
Learning Executable Agent Behaviors from Observation

Andrew Guillory, Hai Nguyen, Tucker Balch, Charles Lee Isbell, Jr.
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

{guillory, haidai, tucker, isbell}@cc.gatech.edu

ABSTRACT
We present a method for learning a human understandable,
executable model of an agent’s behavior using observations
of its interaction with the environment. By executable we
mean that the model is suitable for direct execution by
an agent. Traditional models of behavior used for recog-
nition tasks (e.g., Hidden Markov Models) are insufficent
because they cannot respond to input from the environ-
ment. We train an Input/Output Hidden Markov Model
where the output distributions are mixtures of learned low
level actions and the transition distributions are conditional
on features calculated from the agent’s sensors. We show
that we are able to recover both the behavior and human-
understandable structure of a simulated model inspired by
animal behavior studies. We also present a novel training
method that combines multiple EM trials through discrete
optimization.

1. INTRODUCTION
An ethologist studying the behavior of an animal such as
an ant or bee typically starts by defining a set of low-level
actions the animal performs. For example, in social insect
foraging, these actions include searching for a food source
and exploiting a food source [16]. Having defined such low-
level actions, the scientist then determines high-level struc-
ture; that is, she models what causes the animal to switch
between low-level actions. Similarly, a roboticist or agent
developer might program the behavior of a robot by cod-
ing low-level control modes corresponding to primitive ac-
tions and combining these low-level control modes together
through some kind of high-level action selection mechanism.

In both ethology and robotics it is common to represent the
high-level behavior as a discrete state model like a Finite
State Machine or Markov Chain where each state is assigned
to a low-level action. The transitions between states in the
model may be random or more generally conditional on the
agents perceptions. In this paper we present a method for
learning both low-level actions and a high-level switching

model. The result is human-understandable, but also exe-
cutable in the sense that it can be used as a control program
in a simulation or as part of an agent, making the method
of broad interest. For example, ethologists could use it to
learn models of social insect behavior from tracking data,
examining the models in an attempt to better understand
the underlying behavior and executing the models in simu-
lation to predict behavior in different situations. We more
formally define the problem as:

• Given:

1. A model of the agent’s perception;

2. A set of perceptions that may cause the agent to
switch behaviors; and

3. Example trajectories of the agent interacting in
its environment (tracking data), some of which
has been labeled by a human expert, designating
the low-level action the agent is performing at a
given time step.

• Assume: The agent acts according to a Markov Process
with inputs

• Compute: An executable model of the agents behav-
ior composed of controllers for low-level actions and
rules for switching between them

We divide the task of learning an executable model into the
separate problems of 1) learning controllers for low-level ac-
tions from labeled data and 2) learning high-level switching
from unlabeled data using our model of low-level actions.
Thus, it is not necessary that the human expert label any
data where the agent exhibits switching behavior–the ex-
pert can simply label portions of the data where the agent
is obviously performing a particular action.

Our approach is to train an Input/Output Hidden Markov
Model where the output distributions are mixtures of learned
low-level actions and the transitions are conditioned on per-
ceptions of the agents. We first learn from labeled data a
set of low-level actions that may be assigned to states in the
model. Having learned these low-level actions, the problem
is then to learn from unlabeled data a mapping between
states and low-level actions as well as the transition rules
between states. It is necessary to learn the mapping be-
cause we do not wish to assume a one-to-one correspondence

between states and low-level actions (there may be, for ex-
ample, more than one state within the model corresponding
to the same low-level action).

After reviewing related work, we present a simulated model
of social foraging as an example problem domain. Next we
formally define an Input/Output Hidden Markov Model and
show how to use it to build executable models, first assum-
ing we already know the low-level actions, then discussing
how to also learn the low-level actions from data. Finally,
we present results applying our approach to the simulated
foraging domain, and introduce a new training method that
improves performance on our problem.

2. RELATED WORK
Our work is in contrast to activity recognition. Although
models of behavior learned in activity recognition are of-
ten generative, they are not usually suitable for re-creation.
Hidden Markov Models, for example, are generative models
but are usually severely limited in their ability to recreate
real activities because they lack the notion of responding
to input from the environment. In other words, Hidden
Markov Models can only represent open-loop control poli-
cies, where we believe for a model to be truly executable
it should also be able to represent closed-loop control poli-
cies. In activity recognition, domain knowledge is typically
represented as high-level knowledge of the structure of the
behavior, for example in the form of topology restrictions on
the model or high-level grammars. We cannot assume prior
knowledge of any high-level structure, because recovering
human-understandable structure is one of our goals.

Our work is more similar in goal to imitation learning. The
notion of primitives in [7] is similar to our notion of low-level
actions. Imitation learning for robots was applied to a for-
aging problem in [11]. Such techniques generally differ from
our work by usually focusing more on learning and detect-
ing low-level actions (i.e. mappings from senses to actions)
while constrained by the kinematics of particular robots.
These approaches usually use simpler high-level methods for
selecting among low-level actions. Further, they typically do
not seek human understandability.

Our work is most similar to that of Delmotte and Egerst-
edt [9] who modeled both re-creation and high-level human-
understandability. They approach the problem from the
persepective of control theory and recover from unlabeled
data both low-level control modes and a high-level control
program in the form of a motion description string. We
instead approach the problem from the perspective of ma-
chine learning and graphical models: we use labeled data to
recover the low-level control modes but recover a more ex-
pressive kind of high-level model in that it allows for loops
in control flow as well as stochastic behavior.

3. FORAGING MODEL
We programmed by hand a model of foraging inspired by the
behavior of social insects, using the TeamBots simulation
platform and motor schema-based control [1]. Our experi-
mental method was to generate data from this known model,
then see if we are able to automatically recover the structure
and behavior from the data. Figure 1 shows the state dia-
gram for our model and simulation screenshots. The agents

perform four low-level actions:

• Loiter: with gripper open, move slowly, randomly
around the center of the screen (the base)

• Explore: with gripper open, move forward with ran-
dom variation, turn away from walls and other agents
when bumped into them

• Move to target: with gripper on trigger mode, move
towards the closest target

• Move to base: with gripper closed, move towards
the center of the screen.

There are four binary transition triggers. The agent is:

• BUMPED: very close to the wall or another agent

• SEE TARGET: can see a target within its cone of
vision

• TARGET IN GRIPPER: holding a target

• AT BASE: within a certain radius of the center

If an agent bumps into a loitering agent, that agent is re-
cruited and begins to explore. This produces behavior where
agents often leave the base in small groups. Some transitions
are also triggered randomly (e.g., agents eventually return
to the base if they do not find a target). From the simulation
we created two data sets, one labeled and one unlabeled. For
both data sets we ran the model in simulation with 12 agents
at 33 frames per second, waiting for all of the targets to be
carried to base, recording at each frame the position and
orientation of all agents as well as the position of all targets.
In the first data set we also recorded the low-level action
being performed by each agent at each time. In the second
data set, we move the targets to a different location and
did not use knowledge of which low-level action the agent
was performing. Our goal is then to, from the labeled data
set, learn the low-level actions of the agent and, from the
unlabeled data set, learn the switching behavior.

4. IOHMMS
Hidden Markov Models (HMMs) [15, 2] represent the proba-
bility of an observation sequence P (yT

1) where yT
1 = y1...yT

is a sequence of observation vectors. Input/Output Hidden
Markov Models (IOHMMs) [4] are a generalization of this
model that represent the conditional probability of an ob-
servation sequence given an input sequence P (yT

1 |uT
1) where

ut is the input vector for time t. Both HMMs and IOHMMs
are discrete state models that marginalize their distributions
over a sequence of discrete states xT

1 , factoring the distrib-
ution according to the dependency assumptions in Figure
2. Applying these assumptions, for each state i = 1, ..., n
in an HMM there is a transition distribution P (xt|xt−1 =
i) and an output distribution P (yt|xt = i). In addition
there is an initial state distribution P (x1). In each state
in an IOHMM there is a conditional transition distribu-
tion P (xt|xt−1 = i,ut) and a conditional output distrib-
ution P (yt|xt = i,ut). Normally the initial state distri-
bution is still P (x1), although it also makes sense to use

Figure 1: Our foraging model, including screenshots from the TeamBots simulation.

Figure 2: Bayesian networks for IOHMMs and HMMs (adapted from [4])

P (x1|u1). The standard algorithm for training IOHMMs
is an Expectation Maximization (EM) algorithm that is a
straightforward extension of Baum-Welch for HMMs. Af-
ter training, the model can be interactively executed on an
input sequence in a manner similar to a finite state machine.

IOHMMs were motivated by work in analyzing temporal
credit diffusion in recurrent neural networks and traditional
HMMs [6, 3]. IOHMMs are typically used in a manner sim-
ilar to recurrent neural networks for sequence regression or
classification [10, 5, 13, 14]. The output vectors yt are the
target values for classification or regression. After train-
ing, new sequences are processed online by filtering through
the input vectors, calculating the most likely output at each
step. This is distinct from HMMs. where the states them-
selves typically correspond to labels and new sequences are
labeled by calculating the most likely state sequence.

5. IOHMMS AS EXECUTABLE MODELS
In our case, the input ut is the tracking data at time t, in-
cluding the position of the agent. The corresponding output
yt is the next position of the agent after moving. We think
of the inputs and the outputs as the senses and actions of
the agent, except expressed in terms of observables. By us-
ing the model interactively in a simulator environment we
can recreate the global behavior of the agent.

It should be noted that our use of variable names x, y, and u

as well as the terms input and output are different than their
use in dynamic systems literature (where input often refers
to input into the environment as opposed to the agent). We
have chosen the notation and terminology to be consistent
with previous papers on IOHMMs.

5.1 Output Distributions
We model output distributions as mixtures over learned low-
level actions. Mixture distributions just marginalize a distri-
bution over a discrete variable, in this case at, the low-level
action the agent is performing at time t.

P (yt|xt = i,ut) =
X

j

P (yt|at = j,ut)P (at = j|xt = i,ut)

(1)

In this equation, the first term in the summation is the mix-
ing component (the low-level action), and the second term is
a mixing weight, the probability of selecting a mixing com-
ponent. In the first term, we assume that yt is conditionally
independent of xt given at, assuming the low-level actions
are already learned and are fixed and the same for every
state. Because the mixing weights are conditioned on ut as
well as xt, the low-level action of an agent at a given time
step depends on not only on the state of the agent but also
on the current input. For our application, input-conditional

mixing weights are undesirable because they make it hard
to interpret the meaning of a state–there is not a simple
mapping between states and low-level actions. One way to
remove the dependency on ut is to assume that at is condi-
tionaly independent of ut given xt:

P (yt|xt = i,ut) =
X

j

P (yt|at = j,ut)mi,j (2)

Here mi,j is a standard mixing weight P (at = j|xt = i);
however, this model does not make use of information from
ut when determing which low-level action the agent is per-
forming. The input vectors can be valuable in determining
the mixing weights when typical sensor values are different
in the different low-level actions. For example, in our for-
aging problem the only action which is performed when the
agent is holding something is Move to Nest. Our approach
is to use the model from Equation 2 when executing the be-
havior, but for the purposes of parameter estimation, model
the output distributions as generating both ut and yt (i.e.
represent the joint probability of ut and yt). This allows
us to represent information about ut without introducing
input-conditional mixing weights. More specifically we use

P (yt,ut|xt = i) =
X

j

P (yt|at = j,ut)P (ut|at = j)mi,j

(3)

Here we have assumed both yt and ut are conditionally in-
dependent of xt given at. This equation, as compared to
Equation 2, introduces a new term into the mixing com-
ponent, P (ut|at = j), the prior probability of observing an
input given that the agent is performing a particular action–
something like a confidence in our estimate of P (yt|at =
j,ut). We refer to this term as the input prior term. Using
this joint output distribution, the overall model is something
like an HMM/IOHMM hybrid: the transition distributions
are conditional while the output distributions are not.

With this model, assuming we have calculated P (yt|at =
j,ut) and P (ut|at = j) for each time step and low-level
action—a task that only needs to be done once—only the
mixing weights need to be re-estimated during EM training.
In this way our variation of IOHMMs is less discriminant
than standard models as the actual input-output mappings
are fixed. The mixing weights are estimated with a varia-
tion of the standard formulas for mixing weights in a HMM
where our summation term over low level actions replaces
the standard summation term [8]. Once estimated, the mix-
ing weights provide a soft mapping between the states of
the model and the learned actions. The mapping is not
necessarily one-to-one, admitting models with several states
corresponding to the same low level action and with states
that correspond to a mixture of multiple low-level actions.

5.2 Transition Distributions
We must also represent our transition distributions. This is
done in a variety of ways in the literature, including neural
networks. In our experiments we avoid some complexity
and maintain human understandability by conditioning the

transition distributions on a set of binary sensory features
calculated from ut, just as we have done in our simulated
domain. We can then represent the transition distributions
as look up tables, using standard formulas for re-estimation
[4].

We experimented with ranking our binary features. We then
took as our input the most important triggered feature. For
example, using the ranking in Figure 3 for our foraging prob-
lem, if the agent has bumped into something, the input value
is 1 regardless of the state of the other features. This rank-
ing method greatly reduces the number of parameters and
constrains the model to resemble the sorts of models typi-
cally created by hand where only a single binary feature trig-
gers a transition. Unfortunately, choosing a feature ranking
requires domain knowledge. We also experimented with a
standard binary encoding, allowing for a different transition
rule for every possible combination of binary feature values.

When estimating probabilities in discrete probability dis-
tributions represented as look up tables, it is standard to
add a small constant to the counts for each entry to allow
some probability mass everywhere. This is sometimes called
a Laplace correction and corresponds to placing a uniform
Dirichlet prior on the probabilities. In our case, it is useful
to add a small number to only the entries in the table cor-
responding to self-transitions. In other words, given little
or no evidence, an agent should remain in its current state.
This prevents, for example, the model from learning an ex-
traneous transition for when the agent is at the nest in the
Move to Target state, a situation that never happens.

6. LEARNING LOW-LEVEL ACTIONS
To estimate the mixing weights during EM from unlabeled
data we need to estimate values for P (yt|at,ut) for each time
step and low-level action. To execute the resulting model, we
also need to be able to sample from this distribution. Our
approach to this problem is to learn a controller for each
low-level action from labeled data. When combined with a
simulation environment, the controller allows us to sample
from P (yt|at,ut) and, using sample-based approximation
techniques, estimate values for unlabled data.

¿From labeled data, we can calculate sensory features and
corresponding motor commands for each low-level action
(example inputs and outputs for each controller). We solve
the function approximation problem by using a modified
version of k-nearest neighbor (KNN), randomly choosing
from the k nearest neighbors with the probability of each
weighted using a kernel function by the point’s distance
from the query point. In terms of senses and actions, we
find the k vectors of sensory features closest to the input
vector and randomly chose between the corresponding ac-
tions with probability proportional to the sensory feature
vector distances. By randomly choosing in this way we can
model random actions like the Explore or Loiter actions.

Given the controller and a simulation environment, we can
sample from P (yt|at,ut) (i.e. simulate a single time step
of the agent’s motion). From this we can also evaluate the
distribution on unlabeled data using sample-based approxi-
mation techniques. Specifically we estimate the probability
values using kernel density estimation [12]. For a particular

ut, we sample from P (yt|at,ut) and take the average of a
kernel function applied to yt and each sample. In practi-
cal terms, for each time step and action we run a simulation
many times to produce distributions of points predicting the
next position of the agent. We then compare these point dis-
tributions to the actual next position to decide which action
the agent is performing. This method assumes nothing con-
cerning the representation of the low-level actions, so long
as they can be executed in simulation, and fully captures
interactions with the environment to the extent that the
simulator can recreate them.

For the model from Equation 3, we also learn a model for the
input prior P (ut|at = j) from labeled input-output pairs.
We are not interested in sampling from this distribution as
our model does not generate ut, but we need to be able
to estimate values for it in order to calculate the mixing
weights during EM. In our experiments, we again reduce ut

to a set of binary features, using the same binary features
and encoding as we did for the transition distributions.

7. RESULTS
7.1 Low-Level Action Learning
We used k-nearest neighbors on the agent’s sense-action
pairs to learn the low level controllers. To derive the sense-
action pairs we ran the labeled data set back through the
TeamBots simulation environment, and recorded the out-
puts of perceptual schemas corresponding to salient features
in the environment. For the sensory features we used dis-
tance and angle to the closest obstacle, closest target, closest
agent, and the base as well as whether or not the agent is
currently carrying a target. For the motor outputs we cal-
culated the distance and angle the agent moved at each time
step (i.e. approximating the first order derivative by taking
the difference between the position at t+1 and t-1) as well
as whether the agent was carrying an object or not. We
then tested the learned controllers in simulation using the
original forage switching behavior. Using the switching be-
havior, our learned low-level controllers were able to recreate
the original foraging behavior even on foraging arenas where
the position of food items are moved from their original po-
sition as well as differently sized arenas with more attractors
and more obstacles.

Even though the agents were able to recreate the original
foraging behavior by successfully gathering all the targets,
there were still flaws. The agents would frequently miss
targets while moving towards them in the Move to Target
controller, especially targets in in corners. This slowed down
the foraging some, but because the agents would then con-
tinue exploring until they succesfully picked up a target, it
didn’t have a large effect on the system behavior. Another
class of flaws includes our agent sometimes becoming stuck
in corners with other groups of agents and they bump into
each other. We believe that the second class of flaws were
probably caused by the derived perceptual features only tak-
ing into account the closest obstacle.

We ran the detection method on the unlabeled data, us-
ing 9000 frames of data per track. To simulate motion for
each of the actions we re-used the TeamBots simulation en-
vironment. Table 1 shows the confusion matrix for detection
using only P (yt|at,ut). Table 2 shows the confusion matrix

for detection also using the input prior term, P (ut|at). As
seen in Table 3, the input prior term greatly increases de-
tection accuracy for the Move to Target and Move to Base
low level actions. These two actions have distinctly different
characteristic inputs. In particular, Move to Target is only
performed when the agent sees a target and is not holding
a target, while Move to Base is performed when the agent
is either holding a target or does not see a target. This also
suggests why detecting these actions without the input prior
term does so poorly. Given an input unlike any previously
observed inputs, it is hard to predict what a learned con-
troller will produce, and it may very well by chance produce
an output similar to that of another controller.

7.2 IOHMM Learning
We trained 50 IOHMMs using EM on the same unlabeled
data, for both ranked and unranked input encodings in the
transition distributions, without using the input prior term
in the output distributions. Of these models, only 1 ranked
input (2%) and no unranked input models were able to re-
cover the structure of the behavior in that they correctly
learned the one-to-one correspondence between states and
low-level actions. The one ranked input model could not
recreate the behavior in simulation when combined with the
learned low-level controllers, because the mixing weights in
its Move to Target and Move to Base states were too noisy.
The unsuccesful models tended to have two Explore or two
Loiter states, presumably because of the proportionaly large
amount of Explore and Loiter data.

With the input prior term, results were better. We trained
150 models with EM for both ranked and unranked input
types using the input prior term, and 40 ranked and 32 un-
ranked input models learned the correct structure. The like-
lihood scores for the models that learned the correct struc-
ture, as calculated using the standard method [4], were all
higher than the scores for the models that did not. Their
likelihood scores were also greater than the original model’s.
Within these models, there were several clusters of mod-
els whose likelihood scores were identical within range of
our convergence criteria. We tested models from each of
these clusters. Figure 3 shows models from the clusters with
the highest likelihood scores for both ranked and unranked
types. 14 ranked and 21 unranked models were within this
maximum likelihood cluster.

All of the models trained with input prior terms that learned
the correct structure were also able to recreate the forage be-
havior in simulation when combined with the learned con-
trollers. However, they also all had flaws that affected the
behavior to varying degrees. The models usually had some
small nonzero mixing weights that caused states to some-
times flicker to a different low-level action. This would cause
the agent to miss targets more when the flicker was in Move
to Target. In some models agents would also drop the target
when bumped into. This seems to be caused by detection
inaccuracies when the agent is bumped into things. Another
flaw we found is that many models did not know what to
do when they missed a target or another agent reached a
target before them. Some would even remain stuck in Move
to Target in this situation, in the worst case then becoming
stuck against a wall. Finally, some models would incorrectly
transition from Move to Nest to Loiter when not carrying a

Loiter Explore Move to Target Move to Base
Loiter 84477 0 1 0

Explore 420 14355 34 90
Move to Target 0 60 333 87

Move to Base 1192 10 3744 3197

Table 1: Confusion matrix for detecting the low-level actions, without using an input prior term

Loiter Explore Move to Target Move to Base
Loiter 84478 0 0 0

Explore 0 14802 2 95
Move to Target 0 6 474 0

Move to Base 55 0 0 8088

Table 2: Confusion matrix for detecting low-level actions, using the input prior and an unranked encoding

target, sometimes transitioning early, sometimes late.

Subjectively the models with the maximum likelihood scores
seemed to recreate the behavior the best in simulation. These
models had only a small amount of flicker in the Explore
state that did not have a large visible effect on the behav-
ior. The ranked but not the binary models would drop the
target when bumped. The binary but not the ranked mod-
els would stay in Move to Target on a miss, but return to
Explore as soon as they bumped into something. The binary
model also only learned a random transition from Move to
Target to Loiter when returning without a target, while the
ranked model did learn to transition when reaching the nest,
but would also sometimes transition early.

8. EXTENDING EM WITH DISCRETE OP-
TIMIZATION

Although training with EM was succesful in that it could
learn the correct model, the rate for doing so was low. One
could simply run many more EM trials on randomly ini-
tialized models. Most of the computational effort lies in
detecting low-level actions (done only once): even with over
100000 data points, EM only took an average of 2-5 minutes
to complete. However, we expect more complicated models
will have even more local minima; it is desirable to have a
technique for combining information from multiple EM runs,
so that we can avoid learning the same incorrect models over
and over. Our approach is to use discrete optmization to
learn the mapping between states and actions. The intu-
ition behind is that the local minima found by EM tended
to be only 1 or 2 discrete steps away from the correct model.
For a model with two Explore states, for example, only one
of the states needs to be switched.

First, we train a model with EM. We then extract a discrete
mapping by setting the largest mixing weight in each state
to 1 and all others to 0. To calculate the likelihood of this
discrete mapping we randomize the transition distributions
again and rerun EM with the mixing weights fixed. On suc-
cessive iterations we randomly change the discrete mapping
by changing the low-level action of a randomly selected state
to a different, random action. We then evaluate the change
by randomizing the transition distributions again and rerun-
ing EM, keeping the mixing weights fixed. If the resulting
model has a higher likelihood we accept the new mapping,
else we revert to the last discrete mapping. Essentially we

are performing randomized hill climbing over the space of
state-action mappings allowing us to move across local op-
tima in the original distribution space. Finally, after the
discrete optimizaiton has completed, we perform one more
final EM run, again randomizing the transition distributions
but this time also allowing the mixing weights to change and
replacing the 1s and 0s in the mixing weights with numbers
close to but not equal to 1 or 0. The last step allows our
model to use nonzero mixing weights to represent noise in
the detection of low-level actions. With the mixing weights
fixed and 1 or 0, models are forced to instead represent this
noise through extraneous transitions.

8.1 Results with Discrete Optimization
On top of 50 of the 150 trials using the input prior term,
we ran 10 steps of our proposed discrete optimization proce-
dure. With the discrete optimization, all but 1 of the ranked
and 3 of the unranked models found the correct structure.
All but 3 of the ranked and 6 of the unranked models also
had likelihood scores that fell in the maximum likelihood
cluster of scores. Results are summarized in Table 4.

Because the discrete optimization runs on top of an initial,
standard EM run, it doesn’t seem fair to compare it to single
runs of EM. Instead, we compare it to the expected results
for running x repeated iterations of EM and keeping the
best model, where x is chosen such that the expected train-
ing time is the same as the average training time for the
discrete optimization method. As seen in Table 4, EM with
discrete optimization gives signficantly better results than
the expected results for running EM multiple times. Part of
the reason why is that, despite the fact that we ran 10 steps
of discrete optimization, EM with discrete optimization was
still only 3-4 times slower than a single run of standard EM.
This seemed to be because the single EM runs would some-
times take many iteartions to converge, while the discrete
optimization steps, because the mixing weights were fixed,
converged consistently and quickly. Even the final EM run
when the mixing weights were allowed to change tended to
converge faster than the standard EM runs, because of the
strong initialization of the mixing weights.

Our original convergence criteria for EM was to stop when
the average likelihood score per data track changed by less
than .1. To make sure this was not too strict of a conver-
gence criteria—which could artificially increase the train-

Action Percent of Data Accuracy w/o Input Prior Accuracy w/ Input Prior
Loiter 78.22 100.0 100.0

Explore 13.80 96.35 99.35
Move to Target 0.44 69.38 98.75

Move to Base 7.54 39.26 99.32

Table 3: Percents of the total data and detection percent accuracies for the low-level actions

ing times for EM—we tried running 50 additional trials for
ranked and unranked input with the discrete optimization,
this time stopping when the change was less than 1. Doing
this did speed up EM some compared to EM with discrete
optimization, but we found that on these trials very few sin-
gle EM runs were successful. As seen in Table 5, repeated
EM trials compared even worse to EM with discrete opti-
mization using this looser convergence criteria. In fact, even
arbitrarily placing the training times from Table 5 into Table
4, EM with discrete optimization still gives significantly bet-
ter results than repeated EM runs, suggesting these results
are not a by product of a particular convergence criteria.

9. CONCLUSIONS AND FUTURE WORK
We have presented a method for learning an executable
model of behavior from observations. Our method con-
sists of learning an Input/Output Hidden Markov Model
(IOHMM) where the output distributions are mixtures of
learned low-level actions and the transition distributions
are conditioned on a set of binary sensory features. We
tested our method on simulated data generated from a hand-
constructed model inspired by insect behavior. The learned
models recreated the behavior of the original model and ex-
hibited the same basic structure. We also introduced a novel
extension to EM for our particular type of IOHMM that
compares favorably to standard EM runs.

We hope to next apply these techniques to actual insect
tracking data. We would also like to perform more test-
ing with simulated models, in particular with models that
contain repeated low-level actions with noisier tracking and
harder detection.

10. ACKNOWLEDGMENTS
Thank you to Sridhar Mahadevan, Zia Khan, and Adam
Feldman for helpful discussions. This work was supported
in part by NSF.

11. REFERENCES
[1] R. C. Arkin and T. R. Balch. Aura: Principles and

practice in review. Journal of Experimental and
Theoretical Artificial Intelligence(JETAI),
9(2-3):175–188, April 1997.

[2] Y. Bengio. Markovian models for sequential data.
Neural Computing Surveys, 2:129–162, 1999.

[3] Y. Bengio and P. Frasconi. Diffusion of context and
credit information in markovian models. Journal of
Artificial Intelligence Research, 3:249–270, 1995.

[4] Y. Bengio and P. Frasconi. Input-output HMM’s for
sequence processing. IEEE Transactions on Neural
Networks, 7(5):1231–1249, September 1996.

[5] Y. Bengio, V.-P. Lauzon, and R. Ducharme.
Experiments on the application of iohmms to model
financial returns series. IEEE Transaction on Neural
Networks, 12:113–123, January 2001.

[6] Y. Bengio, P. Simard, and P. Frasconi. Learning
long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks,
5(2):157–166, March 1994.

[7] D. C. Bentivegna, A. Ude, C. G. Atkeson, and
G. Cheng. Humanoid robot learning and game playing
using pc-based vision. In 2002 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS02), volume 3, pages 2449–2454, 2002.

[8] J. Bilmes. A gentle tutorial on the em algorithm and
its application to parameter estimation for gaussian
mixture and hidden markov models, 1997.

[9] F. Delmotte and M. Egerstedt. Reconstruction of
low-complexity control programs from data. In 43rd
IEEE Conference on Decision and Control, volume 2,
pages 1460–1465, December 2004.

[10] P. Frasconi and Y. Bengio. An em approach to
grammatical inference: Input/output hmms. In 12th
IAPR International Conference on Pattern
Recognition, volume 2, pages 289–294, 1994.

[11] Y. Gatsoulis, G. Maistros, Y. Marom, and G. Hayes.
Learning to forage through imitation. In Second
IASTED International Conference on Artificial
Intelligence and Applications (AIA2002), pages
485–491, September 2002.

[12] A. Gray and A. Moore. Rapid evaluation of multiple
density models. In Artificial Iintelligence and
Statistics, 2003.

[13] S. Marcel, O. Bernier, J.-E. Viallet, and D. Collobert.
Hand gesture recognition using input-output hidden
markov models. In 4th IEEE International Conference
on Automatic Face and Gesture Recognition, pages
456–461, March 2000.

[14] N. Mukherjee. Speaker recognition using least squares
iohmms. In 2002 IEEE Workshop on Multimedia
Signal Processing, pages 276–279, December 2002.

[15] L. R. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition.
Proceedings of the IEEE, 77:257–286, February 1989.

[16] D. Sumpter and S. Pratt. A modelling framework for
understanding social insect foraging. Behavioral
Ecology and Sociobiology, 53(3):131–144, February
2003.

Most Likely Ranked Input Learned Model

Most Likely Unranked Input Learned Model

Figure 3: Diagrams and screenshots of our learned models. The learned model diagrams show the most likely
transitions for every possible input, excluding self transitions.

Model / Algorithm Learn Structure (%) Learn Max Likelihood (%)
Training Time

EM Training Time

Ranked IOHMM / EM 26.67 9.33 1.00
Ranked IOHMM / EM+D 98.00 94.00 3.21
Ranked IOHMM / EM*3.21 63.06 29.00 3.21

Unranked IOHMM / EM 21.33 14.00 1.00
Unranked IOHMM / EM+D 94.00 88.00 3.83
Unranked IOHMM / EM*3.83 60.10 43.88 3.83

Table 4: Percentage of trials finding the correct structure, percentage of trials finding a model with a
likelihood score about equal to the maximum likelihood score for all trials, and training times as compared
to a single run of EM. EM+D stands for EM with discrete optimization. EM*x is the expected results for
running x iterations of EM and keeping the best model.

Model / Algorithm Learn Structure (%) Learn Max Likelihood (%)
Training Time

EM Training Time

Ranked IOHMM / EM 6.00 6.00 1.00
Ranked IOHMM / EM+D 92.00 78.00 4.56
Ranked IOHMM / EM*4.56 24.58 24.58 4.56

Unranked IOHMM / EM 2.00 2.00 1.00
Unranked IOHMM / EM+D 86.00 76.00 5.10
Unranked IOHMM / EM*5.10 9.79 9.79 5.10

Table 5: The same as Table 4 but using a looser convergence criteria when running EM

