosing the integer c that makes the second term approximately the same as the first term, 
i.e.,

Cqr min
(
|X0|, 2c2 + 2c + O(1)

)
+ 1

r2 − r1

(
r1
r2

)c+1

≈ ε (25)

can approximately minimize the upper bound in (24) (as a function of c). Then, the set of points Yp from 
the dataset of Ref. [14] corresponding to the selected c can be used for the discretization of Γproxy. With 
such a selection of Yp, the error in the ith row of the ID approximation of K(X0, Y0) is bounded as

‖ei(Y0)‖2 � (2c + 3)ε
√
|Y0|.
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The condition required for Yp in Proposition 1 is needed for a rigorous error analysis. Also, the a priori 
upper bound in (24) may not be tight. Thus, the above choice for the number of points in Yp is conservative. 
However, the key idea conveyed by Theorem 1 and the above selection of Yp is that, as long as the absolute 
distance between Γproxy and X is not too small, e.g., r2 − r1 � 1, the number of points needed in Yp to 
guarantee the root-mean-square approximation precision of the proxy surface method only depends on ε
in the precision threshold ε

√
|Yp| for the ID approximation of K(X0, Yp) and on the ratio of the radius of 

Γproxy to the radius of X .

5. Error analysis for the general case

For the general case, Y0 is partitioned into Y near
0 and Y far

0 where the points in Y near
0 lie between X and 

Γproxy and the points in Y far
0 lie in Y. In Algorithm 1, assume that the ID approximation K(X0, Y near

0 ∪Yp) ≈
UK(XS , Y near

0 ∪ Yp) calculated by the proxy surface method using SRRQR has precision ε0. The error 
function ei(y) defined in (10) for any xi ∈ X0 with the resulting U and XS satisfies ‖ei(Y near

0 ∪ Yp)‖2 � ε0. 
Furthermore, the ith row error vector of the defined ID approximation K(X0, Y0) ≈ UK(XS , Y0) can be 
written as ei(Y0) = ei(Y near

0 ∪ Y far
0 ).

Since the points in Y far
0 lie in Y, the error bound (22) in Theorem 1 can be applied to ei(Yp) and ei(Y far

0 )
and be written as

‖ei(Y far
0 )‖2√

|Y far
0 |

� (c + 1)‖ei(Yp)‖2√
|Yp|

+ (c + 2)(1 + |XS |‖ui‖∞)
r2 − r1

(
r1
r2

)c+1

. (26)

Based on this inequality and the two loose inequalities ‖ei(Y near
0 )‖2 � ε0 and ‖ei(Yp)‖2 � ε0 derived from 

‖ei(Y near
0 ∪ Yp)‖2 � ε0, the row error vector ei(Y0) can be bounded as

‖ei(Y0)‖2
2 = ‖ei(Y near

0 )‖2
2 + ‖ei(Y far

0 )‖2
2

� ε2
0 + |Y far

0 |
(

(c + 1) ε0√
|Yp|

+ (c + 2)(1 + |XS |‖ui‖∞)
r2 − r1

(
r1
r2

)c+1
)2

�
(

1 + (c + 1)2 |Y
far
0 |
|Yp|

)
ε2
0. (27)

The final inequality above assumes that the constant c is large enough so that the last term in (26) is 
negligible compared to the first term.

The error bound (27) is loose due to the use of ‖ei(Y near
0 )‖2 � ε0 and ‖ei(Yp)‖2 � ε0. More precise 

estimates of ‖ei(Y near
0 )‖2 and ‖ei(Yp)‖2 can be used to obtain a sharper error bound on ‖ei(Y0)‖2. These 

estimates would be related to the actual distribution of the points Y near
0 in the domain between X and 

Γproxy.

6. Numerical experiments

In the following tests, we verify our main error analysis results of the proxy surface method in the reduced 
case that the points in Y0 all lie in domain Y and outside the proxy surface Γproxy. The precision threshold 
for the ID approximation of K(X0, Yp) is set to ε

√
|Yp| so that ‖ei(Yp)‖2 � ε

√
|Yp| for each xi ∈ X0. The 

value of ε will be specified for each test below. The parameter Cqr for SRRQR in the ID approximation of 
K(X0, Yp) is set to 2.



X. Xing, E. Chow / Appl. Comput. Harmon. Anal. 49 (2020) 316–327 325
Fig. 4. Values of maxy∈Y |ei(y)| and its upper bound (12) for each xi ∈ X0\XS with (a) values of the two quantities and (b) ratio 
of the upper bound to maxy∈Y |ei(y)|. Indices for xi ∈ X0\XS are sorted so that the upper bounds are in ascending order.

Fig. 5. Values of maxxi∈X0,y∈Y |ei(y)| and its upper bound (28) for different constants c and corresponding different point sets Yp

selected from Ref. [14]. The precision threshold ε
√

|Yp| with fixed ε = 10−6 is used in the ID approximation of K(X0, Yp) for 
different Yp.

6.1. Error bound for ei(y) in Proposition 1

Consider X = B(0, 1), Y = R3\B(0, 2), and ε = 10−6. The constant c estimated by (25) is 30 and the 
corresponding set of points Yp selected from Ref. [14] has 1862 points. We randomly and uniformly selected 
2000 points in X for X0. The ID approximation K(X0, Yp) ≈ UK(XS , Yp) calculated by SRRQR with 
precision ε

√
|Yp| has XS with 298 points. Lastly, for each xi ∈ X0, the error function ei(y) = K(xi, y) −

uT
i K(XS , y) is defined using the obtained U and XS .
To check the error bound (12) in Proposition 1, we plot maxy∈Y |ei(y)| and its upper bound (12) in Fig. 4

for each xi ∈ X0\XS (for any xi ∈ XS , ei(y) is the zero function). We estimate maxy∈Y |ei(y)| by densely 
sampling |ei(y)| over Γproxy, cf. (13). As can be observed, the difference between the upper bound (12) and 
maxy∈Y |ei(y)| is usually within an order of magnitude. However, the ratio of these two quantities being 
always greater than 3 indicates that an even sharper upper bound may exist.

In a further numerical test of Proposition 1, we vary the constant c and the corresponding Yp selected 
using Ref. [14] for the same set of points X0 and the same ε. For different Yp, Fig. 5 plots maxxi∈X0,y∈Y |ei(y)|
and its upper bound derived from Proposition 1, i.e.,

max |ei(y)| � (c + 1)ε + (c + 2)1 + maxi ‖ui‖∞|XS |
(
r1

)c+1

. (28)

xi∈X0,y∈Y r2 − r1 r2
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Fig. 6. Values of ‖ei(Y0)‖2/
√
|Y0|, maxy∈Y0 |ei(y)|, and their shared upper bound (22) in Theorem 1 for two different Y0. The 

indices xi are sorted so that the upper bounds are in ascending order.

It can be observed that the upper bound (28) is quite tight and also identifies the knee at |Yp| ≈ 500
where maxxi∈X0,y∈Y |ei(y)| stops decreasing. The fact that maxxi∈X0,y∈Y |ei(y)| does not further decrease 
with larger |Yp| is due to the precision threshold ε

√
|Yp| used in the ID approximation of K(X0, Yp). The 

knee also indicates that approximately 500 points for Yp is sufficient to obtain the best possible precision 
for the proxy surface method in this specific case, i.e., r1 = 1, r2 = 2, and ε = 10−6. However, the method 
of choosing Yp in Section 4 gives c = 30 and |Yp| = 1862. The main cause of this overestimation of |Yp|, by 
comparing (28) and (25), turns out to be the looseness of |XS | � min(|X0|, |Yp|) utilized in (25).

6.2. Error bound for ‖ei(Y0)‖2 in Theorem 1

The upper bound for ‖ei(Y0)‖2 in Theorem 1 simply combines the upper bound of maxy∈Y |ei(y)| in 
Proposition 1, which has been shown to be quite tight in the previous test, and the inequality (11), i.e., 
‖ei(Y0)‖2 �

√
|Y0|maxy∈Y |ei(y)|. Equality in (11) is achieved when |ei(y)| reaches its maximum in Y at all 

the points in Y0. However, for an arbitrary set of points Y0, the inequality (11) turns out to be very loose 
as demonstrated below.

Using the same set of X , Y, ε, and X0 ⊂ X as in the previous test, we considered the set of points 
Yp associated with c = 30. We randomly and uniformly selected 20000 points for Y0 in two subdo-
mains of Y, B(0, 4)\B(0, 2) and B(0, 8)\B(0, 2). For the proxy surface method, the root-mean-square error 
‖ei(Y0)‖2/

√
|Y0| and the maximum entry-wise error maxy∈Y0 |ei(y)| for each xi ∈ X0\XS are plotted in 

Fig. 6 along with their shared upper bound (22) in Theorem 1.
For both subdomains of Y from which Y0 is selected, ‖ei(Y0)‖2/

√
|Y0| is more than one order of magnitude 

smaller than maxy∈Y0 |ei(y)|. Thus, in these cases, the inequality (11) is very loose, which makes the upper 
bound in Theorem 1 very loose. However, as mentioned earlier, the inequality (11) is the best upper bound 
for ei(Y0) if no further assumptions on Y0 are made other than Y0 ⊂ Y.

6.3. Selection of Yp

From Section 4, the selection of Yp mainly depends on the domains X and Y and the value ε in the 
precision threshold ε

√
|Yp| for the ID approximation of K(X0, Yp). Varying these parameters, Table 1 lists 

the number of points in Yp selected by the method described in Section 4. Although our selection method 
is quite conservative as shown previously in Fig. 5, the results in Table 1 clearly show how the number of 
points chosen for Yp is affected by the problem parameters.
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Table 1
Estimated constant c and number of points selected for Yp under different settings of radius r1 for X = B(0, r1), radius r2 for 
Y = R3\B(0, r2), and ε in the ID precision threshold ε

√
|Yp|.

r1 r2 r1/r2 ε c |Yp|
Reference test 1 2 0.5 10−6 30 1862

Different ε 1 2 0.5 10−4 23 1106
1 2 0.5 10−8 38 2965

Different
r1

r2
1 4 0.25 10−6 12 314
1 6 0.16 10−6 9 181

Different r2 − r1 10 20 0.5 10−6 27 1514
100 200 0.5 10−6 23 1106

7. Conclusion

The error analysis of the proxy surface method has now been established by showing the quantitative 
relationship (22) between the ID approximation error of K(X0, Y0) and the ID approximation error of 
K(X0, Yp). The analysis also provides an estimate of the number of points needed to discretize proxy 
surfaces under different problem settings. The same error analysis technique can be applied to the proxy 
surface method for more general data-sparse matrices with entries defined by the interactions between two 
compact charge distributions, e.g., matrices in the Galerkin method for integral equations and electron 
repulsion integral tensors with Gaussian-type basis functions in quantum chemistry.
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