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Outline Part 1

♦ Motivation

♦ Appearance based learning and recognition

♦ Subspace methods for visual object recognition

♦ Principal Components Analysis (PCA)

♦ Linear Discriminant Analysis (LDA)

♦ Canonical Correlation Analysis (CCA)

♦ Independent Component Analysis (ICA)

♦ Non-negative Matrix Factorization (NMF)

♦ Kernel methods for non-linear subspaces
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Outline Part 2

♦ Robot localization

♦ Robust representations and recognition

♦ Robust PCA recognition

♦ Scale invariant recognition using PCA

♦ Illumination insensitive recognition

♦ Representations for panoramic images

♦ Incremental building of eigenspaces

♦ Multiple eigenspaces for efficient representation

♦ Robust building of eigenspaces

♦ Research issues
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Learning and recognition

scene training
images

input 
image

3D 
reconstruction

learning

matching

matching
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Appearance-based approaches

Attention in the appearance-based approaches

Encompass combined effects of:

• shape,

• reflectance properties,

• pose in the scene,

• illumination conditions.

Acquired through an automatic learning phase.
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Appearance-based approaches

Objects are represented by a large number of views:
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Subspace Methods

• Images are represented as points in the N-dimensional vector space
• Set of images populate only a small fraction of the space
• Characterize subspace spanned by images 

… …

…
Image set Basis images Representation

≈
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Subspace Methods

Properties of the representation:

• Optimal Reconstruction ⇒ PCA

• Optimal Separation ⇒ LDA

• Optimal Correlation ⇒ CCA

• Independent Factors ⇒ ICA

• Non-negative Factors ⇒ NMF

• Non-linear Extension ⇒ Kernel Methods
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Eigenspace representation

♦ Image set (normalised, zero-mean)

♦ We are looking for orthonormal basis functions:

♦ Individual image is a linear combination of basis functions
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Best basis functions ν?

♦ Optimisation problem

♦ Taking the k eigenvectors with the largest eigenvalues of

♦ PCA or Karhunen-Loéve Transform (KLT)
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Efficient eigenspace computation

♦ n << m

♦ Compute the eigenvectors u'i, i = 0,...,n-1, of the inner product 
matrix

♦ The eigenvectors of XXT can be obtained by using 
XXTXvi'=λ 'iXvi':
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Principal Component Analysis



13Subspace Methods for  Visual Learning and Recognition                               Aleš Leonardis, UOL

Principal Component Analysis

= q1⋅ + q2⋅ + q3⋅ + ...
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Image representation with PCA

u1

u2

u3
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Image presentation with PCA
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Properties PCA

♦ It can be shown that the mean square error between xi and its 
reconstruction using only m principle eigenvectors is given by 
the expression :

♦ PCA minimizes reconstruction error

♦ PCA maximizes variance of projection

♦ Finds a more “natural” coordinate system for the sample data.
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PCA for visual recognition and pose estimation

Objects are represented as coordinates in an n-dimensional eigenspace.

An example:

3-D space with points representing individual objects or a manifold 
representing parametric eigenspace (e.g., orientation, pose, 
illumination).

u0 u2

u1
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PCA for visual recognition and pose estimation

♦ Calculate coefficients

♦ Search for the nearest point (individual or on the curve)

♦ Point determines object and/or pose
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Calculation of coefficients

To recover qi the image is projected onto the eigenspace

• Complete image x is required to calculate qi.

• Corresponds to Least-Squares Solution
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Linear Discriminant Analysis (LDA)

♦ PCA minimizes projection error

PCA-Projection

Best discriminating
Projection

♦ PCA is „unsupervised“ no information on classes is used

♦ Discriminating information might be lost
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LDA

♦ Linear Discriminance Analysis (LDA)

– Maximize distance between classes 
– Minimize distance within a class

Fisher Linear Discriminance
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LDA: Problem formulation

♦ n Sample images: 

♦ c classes:

♦ Average of each class: 

♦ Total average:
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LDA: Practice

♦ Scatter of class i: ( )( )T
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♦ Within class scatter:

♦ Between class scatter:

♦ Total scatter:
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Good separation
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LDA

♦ Maximization of

♦ is given by solution of generalized eigenvalue problem

♦ For the c-class case we obtain (at most) c-1 projections as the 
largest eigenvalues of 
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LDA

♦ Example Fisherface of recognition Glasses/NoGlasses
(Belhumeur et.al. 1997)
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Canonical Correlation Analysis (CCA)

♦ Also „supervised“ method but motivated by regression tasks, 
e.g. pose estimation.

♦ Canonical Correlation Analysis relates two sets of 
observations by determining pairs of directions that yield 
maximum correlation between these sets.

♦ Find a pair of directions (canonical factors)      wx∈ ℜp, wy∈ ℜq, 
so that the correlation of the projections c = wx

Tx and d = wy
Ty

becomes maximal.
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What is CCA?
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What is CCA? 
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CCA Example
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Parametric eigenspace obtained by PCA for 2DoF in pose
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CCA Example
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CCA representation
(projections of training images onto wx1, wx2)
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Independent Component Analysis (ICA)

♦ ICA is a powerful technique from signal processing (Blind 
Source Separation)

♦ Can be seen as an extension of PCA

♦ PCA takes into account only statistics up to 2nd order

♦ ICA finds components that are statistically independent (or as 
independent as possible)
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Independent Component Analysis (ICA)

♦ m scalar variables X=(x1 ... xm)T

♦ They are assumed to be obtained as linear mixtures of n 
sources S=(s1 ... sn)T

♦ Task: Given X find A, S (under the assumption that S are 
independent) 

ASX =
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ICA Example

Original Sources

Mixtures

Recovered Sources
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ICA Example

ICA basis obtained
from 16x16 patches
of natural images 
(Bell&Sejnowski 96)
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Face Recognition using ICA

♦ PCA vs. ICA on Ferret DB (Baek et.al. 02)

PCA

ICA
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Non-Negative Matrix Factorization (NMF)

♦ How can we obtain part-based representation?

♦ Local representation where parts are added

♦ E.g. learn from a set of faces the parts a face consists of, i.e. 
eyes, nose, mouth, etc.

♦ Non-Negative Matrix Factorization (Lee & Seung 1999) lead to 
part based representation
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Matrix Factorization - Constraints

V ≈ WH
♦ PCA: W are orthonormal basis vectors

♦ VQ : H are unity vectors

♦ NMF: V,W,H are non-negative
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Learning

Training images Basis images

Find basis images from the training set
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Face features

Basis images

Encoding (Coefficients)

Reconstructed image
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Kernel Methods

♦ All presented methods are linear

♦ Can we generalize to non-linear methods in a computational 
efficient manner?
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Kernel Methods

♦ Kernel Methods are powerful methods (introduced with 
Support Vector Machines) to generalize linear methods 

BASIC IDEA:

1. Non-linear mapping of data in high dimensional space

2. Perform linear method in high-dimensional space

Non-linear method in original space
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Outline Part 2

♦ Robot localization

♦ Robust representations and recognition

♦ Robust recognition using PCA 

♦ Scale invariant recognition using PCA

♦ Illumination insensitive recognition

♦ Representations for panoramic images

♦ Incremental building of eigenspaces

♦ Multiple eigenspaces for efficient representation

♦ Robust building of eigenspaces

♦ Research issues
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Appearance-based approaches

A variety of successful applications:

• Human face recognition e.g. [Turk & Pentland]

• Visual inspection e.g. [Yoshimura & Kanade]

• Visual positioning and tracking of robot manipulators, e.g. [Nayar & 
Murase] 

• Tracking e.g., [Black & Jepson]

• Illumination planning e.g., [Murase & Nayar]

• Image spotting e.g., [Murase & Nayar]

• Mobile robot localization e.g., [Jogan & Leonardis]

• Background modeling e.g., [Oliver, Rosario & Pentland]
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Mobile Robot
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Panoramic image
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Environment map

♦environments are represented by a large number of views

♦localisation = recognition
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Compression with PCA
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Image representation with PCA
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Localisation
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Distance vs. similarity
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Robot localisation

♦ Interpolated hyper-surface represents the memorized 
environment.

♦ The parameters to be retrieved are related to position and 
orientation.

♦ Parameters of an input image are obtained by scalar product.
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Localisation
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Enhancing recognition and representations

♦ Occlusions, varying background, outliers 
– Robust recognition using PCA

♦ Scale variance
– Multiresolution coefficient estimation
– Scale invariant recognition using PCA

♦ Illumination variations
– Illumination insensitive recognition

♦ Rotated panoramic images
– Spinning eigenimages

♦ Incremental building of eigenspaces

♦ Multiple eigenspaces for efficient representations

♦ Robust building of eigenspaces
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Occlusions
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Calculation of coefficients

To recover qi the image is projected onto the eigenspace

• Complete image x is required to calculate qi.

• Corresponds to Least-Squares Solution
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Non-robustness
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Robust method
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Robust algorithm
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Selection
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Robust recovery of coefficients
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Robust localisation under occlusions
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Robust localisation at 60% occlusion

Standard approach Robust approach
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Mean error of localisation

♦ Mean error of localisation with respect to % of occlusion
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Illumination insensitive recognition

• Recognition of objects  under 

varying illumination 

• global illumination changes

• highlights

• shadows

• Dramatic effects of illumination on 

objects appearance

• Training set under a single

ambient illumination
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Illumination insensitive recognition

Our Approach

• Global eigenspace representation

• Local gradient based filters

• Efficient combination of global and local representations

• Robust coefficient recovery in eigenspaces
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Eigenspaces and filtering
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Filtered eigenspaces
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Gradient-based filters

Global illuminationGlobal illumination

Gradient-based  filtersGradient-based  filters

Steerable filters [Simoncelli]
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Robust coefficient recovery

Highlights and shadowsHighlights and shadows

Robust coefficient recoveryRobust coefficient recovery
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Experimental results

Test images Standard methodOur approach

à Demo
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Experimental results

obj. 1 2 3 4 5        % ang.
1 360 0 0 0 0 100.0 5.25
2 0 308 16 0 0 95.1 10.55
3 0 0 504 0 0 100.0 1.05
4 19 4 3 332 2 92.2 3.37
5 15 2 17 0 578 94.4 3.34
avg. 96.4 4.19

Robust filtered method - all eigenvectors used

Standard method - all eigenvectors used

obj. 1 2 3 4 5        % ang.
1 141 0 14 26 179 39.2 10.50
2 0 254 62 5 3 78.4 18.90
3 0 4 317 0 183 62.9 3.47
4 23 6 38 249 44 69.2 7.11
5 3 1 51 0 557 91.0 6.82
avg. 70.3 8.53
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Research issues

♦ Comparative studies (e.g., LDA versus PCA, PCA versus ICA)

♦ Robust learning of other representations (e.g. LDA, CCA)

♦ Integration of robust learning with modular eigenspaces

♦ Local versus Global subspace represenations

♦ Combination of subspace representations in a hierarchical 
framework 
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Further readings 

♦ Recognizing objects by their appearance using eigenimages 
(SOFSEM 2000, LNCS 1963)

♦ Robust recognition using eigenimages (CVIU 2000, Special Issue on 
Robust Methods in CV)

♦ Illumination insensitive eigenspaces (ICCV 2001)

♦ Mobile robot localization under varying illumination (ICPR 2002)

♦ Eigenspace of spinning images (OMNI 2000, ICPR 2000, ICAR 2001)

♦ Incremental building of eigenspaces (ICRA 2002, ICPR 2002, CogVis 
2002)

♦ Multiple eigenspaces (Pattern Recognition 2002)

♦ Robust building of eigenspaces (ECCV 2002)

♦ Special issue of Pattern Recognition on Kernel and Subspace 
Methods in Computer Vision (Guest Editors A. Leonardis and H. 
Bischof), to appear in 2003.


