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Outline Part 1

Motivation

Appearance based learning and recognition
Subspace methods for visual object recognition
Principal Components Analysis (PCA)

Linear Discriminant Analysis (LDA)

Canonical Correlation Analysis (CCA)
Independent Component Analysis (ICA)
Non-negative Matrix Factorization (NMF)

Kernel methods for non-linear subspaces
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Outline Part 2

Robot localization

Robust representations and recognition

Robust PCA recognition

Scale invariant recognition using PCA
lllumination insensitive recognition
Representations for panoramic images
Incremental building of eigenspaces

Multiple eigenspaces for efficient representation
Robust building of eigenspaces

Research issues
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Learning and recognition
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Appearance-based approaches

Attention in the appearance-based approaches

Encompass combined effects of:
* shape,
» reflectance properties,
* pose in the scene,

e illumination conditions.

Acquired through an automatic learning phase.
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Appearance-based approaches

Objects are represented by a large number of views:
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Subspace Methods

* Images are represented as points in the N-dimensional vector space
» Set of images populate only a small fraction of the space
» Characterize subspace spanned by images

lmage set Representation

o _ )
R
» R
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Subspace Methods

Properties of the representation:

e Optimal Reconstruction b PCA
e Optimal Separation P LDA

» Optimal Correlation p CCA

* Independent Factors b ICA

* Non-negative Factors P NMF

* Non-linear Extension b Kernel Methods
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Eigenspace representation

Image set (normalised, zero-mean)
X = [ Xg X{ ... Xp_1 ]; XeR™*"

We are looking for orthonormal basis functions:

U:[uo u; ... U ]; E&ER

Individual image is a linear combination of basis functions

k <
IX-y ”2»”a qj(X)uj -a qj(y)uj ”2:
j=1 j=1

IIé} (a;(x) - a;(Y)u; IF=lla;(x) - a;(y) If
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Best basis functions n?

Optimisation problem

n—1 k
Y i =) q;(xi)u;|> — min
i=0 j=0

Taking the k eigenvectors with the largest eigenvalues of

O:XXT:[XO X1 Xn—l]

PCA or Karhunen-Loéve Transform (KLT)

0113' — )\iuz—
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Efficient eigenspace computation

n<<m
Compute the eigenvectors u';, I = 0,...,n-1, of the inner product
matrix

_ XOT -

T X;
Q=X "X= 1 [ X0 X1 ... Xp—1 |3 Q€ R™
T
| Xp—1

The eigenvectors of XX can be obtained by using
XXTXv'=| "XV
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Principal Component Analysis

Subspace Methods for Visual Learning and Recognition AleS Leonardis, UOL




Principal Component Analysis
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Image representation with PCA

Subspace Methods for Visual Learning and Recognition AleS Leonardis, UOL




Image presentation with PCA
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Properties PCA

It can be shown that the mean square error between x; and its
reconstruction using only m principle eigenvectors is given by

the expression :

N m N

A -3 .= 3|
ali-al;=al,
j=1 j=1 j=m+1

PCA minimizes reconstruction error

PCA maximizes variance of projection

Finds a more “natural” coordinate system for the sample data.
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PCA for visual recognition and pose estimation

Objects are represented as coordinates in an n-dimensional eigenspace.
An example:

3-D space with points representing individual objects or a manifold
representing parametric eigenspace (e.g., orientation, pose,

/
sl
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PCA for visual recognition and pose estimation

Calculate coefficients
Search for the nearest point (individual or on the curve)
Point determines object and/or pose
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Calculation of coefficients

To recover g; the image is projected onto the eigenspace

n-1

g (X) =<x,u. >:é xu  1EI1EK

$1 8> = o, 8 8> + .81 8>+
<Ej > - CI1< m> T q2<[ﬂ > + ...

« Complete image X is required to calculate g

» Corresponds to Least-Squares Solution
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Linear Discriminant Analysis (LDA)

PCA minimizes projection error

B

/ o %o ® o

— cosol s o

/> ... ...:..
Best discriminating }& \;

Projection
PCA-Projection

PCA is ,unsupervised” no information on classes is used
Discriminating information might be lost
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LDA

Linear Discriminance Analysis (LDA)

— Maximize distance between classes
— Minimize distance within a class

—> Fisher Linear Discriminance
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LDA: Problem formulation

n Sample images: {Xl,L ,Xn}
Cc classes: {c,,L ,c.}
Average of each class: i é
M xic
Total average: 1 <'>\'
—a
k:
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LDA: Practice

Scatter of class i:

Within class scatter:

Between class scatter:

Total scatter:
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Good separation
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Maximization of

IS given by solution of generalized eigenvalue problem
Sgw =15, w

For the c-class case we obtain (at most) c-1 projections as the
largest eigenvalues of

Sgw. =1 S, w,
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LDA

Example Fisherface of recognition Glasses/NoGlasses
(Belhumeur et.al. 1997)
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Canonical Correlation Analysis (CCA)

Also ,supervised“ method but motivated by regression tasks,
e.g. pose estimation.

Canonical Correlation Analysis relates two sets of

observations by determining pairs of directions that yield
maximum correlation between these sets.

Find a pair of directions (canonical factors) — w,I AP, wl A9,
so that the correlation of the projections ¢ =w,'xand d = w, 'y
becomes maximal.
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What is CCA?

Canonical E[cd] _

Correlation : -
0Er £1 JE[C’]E[d?]
T T

E[w,Xxy w,]

\/E[WI(XXTWX]E[WI,nyWy] )

Between Set
Covariance W@
Matrix = 2 = 4
\/WXCXXWXWyCWWy
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What is CCA?

 Finding solutions

2. 0 A &0 C,0 B &, O ('j
W = =
gwyﬂ gC g O C
Rayleigh Quotient Generalized Eigenproblem
T
=2 AW Aw = nBw

w' Bw
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CCA Example

Parametric eigenspace obtained by PCA for 2DoF in pose
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Independent Component Analysis (ICA)

ICA is a powerful technique from signal processing (Blind
Source Separation)

Can be seen as an extension of PCA

PCA takes into account only statistics up to 2"d order

ICA finds components that are statistically independent (or as
Independent as possible)
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Independent Component Analysis (ICA)

m scalar variables X=(x, ... x,,)T

They are assumed to be obtained as linear mixtures of n
sources S=(S; ... S))"

X =AS

Task: Given X find A, S (under the assumption that S are
Independent)
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ICA Example

Original Sources
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ICA Example
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Face Recognition using ICA

PCA vs. ICA on Ferret DB (Baek et.al. 02)

ICA
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Non-Negative Matrix Factorization (NMF)

How can we obtain part-based representation?

Local representation where parts are added

E.g. learn from a set of faces the parts a face consists of, i.e.
eyes, nose, mouth, etc.

Non-Negative Matrix Factorization (Lee & Seung 1999) lead to
part based representation
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Matrix Factorization - Constraints

V » WH

- W are orthonormal basis vectors

W =[wi,wo, L ,wa],  wiw; =d;

. H are unity vectors

H :[Hl,EZ,L ,ﬁn]: F]J'T =[0010,L ,0]

. V,W,H are non-negative

V. W.

ij’ |J1

H, 20 "i,]
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Kernel Methods

All presented methods are linear

Can we generalize to non-linear methods in a computational
efficient manner?
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Kernel Methods

Kernel Methods are powerful methods (introduced with
Support Vector Machines) to generalize linear methods

BASIC IDEA:
1. Non-linear mapping of data in high dimensional space
2. Perform linear method in high-dimensional space
== Non-linear method in original space
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Outline Part 2

Robot localization

Robust representations and recognition

Robust recognition using PCA

Scale invariant recognition using PCA
lllumination insensitive recognition
Representations for panoramic images
Incremental building of eigenspaces

Multiple eigenspaces for efficient representation
Robust building of eigenspaces

Research issues
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Appearance-based approaches

A variety of successful applications:

 Human face recognition e.g. [Turk & Pentland]
* Visual inspection e.g. [Yoshimura & Kanade]

* Visual positioning and tracking of robot manipulators, e.g. [Nayar &
Murase]

» Tracking e.g., [Black & Jepson]

e lllumination planning e.g., [Murase & Nayar]

* Image spotting e.g., [Murase & Nayar]

* Mobile robot localization e.g., [Jogan & Leonardis]

» Background modeling e.g., [Oliver, Rosario & Pentland]
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Mobile Robot
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Panoramic image
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Environment map
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" environments are represented by a large number of views

" localisation = recognition
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Compression with PCA
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Image representation with PCA
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L ocalisation
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Distance vs. similarity
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Robot localisation

Interpolated hyper-surface represents the memorized
environment.

The parameters to be retrieved are related to position and
orientation.
Parameters of an input image are obtained by scalar product.
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Localisation
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Enhancing recognition and representations

Occlusions, varying background, outliers
— Robust recognition using PCA

Scale variance
— Multiresolution coefficient estimation
— Scale invariant recognition using PCA

lllumination variations
— lllumination insensitive recognition

Rotated panoramic images
— Spinning eigenimages

Incremental building of eigenspaces
Multiple eigenspaces for efficient representations
Robust building of eigenspaces
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Occlusions
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Calculation of coefficients

To recover g; the image is projected onto the eigenspace

n-1

g (X) =<x,u. >:é xu  1EI1EK

$1 8> = o, 8 8> + .81 8>+
<Ej > - CI1< m> T q2<[ﬂ > + ...

« Complete image X is required to calculate g

» Corresponds to Least-Squares Solution
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Non-robustness

Prone to errors caused by
e occlusions (outliers)

e cluttered background

.

Original Occluded Reconstruction
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Robust method

® Instead of using the standard approach we:

— subset of data points — linear system of equations
— Robust solution of this system of equations

— Perform multiple hypotheses

4

- ? o <"|.'| 1 :'I_'_l | El_'{ - oewE

| = 31 (1 #ag |0 &g 0+
= cl'l D I.]: D i .:L-!' D = om oA w

O

e Hypothesize-and-test paradigm

e Competing hypotheses are subject to a procedure based on the
MDL principle.
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Robust algorithm

let f‘*i“} e o f*::‘:’} Input image
l {(a. & D‘)-*'-r(aff-.(fﬂrDH}}
Selection
l {{a1,60, D)oy (H.F;efx-Dﬁ"}}

Family and Recovered coefficients
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Three cases:

1. One object: Select best match (¢;;)
2. Multiple non-overlapping objects: Select local maximum (c;;)

3. Multiple overlapping objects: MDL-criterion:

The objective function:
F(h) = hCh
h! = \h1, ha, . . ., hr| — set of hypotheses
Diagonal terms of C express the cost-benefit value for hypothesis i

Cyi = Kq|D;| — Kz”éHﬂf — kg N;

Off-diagonal terms handle overlapping hypotheses

;. —Ky|D; N Dy| + Kq&y;
i = 5
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Robust recovery of coefficients

Original Occluded Standard Robust
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Robust localisation under occlusions
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Robust localisation at 60% occlusion
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Mean error of localisation

Mean error of localisation with respect to % of occlusion
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lllumination insensitive recognition

* Recognition of objects under
varying illumination
e global illumination changes

e Dramatic effects of illumination on
objects appearance
 Training set under a single

ambient illumination
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lllumination insensitive recognition

Our Approach

Global eigenspace representation
Local gradient based filters
Efficient combination of global and local representations

Robust coefficient recovery in eigenspaces
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Eigenspaces and filtering

fir

l PCA

PCAU:]'* Y) -
|

L \—pmfg *Y)
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Filtered eigenspaces
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Gradient-based filters

Global illumination

Gradient-based filters|

Steerable filters [Simoncelli]
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Robust coefficient recovery

Robust coefficient recovery

Robust solution of linear equations

Hypothesize
&
Select
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Experimental results

Test images Our approach Standard method

- Demo
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Experimental results

Robust filtered method - all eigenvectors used

obj. 1 2 4 5 % | ang.
1 360 0 0 0] 100.0] 5.25
2 0 308 16 0O O 95.1] 10.55
3 0 0 504 0O 0] 100.0f 1.05
4 19 4 3 332 2| 92.2| 3.37
5 15 2 17 0 578| 94.4| 3.34
avg. 96.4| 4.19

Standard method - all eigenvectors used

obj. 1 2 3 4 5 %| ang.
1 141 0O 14 26 179| 39.2| 10.50
2 0 254 62 5 3| 78.4| 18.90
3 0 4 317 0 183| 62.9| 3.47
4 23 6 38 249 44| 69.2| 7.11
5 3 1 51 0 557| 91.0| 6.82
avg. 70.3| 8.53
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Research issues

Comparative studies (e.g., LDA versus PCA, PCA versus ICA)

Robust learning of other representations (e.g. LDA, CCA)
Integration of robust learning with modular eigenspaces
Local versus Global subspace represenations

Combination of subspace representations in a hierarchical
framework
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Further readings

Recognizing objects by their appearance using eigenimages
(SOFSEM 2000, LNCS 1963)

Robust recognition using eigenimages (CVIU 2000, Special Issue on
Robust Methods in CV)

lllumination insensitive eigenspaces (ICCV 2001)

Mobile robot localization under varying illumination (ICPR 2002)
Eigenspace of spinning images (OMNI 2000, ICPR 2000, ICAR 2001)

Incremental building of eigenspaces (ICRA 2002, ICPR 2002, CogVis
2002)

Multiple eigenspaces (Pattern Recognition 2002)
Robust building of eigenspaces (ECCV 2002)

Special issue of Pattern Recognition on Kernel and Subspace
Methods in Computer Vision (Guest Editors A. Leonardis and H.
Bischof), to appear in 2003.
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