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Abstract— Semantic mapping aims to create maps that in-
clude meaningful features, both to robots and humans. We
present an extension to our feature based mapping technique
that allows for the use of planar surfaces such as walls, tables,
counters, or other planar surfaces as landmarks in our mapper.
These planar surfaces are measured both in 3D point clouds,
as well as 2D laser scans. These sensing modalities compliment
each other well, as they differ significantly in their measurable
fields of view and maximum ranges. We present experiments
to evaluate the contributions of each type of sensor.

I. INTRODUCTION

Traditional robot maps have been used only for the pur-
poses of localization and navigation, and have primarily
focused on modeling space based on its occupancy – that is,
whether or not an obstacle exists in a location or if it is free.
However, as service robots become more capable and are
able to perform a wider range of tasks, we believe that robot
maps that provide richer information about the structure of
the world are needed to help robots accomplish these tasks.

More recently, the field of semantic mapping has been
introduced, which aims to include various types of semantic
information in maps. Many semantic mapping approaches
build upon traditional occupancy-grid based mapping tech-
niques, and assign labels to individual grid-cells. Other popu-
lar approaches include appearance-based methods. Much of
the work on semantic mapping has been motivated by the
goals of facilitating communication with humans regarding
maps, as well as enabling higher level reasoning about spaces
using semantic information.

As service robots become increasingly capable and are
able to perform a wider variety of tasks, we believe that
new mapping systems could be developed to benefit service
robots. Towards this end, we have developed a simultaneous
localization and mapping (SLAM) system that uses planar
surfaces as landmarks, and maps their locations and extent.
We chose planar surfaces because they are prevalent in
indoor environments, in the forms of walls, tables, and other
surfaces.

We believe that feature-based maps are suitable for con-
taining task-relevant information for service robots. For
example, a home service robot might need to know about
the locations of structures such as the kitchen table and
countertops, cupboards and shelves. Structures such as walls
could be used to better understand how space is structured
and partitioned. Evaluation of how such maps can be used in
a task relevant context is beyond the scope of this paper. We
describe a SLAM system capable of creating maps of the
locations and extents of planar surfaces in the environment
using both 3D and 2D sensors, and present experiments
analyzing the contribution of each sensing modality.

Our approach involves using multiple sensor types to
measure planar landmarks. Planar surfaces can be detected
in point cloud data generated by 3D sensors including tilting
laser range finders, or range cameras such as the Microsoft
Kinect or Asus Xtion. Range camera sensors offer extremely
detailed information at close ranges, the maximum range is
fairly low, and the field of view is limited. This imposes
limitations on the types of environments that can be mapped
using this type of sensor. In order to address these limitations,
our approach also makes use of 2D laser range finders,
such as those produced by SICK or Hokuyo. These sensors
only provide data in a plane so they are unable to measure
landmarks such as tables, shelves, or walls that do not
intersect their measurement plane. However, these sensors
have wide fields of view, as well as long ranges. An example
of a map produced by our system is shown in Figure 1.

Fig. 1. An example of the type of map produced by our system. Planar
features are visible by the red convex hulls, and red normal vectors. The
small red arrows on the ground plane show the robot’s trajectory. The point
clouds used to extract these measurements are shown in white, and have
been rendered in the map coordinate frame by making use of the optimized
poses from which they were taken.

In Section II, we outline some key related works. We
detail our mapping approach in Section III, including feature
extraction for two sensor modalities, data association, and
mapping. We evaluate the contributions of each measurement
type in Section IV. Finally, we provide a discussion of the
results and conclude in Section V.

II. RELATED WORK

There are several areas of related work, including a wide
variety of SLAM techniques, and several approaches to
semantic mapping. Some of the key related works will be
outlined in this section.

Since Smith and Cheeseman proposed using an EKF
which was augmented with landmark positions in the state
vector in [20], the Simultaneous Localization and Mapping
(SLAM) problem has seen rapid development. The reference
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papers by Durrant-Whyte can be consulted for a complete
review of the early years of SLAM in [6] and the current
state-of-the-art in [1].

Many SLAM implementations in use today break from
the traditional EKF formulation and favor graph optimiza-
tion techniques. These techniques maintain the entire robot
trajectory, which keeps landmarks uncorrelated and results in
a very sparse representation which can be solved efficiently.
Folkesson and Christensen developed GraphSLAM [8] which
finds the best assignment for the robot trajectory and the
landmark positions with a nonlinear optimization engine.
Square Root Smoothing and Mapping (SAM) developed by
Dellaert [4], exploit the sparsity of the full SLAM problem
by using sparse linear algebra. By keeping the extra informa-
tion of the trajectory, this technique paradoxically improves
efficiency. This technique repeatedly finds the least-squares
solution to a linear approximation to the measurements in
the SLAM graph, rapidly converging on the solution. This
technique was extended to enable incremental online opera-
tion in [9], [10]. We use the GTSAM library which Dellaert
has developed as an implementation of these techniques [5].

Other techniques have focused on 3D and semantic map-
ping. In [18], Rusu et.al. found candidate objects from 3D
point clouds by first segmenting horizontal surfaces and then
finding clusters which are supported by these horizontal
surfaces. This technique can be used to find multiple planes,
and objects can be extracted which are supported by each
of these planar surfaces. The plane extraction used in this
work is based upon this technique [19]. These papers showed
that planar surfaces can be extracted from point clouds very
effectively, and objects can be found which are supported
by these planar surfaces. In our approach, we use the
extracted planes from point clouds as measurements of planar
landmarks for larger scale scenes in our SLAM system.

Nüchter et.al investigated semantic labeling of points in
3D point cloud based maps in [15] and [14]. These papers
demonstrated a SLAM system for building point cloud based
maps based upon Iterative Closest Point (ICP)[2]. Semantic
interpretation was given to the resulting maps by labeling
points or extracted planes with labels such as floor, wall,
ceiling, or door. This technique was applied in outdoor as
well as indoor environments.

An approach to finding horizontal surfaces such as tables
was investigated previously by Donsung and Nevatia [11].
The method presented in this work measured the relative
pose of tables or desks with an edge-based computer vision
approach. This technique was used for finding the relative
pose of these surfaces from the robot’s current pose, but it
was not used for building large-scale maps of surfaces.

Other previous approaches to plane mapping include
Pathak et.al. [17][16] have removed the dependency on ICP
and focus on extracted planar features. ICP based techniques
are susceptible to local minima particularly when there is
insufficient overlap between point clouds. Extracted planar
features also exhibit significant compression and compu-
tational advantages when compared to full point clouds.
In [17], planar features are extracted at each robot pose.

These planar features are matched against the features which
were seen in prior poses to find correspondences. This
technique does not make use of any odometry; therefore,
the authors have developed a technique which enables them
to sequentially associate planes which is more efficient than
typical RANSAC techniques. The authors then compute
the least squares rotation and translation which brings the
associated planes into alignment. The rotation and translation
are used to build an pose graph which is optimized. As
opposed to building a pose graph, we take the alternative
approach of maintaining the planar features as landmarks in
the optimization problem, along with odometry.

Perhaps the most related planar SLAM approach is by
Weingarten [22]. This work involves using planar features
extracted from rotating laser-range finder data as features
in an EKF-based SLAM framework, making use of the
SPmodel. The features are represented by their normals, and
bounded by an alpha shape to represent the extent of the
feature, which can be extended incrementally as new portions
are observed. We will use a similar feature type in our work,
but with several key differences. First, we employ a graph-
based approach to SLAM instead, which allows us to solve
for the full robot trajectory rather than only the most recent
pose. We have found this to be important for accurately
mapping the extent of planes, as errors in past poses need
to be accounted for and corrected in order to accurately
map planar extents. Additionally, we can measure planar
landmarks using multiple sensing modalities, by considering
both 3D point cloud data as well as 2D laser measurements.

III. APPROACH

In previous work, we have demonstrated a feature-based
mapping system capable of mapping features such as 2d
lines. We also demonstrated how surfaces could be detected
in point clouds and mapped in a global map frame, however
these surfaces were not used as landmarks in this work –
instead, only 2D landmarks were used, and the surfaces did
not affect the trajectory, and were not updated by the SLAM
optimization [21]. We now extend this to include a new
feature type, 3D planar patches. A system diagram giving
an overview of our system is shown in Figure 2.

A. Mapper

Our SLAM system uses the Georgia Tech Smoothing
and Mapping (GTSAM) library developed by Dellaert [5].
GTSAM approaches the graph SLAM problem by using a
factor graph that relates landmarks to robot poses through
factors. The factors are nonlinear measurements produced
by measuring various features of the types described above.
The graph is optimized by converting this factor graph into
a chordal Bayes Net, for which we use the elimination
algorithm. To do this efficiently, it is crucial to select a good
elimination ordering, which is done using the COLAMD
approximate minimum degree heuristic [3]. The variables
(pose and landmark features) are iteratively expressed in
terms of the other variables related to them via factors,
making use of the elimination order.
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Fig. 2. A system diagram, showing an overview of our approach.

GTSAM makes it easy to add new factor types for new
feature representations. The only components needed for a
new factor type in the GTSAM framework are a measure-
ment function and its derivatives. The measurement function
gives the difference between the sensor measurement and
the expected value computed from the relative position of
the landmark from the robot.

In this work, we present a new feature type, the 3D plane.
Surface normals serve as landmarks, and are optimized along
with the full trajectory. Convex hulls of observed planar
patches are also tracked, and hulls are required to overlap
for landmarks to data associate.

B. Plane Segmentation

Our technique involves taking point cloud data of the area
to be mapped. We then process these point clouds in order to
segment out any horizontal surfaces such as tables that are
present within each point cloud. To do this, we use the well
known RANdom SAmple Consensus (RANSAC) method for
model fitting [7]. In our case, we are fitting planes to the full
point cloud to determine the largest plane present in each
cloud.

We use an iterative RANSAC to find planes in the scene,
returning the plane with the most inliers from the point
cloud. We remove all inliers for this plane from our point
cloud, and then perform RANSAC again to find the next
largest plane. The process terminates when no plane with a
sufficient number of points can be found. For each detected
plane, we perform clustering on the inliers to find contiguous
regions of points within our plane, discarding clusters that
are too small. This clustering step serves two purposes: to
remove individual points or small clusters of points that fit
to the plane but aren’t part of a large contiguous surface,
and to separate multiple surfaces that are coplanar but are in
different locations, such as two tabletops at the same height.
Each cluster with a sufficient number of points is saved
and will be used for mapping purposes. The resulting set
of detected surface point clouds is then sent to the mapper.
Point cloud data can be generated either by range camera

sensors, as is used in most of this work, or by tilting laser
scanners, as shown in Figure 3

For much of our point cloud processing, we use the
Point Cloud Library (PCL) developed by Rusu and others at
Willow Garage, which includes a variety of tools for working
with 3D point cloud data including RANSAC plane fitting,
outlier removal, and euclidean clustering methods. PCL is
an open source library with ROS integration, and is freely
available from the ROS website.

Fig. 3. An example of a map generated using a tilting 3D laser scanner to
generate the point cloud data, including the full point clouds used to extract
planes, as well as the planar surfaces observed. The red polygons represent
the convex hulls of the mapped planes in their optimized positions.

C. Laser Line Segmentation

We use the iterative RANSAC technique to extract line
segments from planar laser scanner range data from Nguyen
et.al. [13] which is similar in principle to the method for
planes described in section III-B. The laser range data is
first projected into a 2D point cloud. The RANSAC iteration
proceeds as follows. A pair of points is selected uniformly
from the laser scan point cloud. This pair of points deter-
mines a candidate line segment. Points in the point cloud
which appear within 2 cm of the candidate line segment are
said to be inliers to the line segment. If the inlier set is large
enough with few gaps, then this line segment is accepted
and the inlier points are removed from the point cloud. A
fixed number of iterations are performed to attempt to extract
many of the large line segments in the range scan.

D. Plane Representation

A plane can be represented by the well known equation:

ax+ by + cz + d = 0

In this work, we make use of this representation, while
additionally representing the plane’s extent by calculating
the convex hull of the observed points. While only the plane
normal and perpendicular distance are used for to correct the
robot trajectory in SLAM, it is essential to keep track of the
extent of planar patches, as many coplanar surfaces can exist
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in indoor environments, and we would like to represent these
as distinct entities. We therefore represent planes as:

p =
[
n, hull

]
where:

n =
[
a, b, c, d

]
and hull is a point cloud consisting of the vertices of the

plane’s convex hull. As planes are re-observed, their hulls are
extended with the hull observed in the new measurements.
That is, the measured hull is projected onto the newly
optimized landmark’s plane using its normal, and a new
convex hull is calculated for the sum of the vertices in the
landmark hull and the measurement’s projected hull. In this
way, the convex hull of a landmark can grow as additional
portions of the plane are observed.

E. Data Association

We use a Joint Compatibility Branch and Bound (JCBB)
technique for data association as in [12]. We have adapted
this algorithm to work with a graph based representation
instead of the EKF used in [12]. JCBB works by evaluating
the joint probability over the set of interpretation trees
of the measurements seen by the robot at one pose. The
output of the algorithm is the most likely interpretation tree
for the set of measurements. We are able to evaluate the
probability of an interpretation tree quickly by marginalizing
out the irrelevant portions of the graph of poses and features.
The branch and bound recursion structure from the EKF
formulation is used in our implementation.

F. Planar SLAM

In this section, we describe our method for mapping
planes. Given a robot pose Xr, a transform from the map
frame to the robot frame in the form of (R,~t), a previously
observed feature in the map frame (~n, d) and a measured
plane (~nm, dm), the measurement function h is given by:

h =
(

RT ∗ ~n
〈~n, t〉+ d

)
−
(
~nm

dm

)
The Jacobian with respect to the robot pose is then given

by:

δh

δXr
=


0 −na nb

na 0 −nc [0]
−nb nc 0

0 0 0 ~nT


The Jacobian with respect to the landmark is given by:

δh

δnmap
=
[

[Rr] ~0
~XT

r 1

]

Using this measurement function and its associated Ja-
cobians, we can utilize planar normals and perpendicu-
lar distances as landmarks in our SLAM system. During
optimization, the landmark poses and robot trajectory are
optimized.

G. Laser Plane Measurements

Measurements which come from the laser line segmen-
tation algorithm described in section III-C can be used to
measure full 3D planes. This allows us to use the same
formulation for measured landmarks, but with different mea-
surement types. The laser lines measurements are under-
constrained, and leave the planar landmarks with a rotational
degree of freedom about the measured line, as shown in
Figure 4. Landmarks that have only been measured by
laser line measurements are also given a very weak prior
measurement for being vertical planes, in order to constrain
this degree of freedom.

Fig. 4. A drawing demonstrating a 2D measurement of a 3D plane.
Such measurements are under-constrained, and have a rotational degree of
freedom about the measured line.

Line measurements on planes provide only two constraints
on a mapped plane feature: a range constraint and an angular
constraint. The angular constraint is that the normal to the
map plane forms a right angle with a vector along the
measured line. Given a robot pose Xr, a transform from
the map frame to the robot frame in the form of (R,~t), a
previously observed feature in the map frame (~n, d) and a
measured line with endpoints p1 and p2 where ~b = p1−p2

|p1−p2|
is a unit vector along the measured line and p̄ = p1+p2

2 is
the midpoint of the line, the measurement function for laser
lines h is given by:

h =

( 〈
RT ∗ ~n,~b

〉
〈~n, p̄〉+ d

)
The Jacobian with respect to the robot pose is then given

by:

δh

δXr
=
[
~p1 0
p̄ 1

]
∗


0 −na nb

na 0 −nc [0]
−nb nc 0

0 0 0 ~nT


The Jacobian with respect to the landmark is given by:
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δh

δnmap
=
[
~p1 0
p̄ 1

]
∗
[

[Rr] 0
~Xr 1

]
Since an entire family of planes is consistent with a

given laser line measurement, additional constraints will be
required to fully constrain the graph optimization. These
additional constraints can come from: another laser line
measurement taken from another point of view at a different
height or pitch angle, a 3D plane measurement, or a weak
synthetic prior factor.

IV. RESULTS

A. Robot Platform

The robot platform used in this work consists of a Segway
RMP-200 mobile base, which has been modified to be
statically stable. It is equipped with a SICK LMS-291 for
obstacle avoidance and navigation, although this is not used
for this work. 3D point cloud information is collected with an
Asus Xtion Pro depth camera. Laser line information is col-
lected with a Hokuyo UTM-30 laser scanner. Computation is
performed on an onboard laptop; however, our experiments
are run on desktop machines using log data gathered from
the robot. The robot is shown in figure 5.

Although it was not used in this work, the robot is also
equipped with a Schunk PG-70 gripper with custom fingers
attached to a vertical linear actuator, enabling the robot to
grasp objects on tabletop surfaces.

Fig. 5. The robot platform used in this work. Point cloud data is collected
with the Asus Xtion Pro camera, and laser scan data is collected with the
Hokuyo UTM-30. Both of these sensors are placed on the gripper near the
middle of the robot. The Asus camera is mounted upside-down for more
rigid and repeatable attachment.

B. Experimental Results

We collected data from office and home environments to
test the performance of our SLAM system. The first two
test runs were collected in the the Georgia Tech Robotics
and Intelligent Machines center, and another test run was
collected at a house near the Georgia Tech campus.

In the first experiment, the robot is teleoperated in the
robotics student cubicle area in two large overlapping loops.

The robot moves through the atrium twice in this data
set. The atrium is large enough that the plane extraction
filters will not find any planes close enough to the robot
to make measurements during that part of the trajectory.
The trajectory is relatively free of clutter so the laser line
extractor has a clear view of large planar structures at all
times. A photo of one of the corridors in this area is shown in
Figure 8, and a floor plan is shown in Figure 12. A top-down
orthographic view of the map and robot trajectory produced
by our system on this dataset is shown in Figure 11.

The second experiment is a loop that passes through
the hallways and a very cluttered laboratory. The hallways
are narrow enough that both plane and laser measurements
will be possible; however, the laboratory is both large and
cluttered. The size of the laboratory will prevent finding large
planar structures within the range of the depth camera so the
robot not be able to make planar measurements here. The
laboratory is also very cluttered, so the laser line extractor
will not be able to make many long linear measurements
along planar structures. A photo of the cluttered lab area is
shown in Figure 9.

The final experiment is a trajectory in a house where
the robot is teleoperated to examine each room. The house
includes a living room, kitchen area, bedroom, hallway,
and bathroom. The size of rooms and clutter of this test
environment falls in between the size and clutter of the two
previous test environments. The robot can be seen in this
environment in Figure 5.

In order to evaluate the contributions of each sensor type,
we performed a series of analyses on each data set. First, we
analyzed the number of measurements of each type per pose.
For all mapping runs, our robot was configured to add a pose
to the trajectory on the next sensor measurement from each
sensor type after traveling 0.5 meters or more according to
the odometry, even if no features were detected. The results
are shown in Figure 6. It can be seen that all of the datasets
include several poses that have no plane measurements. This
is not surprising, due to the limited field of view and range
of the range camera, which was especially problematic in
the open areas present in the first and second data sets,
but was less of an issue in the smaller spaces of the home
environment. We should also note that there were even some
poses on the second dataset which also had no detected
linear features, despite the wide field of view of the laser
scanner. These poses occurred primarily in the lab portion
of the trajectory, which includes high clutter occluding the
views of the walls.

Then, in order to demonstrate that both of the sensors
are contributing in different ways, we plotted the number of
landmarks measured only by laser measurements, the number
of landmarks measured only by 3D planar measurements,
and the number of landmarks measured by both. The results
are displayed in Figure 7. It is clear that both types of
sensors are making contributions to the overall map, as
for all datasets, there are many features measured only by
the laser scanner, only by the range camera, and many
features measured by both. As one would expect, there are
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more features measured only by the laser scanner in our
second data set, which included larger spaces, which posed
a challenge for the range camera’s limited field of view
and range. In general, the landmarks that were observed
only by the laser scanner tended to be either out of the
field of view of the range camera, or beyond its maximum
range. The landmarks viewed only by the range camera often
included horizontal surfaces such as tables or shelves, or
planar patches that did not intersect the 2d laser scanner’s
measuring area. Many large planar surfaces such as nearby
walls were measured by both.

Fig. 8. Another view of the Robotics & Intelligent Machines lab at the
Georgia Institute of Technology, where mapping was performed.

Fig. 9. A photo of a relatively high-clutter lab in the Robotics & Intelligent
Machines lab at the Georgia Institute of Technology.

V. DISCUSSION & CONCLUSION

We have presented an extension to our mapping system
that allows for the use of planar surfaces as landmarks. The
resulting maps provide the locations and extent of surfaces
such as walls, tables, and counters. These landmarks can
also be measured by 2D laser range finders, and maps can
be produced using both sensor modalities simultaneously.

Fig. 10. A visualization of a map produced from our low-clutter office
environment. Many planar features are visible, including some that have
been measured only by the 2D laser scanner. Planar features are visible by
the red convex hulls, and red normal vectors. The small red arrows on the
ground plane show the robot’s trajectory. The point clouds used to extract
these measurements are shown in white, and have been rendered in the map
coordinate frame by making use of the optimized poses from which they
were taken.

Fig. 11. A top-down visualization of a map produced from our low-clutter
office environment. Many planar features are visible, including some that
have been measured only by the 2D laser scanner. Planar features are visible
by the red convex hulls, and red normal vectors. The small red arrows on the
ground plane show the robot’s trajectory. The point clouds used to extract
these measurements are shown in white, and have been rendered in the map
coordinate frame by making use of the optimized poses from which they
were taken.

We presented experimental results demonstrating the effec-
tiveness of both sensor types, and demonstrated that both
contribute to the mapping process.

We found that both sensor types have strengths and weak-
nesses. 2D laser scanners, which have long been popular for
robot mapping systems, have long range and a wide field
of view (40 meter range with 270 degree field of view, for
our sensor), but do not produce 3D information. Landmarks
that do not fall within their measurement plane cannot be
observed. When mounted parallel to the groundplane, this
means that important surfaces such as tables and shelves
cannot be observed. Additionally, small amounts of clutter
present in the plane can disrupt their ability to extract useful
features.

Range cameras provide detailed information up close at
a high frame rate, and allow us to map planes in any
orientation, including horizontal surfaces such as tables or
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Fig. 6. Shown are the number of features observed per pose from each of our three data sets. From left to right, these include our aware. From left to
right, shown are results for our low-clutter office dataset, high clutter dataset, and home environment dataset.

Fig. 7. Shown are the number of landmarks observed by line measurements only, plane measurements only, and measured by both. From left to right,
shown are results for our low-clutter office dataset, high clutter dataset, and home environment dataset.

Fig. 12. A floorplan of the low-clutter area that was mapped.

desks, as shown in Figure 13. However, these sensors also
have drawbacks, including a narrow field of view and and
low maximum range (58 degrees horizontal, 45 degree
vertical, 0.8m - 3.5m range for our sensor). These sensors
were designed for gaming and user interaction rather than
mapping, so while these limitations are suitable for that
application as well as mapping smaller scale areas with many
features, they can be problematic for mapping larger, more
open spaces.

By designing a mapping system that can utilize multiple
sensing modalities, we can take advantage of the strengths
of each type of sensor, and ameliorate some of their weak-
nesses. We have found that more information can be col-
lected by our system when using both types of sensor, which
can lead to better mapping and localization performance.

VI. ACKNOWLEDGMENTS
This work was made possible through the Boeing corpo-

ration and ARL MAST CTA project 104953.

REFERENCES

[1] T. Bailey and H. Durrant-Whyte. Simultaneous localisation and
mapping (SLAM): Part II state of the art. Robotics and Automation
Magazine, September 2006.

[2] P.J. Besl and N.D. McKay. A method for registration of 3-D shapes.
IEEE Transactions on pattern analysis and machine intelligence, pages
239–256, 1992.

[3] T.A. Davis, J.R. Gilbert, S.I. Larimore, and E.G. Ng. Algorithm
836: COLAMD, a column approximate minimum degree ordering
algorithm. ACM Transactions on Mathematical Software (TOMS),
2004.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2012 IEEE International Conference on
Robotics and Automation. Received September 16, 2011.



Fig. 13. A visualization of a map that includes a low coffee table, a desk,
and several walls.

[4] F. Dellaert. Square root SAM: Simultaneous localization and mapping
via square root information smoothing. In Robotics: Science and
Systems, pages 24–31, Cambridge, MA, June 2005.

[5] F. Dellaert and M. Kaess. Square root SAM: Simultaneous localization
and mapping via square root information smoothing. International
Journal of Robotics Research, 25(12):1181–1204, 2006.

[6] H. Durrant-Whyte and T. Bailey. Simultaneous localisation and
mapping (SLAM): Part I the essential algorithms. Robotics and
Automation Magazine, June 2006.

[7] M.A. Fischler and R.C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Comm. ACM, 24:381–395, 1981.

[8] J. Folkesson and H. Christensen. Graphical SLAM - a self-correcting
map. International Conference on Robotics and Automation, pages
1894–1900, April 2004.

[9] M. Kaess, A. Ranganathan, and F. Dellaert. Fast incremental square
root information smoothing. In Internation Joint Conference on
Artificial Intelligence, 2007.

[10] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental
smoothing and mapping. IEEE Transactions on Robotics, 2008.

[11] Dongsung Kim, , and Ramakant Nevatia. A method for recognition
and localization of generic objects for indoor navigation. Image and
Vision Computing, 16:729–743, 1994.

[12] J. Neira and J. D. Tardós. Data association in stochastic mapping
using the joint compatibility test. IEEE Transactions on Robotics and
Automation, 17(6):890–897, Dec 2001.

[13] V. Nguyen, A. Martinelli, N. Tomatis, and R. Siegwart. A comparison
of line extraction algorithms using 2D laser rangefinder for indoor
mobile robotics. International Conference on Intelligent Robots and
Systems, 2005.
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