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Abstract

Application of SLAM outdoors is challenged by complexity, handling of non-
linearities and flexible integration of a diverse set of features. A graphical
approach to SLAM is introduced that enables flexible data-association. The
method allows for handling of non-linearities. The method also enables easy
introduction of global constraints. Computational issues can be addressed
as a graph reduction problem. A complete framework for graphical based
SLAM is presented. The framework is demonstrated for a number of outdoor
experiments using an ATRV robot equipped with a SICK laser scanner and
a CrossBow Inertial Unit. The experiments include handling of large outdoor
environments with loop closing. The presented system operates at 5Hz on a
800 MHz computer.

1 Introduction

A fundamental competence needed in mobile systems is the ability to localize. Almost
any task that an autonomous mobile system is designed to perform will require some form
of localization. The localization relies on establishing a correspondence between a world
model and measurements made by the robot’s sensors. In cases where GPS or other similar
navigation aid is not available, the use of environmental features or landmarks is a way of
establishing the correspondence.

In many applications the availability of a pre-defined world model is not entirely realistic.
Examples include moving into a crash site, or entering a forest for the first time. To enable
operation under such conditions there is a need to perform localization and mapping concur-
rently, to ensure that the robot does not get lost. The problem of Simultaneous Localisation
and Mapping (SLAM) is by now a well-known problem in robotics (Bekey, 2005). Early
research in particular considered SLAM for in-door applications (Chatila and Laumond]
[985d; [Leonard et al., 1999; [Lu and Milios. 1997H; [Thrun et al., 2001; Wik and Chris]
fensen, 2000), but it has also been extensively studied for out-door applications both on the
ground ([Guivant and Nebot, 200Td; [Guivant et al., 2004; [Folkesson and Christensen, 2003;




Montemerlo and Thrun, 2004), in the air (Jung and Lacroix, 2003; Kim and Sukkarieh, 2004)
and underwater (Newman and and R. Rikovski, 2003).

Out-door environments will typically represent significantly larger areas where complexity
considerations are more pressing. Given more feature variation and significantly higher
complexity this poses and ideal environment to study the problem of SLAM systems for
large scale environments.

Traditionally a number of approximations have been adopted to manage the overall process,
however it is not clear that these systems have well posed convergence properties. The key
challenges for design of effective SLAM systems are considered to be:

1. Convergence in the presence of non-linearities

2. Handling of global constraints such as loop closing

3. Bounded computational complexity

This paper is organized as follows. Initially the SLAM problem is presented in Section .
The Graphical SLAM method is presented in Section Bl To address computational issues it
is advantageous to simplify the underlying graph structure to capture models in a compact
form, as presented in Section . For the implementation a number of considerations should be
taken into account as presented in Section [fl. The platform used for experimental evaluation
is briefly presented in Section fj. Using this platform a significant number of experiments have
been performed in urban and non-urban environments. Some of the urban experiments are
presented in Section [] to allow evaluation of the presented method. The presented method
and some of the achieved results are discussed in Section B. Finally, a conclusion and open
issues are presented in Section [.

2 Background on the SLAM Problem

The problem of localization and mapping is a relatively old problem that has been studied for
centuries as part of surveying. In robotics the problem was introduced in the 1980s by a series
of seminal papers by Smith, Self and Cheeseman (Pmith et al.. 1987), and also reported by
Chatila and Laumond (Chatila and Laumond, 1985H). The two coupled estimation problems
are the construction of a map of the environment, X¢, and the determination of the path
followed by the robot X,. The measurements for this estimation come from the motion
sensors, D, and a set of feature observations F. Early work on SLAM assumed that the
problem could be formulated as a recursive estimator using for example an Extended Kalman
Filter (EKF), where the state vector is composed as:

S(t):[xr,t $f71 xf,i xf,N ]T

where x,; is the robot pose at time ¢ and z;’s are individual feature estimates. The EKF
approach is quadratic complexity, O(N?), which poses a challenge to scalability. In addition
the linearization performed in each step of the Kalman filtering can result in divergence as
presented in ([Castellanos et al., 2004H; Julier and UhImann, 2001). The Kalman filter works
on the principle of representing the state and measurements by their mean and covariance.
This implies an approximation if they are not Gaussian.




A careful analysis of the covariance matrix reveals that the structure of the matrix is ap-
proximately block diagonal, which can be utilized to divide computations into (largely)
independent block structures, corresponding to a sub-maps, as reported by Guivant and
Nebot (Guivant and Nebot, 2001H), termed the Compressed-EKF (C-EKF). The EKF ap-
proach assumes that the underlying probability distribution is uni-modal and in addition it is
assumed that linearization has a minimal impact on the estimation process. Another related
problem for EKF estimators is the recursive nature of the process. Data-association are as-
sumed to be correct at any time throughout the process. In theory multiple data-associations
can be considered in a multi-hypothesis approach as presented by Bar-Shalom and Fortmann
(Bar-Shalom and Fortmann, 1987) and Jensfelt and Kristensen (Jensfelt and Kristensen]
RO0T)). However, the approach scales poorly in the presence of a poor signal-to-noise ratio.

Methods for division of the map into sub-maps, to limit complexity, has also been presented
by Leonard et al (Bosse et al., 2004). Many authors have used frameworks based on sub-
maps and local frames of reference in order to avoid problems of scale ([Castellanos et al.]
[999; Leonard and Newman, 2009; [Tardds et al., 2009; Newman et al., 2003). Typically
the local maps have some frame of reference tied to some features. The links between these
maps then must be made globally consistent in some way. Many of the sub-map methods
treat the features from different sub-maps as distinct from one another. This is easier but
has the consequence that their is no consistent global feature location.

As the robot travels the connection between the robot’s current pose and the features seen
in the past gets weakened by the uncertainty in the robot’s motion. This then causes the
features observed currently to be more weakly coupled to those in the past than the other
currently observed features. By removing the connections altogether a great simplification to
the problem can be achieved. The Sparse Extended Information filter, SEIF, (Thrun et al’]
discards some information on the weaker connections between map features. The SEIF
only has to keep the current robot pose in the filter. The older poses are marginalized out
of the graph.

To address the problem on general probability distributions, as opposed to unimodal Gaus-
sians, a sample based approach to mapping and localization can be used as presented by
Thrun et al (([hrun et al., 1998). In its basic form the space of possible features and poses is
sampled and updated over time. The advantage of a sample based approach is that it makes
no assumption about the underlying probability distribution and it can consider multiple
data associations. However, without careful consideration of the sample process the number
of required samples can be excessive. Even here various approximations can be utilized for
re-sampling ([Thrun et al., 2000) and factorization (Montemerlo et al., 2003; Hahnel et al.]
P003; Montemerlo and Thrun, 2003; Nieto et al., 2003; Stachniss et al., 2004)) to achieve
real-time performance.

An alternative approach to direct estimation is modelling of the problem by means of a
Dynamic Bayesian Net (Jensen, 2001]), as presented by Paskin (Paskin, 2003). A graphical
approach is used in which the nodes are pose and feature estimates. The relations between
these entities can be represented by arcs in the graph. Dependencies between different loops
in the graph can be captured in so-called junction trees that provide an exact model for
probability estimation. Paskin ([P 003) presented a model for optimization where



approximations were used to generate thin-junction trees. This is needed as the general
junction tree method has NP complexity. Computation of the conditional probabilities in a
Bayesian Net is in general difficult and as such requires careful consideration. Recent work
(Newman et al., 2000)) has also adressed the linearization issues in closing of large loops.

We discuss some of the other graphical methods after we have explained our method so as
to be able to compare. In this paper we build on ideas first presented in (Folkesson and
[Christensen, 2004]).

From the above discussion is it clear that there is a need to carefully consider the design of
SLAM methods to allow:
1. handling of non uni-modal probability distributions
explicit handling of non-linearities in the estimation
flexible handling of global constraints
any-time data-association.
real-time / bounded complexity operation.
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In the following a method is presented that addresses these challenges.

3 Graphical SLAM

Graphs can be used to represent the underlying structure of the SLAM problem. This
structure is the result of the way that the measurements are collected. The robot moves
through the environment making relative measurements of features it passes. The path
then gives us relations between all the measurements. By maintaining the path in the
estimation one can avoid the problem of calculating correlations between distant features.
These correlations arise when one tries to eliminate the intermediate robot poses from the
SLAM problem.

One approach is to simply linearize all the measurements to obtain a sparse matrix represen-
tation. The sparse matrix has a graphical representation where the nodes are the poses of
the robot and the features. The graph edges would then be the numerical matrix elements.
To be more specific let us illustrate with a simple Gaussian SLAM estimation example. Let
y = Ax — c represent the measurementsf]. So each element of y is an independent normal
measurement, (mean 0 and variance 1). These could be odometry or feature measurements.
The x is the ’'state’ vector containing all the path and feature coordinates. It is x that is
the objective of the estimation process. The A and c are our linearized measurement model.
For an iterative algorithm, the linearization of the rows added in one iteration is normally
done around the previous iteration’s best estimate of x. These rows are then appended to
the A and y.

It is well known, (Julier and UhImann, 2001)),(Eustice et al., 2007),(Castellanos et al., 20044),
that as a result of doing the linearizations around the different points, one can get inconsistent
estimates. Furthermore, if the best estimate of x changes significantly (on closing a loop in
the robot path) then the linearizations themselves become poor approximations.

!The y is also the normalized innovation.



These issues will be addressed later but we ignore them for now and continue with our
example. The sparseness of the measurement matrix A is the result of the fact that it
models relative measurements taken from a robot pose to either another robot pose or a
feature. Thus, each element in y depends on two nodes in the graph. The nodes being robot
pose and feature states. The matrix elements of A then correspond to edges in the graph.

As A typically has more rows than columns, we must solve for the x that will minimize
y = Ax — c. This can be done in batch type solutions by either Cholesky Factorization or
QR Factorization (Dellaert, 2005). Cholesky forms the so called Information Matrix’, AT A,
and then solves the equation A”Ax = ATc¢. The QR method solves the QR factorization
of A into an orthonormal transformation, Q7 of the y such that the transformed equation
is QT Ax = Rz = Q%c. This can be solved by back substitution since R is zero below the
"diagonal’. A third alternative is to form the Information Matrix and do a QR decomposition
on it. All these methods exploit the sparseness of A to solve the system relatively quickly.
So far we are still discussing batch mode. The most important aspect of solving this system
is the order of the rows in A. If an optimal order can be found then very large systems can
be solved relatively quickly.

The desire to solve this system on-line as the data comes in, has lead to a number of
approaches. The extended Kalman Filter EKF and Extended Information EIF can be viewed
as solutions to the system where all the intermediate pose states have been eliminated from
the problem. This would seem to be a reasonable thing to do as these states will not be
needed to linearize the future measurements. The system then becomes smaller and larger
areas can be mapped before computational complexity becomes an issue. For moderately
fast processors the computation time is not the main issue. The problem is that such large
maps simply cannot be estimated consistently due to the linearization errors. Thus the
scaling problem has forced us to look at the linearization issues.

3.1 Graphical Models as MAP Estimators

We would like to present the reader with the justification for the graphical approach as
sketched in the preceding paragraphs. In doing so we will gain further insight into the
important data association problem as well as the generalization to non-Gaussian models.
We can then formulate our graphical method as an extension of these ideas. First, we define
some notation:

N,: The number of robot poses less one.

X,;: The coordinate vectors of the robot poses, 7 runs from 0 to NV,.

Ny¢: The number of features

xy;: The coordinate vectors of the features, j runs from 1 to Ny.

N,,: The number of feature measurements.

fi: The feature measurement values, k& runs from 1 to N,,.

d;: The dead-reckoning measurement values, 7 runs from 1 to V.

Aq: A particular association of the feature measurements {f;} to features.

Nyq: The number of features associated to measurements by A,

We can now state the problem as finding an explanation of the measurements. That is,



values for {x,,},{x;;} and a A, to explain the f; and d;. The probability of an explanation
can be rewritten asf],

P(zp,xs,d, f,Ay) = P(d, fla,, x5, A)P(z,A,) (1)

The second term on the right is the a priori probability of a particular state and data
association. One must make some assumptions about this in order to move further. We
chose to assume that it is independent of the robot and feature states, the x’s. Thus, all
states are equally probable before we start taking measurements. The dependence on the
data association cannot be ignored as that would lead us to associate a new feature to every
new measurement. By doing so one could find a feature state that exactly explains the
feature measurement. What is needed is a mechanism to favor existing features even when
they do not line up exactly with the measurements. Thus the prior must favor smaller Ng,.
One simple prior that has this property is an exponential dependence:

P(x,,xs,Ay) x P(A,) = P(Ny,) e Mfa (2)

The parameter A\ gives us control over how much we favor simpler maps. It will give us a
criteria for data association. We can now collect this into a statement about the probability
of our explanation:

P(ﬂ?r, L d’ f’ Aa) X P(d‘xr)P(f|$ra Lfs Aa)eiANfa (3)

Here we show explicitly that the dead-reckoning measurements, d, do not depend on the
features. Further factorization into a product of terms depending on pairs of state vectors
can be madef]:

Np Nm
P(xraxfada fa Aa) (&8 HP(di|XT,iaXT,i71) Hp(fj‘ir,jaxf,ja)e_ANfa (4)
i=1 j=1

Where we use, X, ;, to indicate the pose coordinates, (one of the x,;), from which the j’th
feature measurement was taken. Also, xy;, is the feature vector associated to the j’th
measurement by data association a. Paskin in (Paskin, 2003) uses a product like this to
create a Markov graph which can be used to make inferences on the states.

We chose to work with sums rather than the products shown above. Therefore, we take
minus the log of the probability and work to minimize the negative of the log-likelihood
function. Explicitly we form an energy as;

2We drop the subscripts and boldfacing to indicate the whole set of values.
3This assumes independence of the measurements wrt both time and feature.



Np Nm

E(zy,xp,d, f,Ad) = = InP(di|Xpi,Xp51) — Y _In P(fj[Rej,Xp4a) + ANfa (5)

i=1 j=1

As a practical rearrangement of terms we note:

Nyq

ANjo = ANp = > A(njg — 1) (6)
j=1

Here nj, is the number of measurements associated to the 4t feature by association a. In
this way we see the energy ’benefit’, (decrease), of associating a new measurement with an
existing feature is simply A. This will have to be balanced against the ’cost’; (increase), in
energy that appears in the newly added term to the second sum in []. So essentially, a new
feature measurement will add:

—In P(f;|Xrj,Xja) — A (7)

After adding this to the energy we need to minimize it wrt. the state variables. If the final
resulting energy is less than before we added the measurement, we can accept the match.
If not it is more likely that the measurement is of a new feature, rather than associated
with feature 7. In the case of the EKF where the entire system has been approximated by a
Gaussian the test above is simply another way of using the Mahalanobis distance for gating
of measurements.

Now to be rather more specific about the probabilities we assume an independent Gaussian
odometry model. So that the incremental changes in the robot pose will be measured in the
presence of Gaussian noise. The movement of the robot then gives rise to dead-reckoning
energy termsf]:

1
E4i = —In P(d;|x3, %X i—1) = Efikifz‘ (8)

The &; are the coordinates of the incremental transformation between pose 7 — 1 and i less
the measured value of these. These coordinates are non-linear functions of the robot pose
coordinates.

§i = T(Xr,i

Xr,i—l) —_ dz (9)

The matrix k; is the inverse covariance of the dead-reckoning estimate. Despite having an
independent Gaussian estimate for the noise, we still end up with a non-linearity. If the
transformation function 7" was linear then the ’square root’ of k; would become the rows

4We have dropped the normalization terms that would be additive constants.



of the measurement matrix A mentioned in the introduction to this section. As it is, one
needs to calculate Jacobians and multiply k; by them to get the contribution of this to the
information matrix (or AT A).

We point out these other interpretations to help readers understand our energy model. We
will work directly with the non-linear energy and not the measurement or information ma-
trices. We will, however, linearize the energy around particular solutions to direct our search
for lower energy solutions. This linearization will sometimes be identical to a partial infor-
mation matrix, at that solution. The difference then is that we do not save the linearization
but rather recalculate it around new states as needed. At other times, we will linearize
permanently but in a different way so as to avoid the problems associated with a global
frame.

Each feature energy term can also be written as a Gaussian of a non-linearly transformed
relative feature coordinate. The assumption of having a Gaussian is not at all essential but
it is specific. On the other hand we do require the energy function to be twice differentiable.

3.2 Graph Nodes

Our graph will differ from the standard graphs in that we will have two distinct types of
nodes, state nodes and energy nodes. The edges will always connect a state node to an
energy node. The state nodes will be either pose nodes or feature nodes. The pose nodes
hold the values for x,; while the feature nodes hold x; ;.

The simpler energy nodes will have two edges and thus be connected to two state nodes. The
energy nodes will then be able to calculate the energy term that results from a measurement
between the two state nodes. Thus, some energy nodes will be specialize to calculated dead-
reckoning energy FEy, (and its derivatives). These will be connected to two pose nodes.
Other energy nodes will calculate feature energies. These will connect to a pose node and a
feature node.

In this way we can calculate the energy of a given state by summing the energy of all the
energy nodes in the graph. Typically we are only interested in changes to the energy so
we need only calculate the energy for the energy nodes attached to state nodes that have
changed.

The data association is made by connecting edges in the graph from the feature energy node
to a feature state node. In practice, either we will accept the closest match or throw out
the measurement. Therefore, testing a data association consists in creating the energy node,
relaxing the state and then comparing the energy before and after. If the energy goes up
we return the system to the original state and delete the energy node. As shown in Eq.([q),
there is only one parameter that determines the matching. It is a limit on the amount of
energy increase the match can create. The values used for A\ are the same as we use for the
mahanolobis test in the EKF. They range between 4 and 16 depending on the environment.



3.3 Method Overview

We start by laying out the basic operation of our SLAM method. We will explain all the
terms in turn in the next few subsections. The arrival of new feature measurements will
trigger a sequence of operations on the graph as shown in figure . The dead-reckoning
estimate of the robot’s motion is used to add a new pose node to the end of the graph. Then
the graph is relaxed. At that point, the older sections of the graph have nodes combined into
what we call star nodes. This reduction in the number of nodes reduces the complexity of
the graph at the cost of some linearization approximations. Next the feature measurements
are used to add links between the current pose node and the feature nodes. These links are
then tested to see if they improve the overall solution. If not they are removed. This testing
also involves relaxing the graph but is done more locally then the relaxation done at the
start of each cycle.

Two
Adjacent
Stars of

Same
Level

Yes * Yes VIr

Form a Star Form a Star of

No | Add and Test Feature
— Measurements f

Add Pose Node with d

dand fin Relax the Tail

from a Pose Node Two Adjacent Stars

Figure 1: The basic sequence of operations performed on the graph at each iteration. The
adding of a pose node corresponds to a predict step with an EKF. Adding the feature nodes
corresponds to an update step. Stars are not always formed. The criteria is if the last pose
node of the tail has features that are still being observed.

This flow chart diagram captures the sequence of operations performed on the graph upon
the arrival of new data. The grapher holds only pointers to a few key nodes of the graph.
All the operations are done by following the edges from those nodes. There is no persistent
matrix or vector that corresponds to the state of the graph. These are formed as needed for
sections of the graph.

The two types of nodes that form our graph are state nodes and energy nodes. A state
node stores a state that it can provide to its attached energy nodes. The energy nodes use
the state to calculate the energy and its derivatives. The state node can then sum up the
contributions from each edge to calculate its partial derivatives and do a simple 'Gauss-
Seidel’ like relaxation, as explained in the next subsection. All graph operations could be
done using these capabilities.

It is the inclusion of the actual measurement model into the energy node that allows it to do
the calculation. This is in contrast to other graphical SLAM methods where these functions
would simple return stored numbers that were the result of linearizations performed when
the node was created. These numbers typically being stored in the edges themselves with
no need for energy nodes at all.



3.4 Graph Updates

Finding the MAP solution is equivalent to finding the minimum energy. The minimization
must be done over all states and all feasible graphs. Where feasible graphs are all the
possible assignments of measurements to features. This task is made difficult by both the
combinatoric explosion of the number of feasible graphs and the existence of local minima
for each graph. There is no general solution to this problem.

In this section we will describe how one can drive the system to a lower energy state given
an approximate solution. The approximate solution is the current best estimate available
from the last update modified in some way. The modification could be adding or removing
an energy node for a measurement. It might also involve adding state nodes. The effect of
the modification will be felt locally and will decay exponentially as one moves away from
the modified nodes. An important exception to this is when the modification changes the
topology of the graph, (i.e. closes a loop). In that case the effect of the modification can be
global.

Assuming we are in the local effects case, we can drive the graph to the local minimum
closest to the current state by relaxation. There are a number of strategies that will all
work well. They all rely on linearization of the measurements. This results in a quadratic
expansion of the energy at each energy node. So for a dead-reckoning node we get:

_ 1
By = Egi + (A%, 3, AXpi_1) Gai + 5 (A%, A1) Hai (A, Axr,i—l)T- (10)

Here H is the Hessian and G the gradient of the energy for this energy node at the current
state. We can make a similar expansion for the feature measurements. By adding up the
contributions from all nodes one can form the linear equation that must be solved to drive the
state into the minimum of the approximate systemf]. This would be far too much calculation
than is justified. One simple procedure is to sum only the terms associated with a single
state node and modify that node to the solution of: H;;Ax,; = —G,. Here i is the index of
the state node (s indicates either a feature, f, or robot pose, r) and the Hessian and Gradient
are the total for all energy nodes attached to this state node. In general the solution to
this might not lower the energy due to the nonlinearity. If it does not we can reduce the
magnitude of Axg; until it does or to zero if it is already at the minimum in this direction.
After this node relaxation we can move to another state node and repeat. This amounts to
a Gauss-Seidel type update, but with the full non-linear measurement functions recalculated
at each iteration.

Such a procedure is guaranteed to not increase the energy. If we are away from a saddle
point we will converge to the local minima. In the case of the saddle point we can detect
the negative eigenvalues in H and apply a simple gradient decent.

The main difficulty with this sequential node processing approach is that it is very slow
to move two strongly coupled nodes. When one of the nodes is treated as fixed the other

5The total of the Hessian over all energy nodes is the information matrix.



cannot move much. To overcome this we must instead solve a subsystem of several nodes
simultaneously.

The question then is how large to make the subsystem and when to stop relaxing. We do not
need to update all the nodes in the graph but may need to update the same node multiple
times. We propose a procedure for deciding which nodes to chose as illustrated in figure P

Suh-System

Figure 2: This figure illustrates the relaxation algorithm after adding an energy node. The
energy nodes are the small dark (red) circles on the edges connecting two state nodes. Here
the pose nodes are labeled with P (blue) and the feature nodes with F (yellow). The ’update
set’, shown shaded, is a set of energy nodes that have changed significantly. The ’sub-system’,
shown as the circled nodes, is the set of state nodes that are attached to the update set. We
see the evolution of the two sets for six iterations of the algorithm.

Set the update set = the newly added energy node.
Form the sub-system of state nodes as those with an edge to the update set.
Relax the state nodes of the sub-system simultaneously.
Clear the update set
For all energy nodes attached to the sub-system;
If the energy change was significant add to the update set.
6. If the update set is not empty goto 2.
Else done.

O o=

As a test for a significant change in the energy of an energy node we have used a change
greater than .01 in magnitude and 5% relative to the final energy of the node. The main
advantages of this algorithm are its simplicity and its ability to spread the update quickly
over the graph as is needed. One can solve the linearized subsystem exactly using QR or
Cholesky factorization. QR has better numerical stability.

A second method of relaxing the graph is to grow a fixed number of state nodes from a seed
node at the modified location in the graph. The way to grow the set can be via a simple
breadth first search on the graph or to only add the pose nodes going back from the current
position. The motivation for the latter approach is the simplicity of the resulting matrix.
If only pose nodes along the path are included one has the optimal ordering in a block tri-
diagonal matrix. This can be solved very quickly to adjust long sections of the path. The
features can then be adjusted individually.



Using a breadth first search allows one to update both the features and poses together. This
can be necessary especially when there are small loops in the path. It is generally harder
to find the optimal ordering of the matrix in this case. More time is needed for the same
number of nodes as compared to doing only pose nodes along the path. One can expect a
nm? dependence where n is the total number of nodes and m is the ’average’ amount of fill
(discussed below) produced when solving.

When marginializing out a node from the graph we create links between all the nodes that
were connected to the eliminated node. Some of these may have had direct links before, thus
no new fill is produced. The nodes that were not connected before the elimination but were
connected after constitute the fill produced by the elimination. The complexity of solving
the system depends on the order of elimination. We use a greedy approach by starting from
the end of the graph eliminating at each step the node that creates the least fill. This is very
close to optimal if the robot is exploring new areas the whole time.

4 Graph Simplifications

We have presented the general graphical approach to SLAM and shown how one can drive
the system to better solutions starting from a nearby state. The main difficulty that remains
is how to solve when the solution state is far from the current state. In this situation the
simple downhill relaxation will prove hopeless as the system finds a local minimum far from
the global one. The problem is twofold. First the linearization of all the energies in the
global frame will tend to hold the nodes fixed in that frame rather than fixed relative to
their neighbors as the true system should be. Second the shear number of dimensions is too
large for an effective search.

Our solution is based on a simplification of the graph by forming what we call star nodes.
These then lead to an approximation to the true system that can be solved using local
coordinates instead of global ones. Figure [ shows the process of graph reduction by star
nodes.

1. We start by selecting a single pose node in an older section of the graph.

2. We then linearize the energy nodes attached to this node and collect all the Hessian,
(and Gradient), terms into matrices. These matrices have rows/columns for all the
attached state nodes for these energy nodes.

3. We now temporarily move the state nodes to the minimum energy state for just these
energy nodes, (detached from the rest of the graph).

4. We then repeat step 2 until there is no more movement.

5. We now have no gradient term as the state nodes are at the minimum.

6. We marginalize out the original pose node that has no other edges.

After moving the system to the minimum energy and marginalizing out the original pose
node, the energy for the star node is the Taylor expansion around X}:

5We have used x, to indicate the coordinates of the all state nodes attached to the the star. This vector is in turn
split into a base pose node subscript b and the remaining nodes subscript p.



Figure 3: This is the process of star formation. We start by collecting the energy nodes
attached to a pose node. These are linearized and the attached state nodes moved to the
minimum energy of this sub-graph. The isolated pose nodes are marginalized out. The
process can then be repeated using the star nodes as the energy nodes for a higher level
reduction.

B = b+ (5 o)) Hax) (37 ) (1)

0xp

The gradient term has vanished as we are at the minimum energy of this subgraph. We will
make a coordinate transformation to the relative frame of one of the remaining pose nodes,
which we call the base node. We can transform the Hessian matrix by the Jacobian of this
transformation. Consider the transformation to the base frame at the current state X, and
its linearization in terms of Jacobian matrices:

)_(q = T(}_(p|)_(b). 5Xq = qbéxb + Jqpéxp. (12)

Using this then allows us to write:

I I 0 I 0 64 _(I 0)'<5xb> (13)
B —Jq_pqub Jq_pl qu Jqp (SXq - qu Jqp (SXp

We define Q = Jq_p1 and @ = (Jg, Jgp)- We can use this along with the invariance of the
original subsystem to coordinate transformations to show(]:

Hqs(%) = Q%) {Q(R,) " Hyr (%) Q(%) YQ(K)- (14)

Now defining the Hessian in the base frame as:

Hy (%) = Q%) Hy(R)QR,). = Hy(%) = Q%) Hyy(X)Q(X,).  (15)

The H,, matrix is the Hessian at the linearization point without the rows and columns of
the base node rotated to the base frame. The Hessian might not have full rank as it includes

"When we write out the energy expansion in terms of §x;, and 6x,, the terms that multiply éx; have to vanish by
the invariance to the base frame. That is to say, if we move the base node keeping the relative positions of all the
other nodes to the base unchanged, (x4, = 0),the energy will not change.



only part of the measurements for those feature nodes attached to this star. We want to
have an explicitly stable representation so we do a singular value decomposition of Hg,.

m
Hy = Z Uy, Uy (16)
k=1
Here k£ runs over the m positive eigenvalues p, and Uy are the eigenvectors. This lower
dimensional matrix, Hgy,, is thus forced to be positive definite. It is the projection of the
original H,, into the directions that actually contain information. So, for example, there is
no information in the direction that corresponds to translation of all the states in the global
frame. One can call this the observable subspace of the star node. Define the projection into
the eigenspace:

ap = Urx,, wp=Ulx,, Aup=up — (17)

We can now write the energy for the star node in a compact invariant and stable form,

)+ % (Auy)? (18)
k=1

We can also calculate the derivatives of the energy around any new state. So for example
the gradient at x; becomes

Go(xs) =) Aug(x) mUf Q(x,). (19)

k=1

The Hessian is similar. The eigenvalues and eigenvectors are saved along with #%;. These can
then be used to find the energy for any new state. Notice that the linearization here will be
exactly correct if the subgraph is later rigidly rotated and translated due to global constraints
being applied. It is only relative shifts between the states nodes of the star that will result
in linearization errors. These shifts will be small if the states are tightly constrained by the
star node.

The stars are not formed near the current pose node. This part of the graph is being updated
and will change as new information is added. It is then possible to wait to initialize features
until having observed them for some time. When the feature is finally initialized one can
add all the observations going back along the graph. Thus there is no hurry to use the
measurements. After forming the star nodes however such retrospective adjustments are no
longer possible. That is one reason to wait to form stars until the robot has left that part of
the environment.

We maintain a length of exact energy nodes with dense pose nodes behind the current pose
node, along the robot path. We call this the tail. The tail contains those pose nodes attached



to currently observed features. Beyond the tail we form stars. We start forming stars from
all the energy nodes connected to a selected pose node. We then skip a pose node and repeat.
Then by choosing the pose node between the two new stars we can form a larger star as in
figure . This process continues until we feel the star should not become larger. In practice
this was when we had eliminated 64 pose nodes. When combining two stars we only combine
stars of the same level, that is to say stars that have eliminated the same number of pose
nodes.

There are two reasons for limiting the size of the stars. First, as mentioned, we want the
star’s states to be tightly coupled to avoid large linearization errors. Second we want to be
able to easily solve the system. Too large a star might make this calculation difficult. Thus,
we leave some pose nodes in the graph and do not reduce the graph completely. The system
remains sparse. This sparseness is exact, in contrast to Sparse Extended Information Filters
where spareness is tied to a loss of information ([Lui and Thrun, 2003; [Thrun et al., 2004},
[Eustice et al., 200).

4.1 Global Constraints

We now show how the star nodes can be used to efficiently solve the global constraints on the
graph. As we have stated, the global constraints need to be solved using relative coordinates,
global frame coordinates will not work. We notice that the star nodes already have an explicit
expansion of the Hessian in terms of the relative coordinates x,. The only problem being the
existence of the many shared features between adjacent star nodes. The relative coordinates
of these are different in the two base frames. We get around this by observing that had
we simply not considered these features as being the same in the different stars we would
not have any problem. We therefore temporarily make this approximation, which creates a
system of star nodes that are only coupled through their common pose node. Notice that
we do not remove the large constraint of the feature within a single star. We do remove a
usually much smaller amount of constraint that the feature gives between two stars.

This system will then be trivial to solve as we now will show. We start by removing the tail
from the graph. Thus the only energy nodes we have are star nodes. Afterwards, we can
re-attach the tail keeping its relative position to the attachment point the same.

The loops in the graph around the pose path give rise to stars that have three or more pose
nodesf]. These then give constraints which are easily found by traversing the graph along
pose star edges. Each pose node that is not a base node for some star node is a marker for a
loop constraint. In addition, we may have explicitly just discovered a new constraint not yet
built into the graph. All these constraints then give rise to an equation that can be written:

Z C’Z-(Sxiq = C. (20)

iEstars

Here we have cut the tail off the graph completely and only have star nodes. The C; are

8Whenever a larger loop in the path is discovered we form a star node out of two star nodes, one from each end
of the loop.



matrices that have no columns for the feature parts of the stars and a row for each pose
dimension and each loop. These are initially calculated around the current state. Our goal
is to find a change to the current pose states dx;, that will satisfy this equation without
raising the energy too much. We naturally introduce a Lagrange multiplier, .

Z 6x%Hiqq5x,-q + ’}/( Z C’idxiq — C). (21)

iestars testars
> (& T) (%) -(2) 2

1€stars '
5xiq = —(Higd CT)1. (23)
—1
y=— ( > C’iHi‘q;CiT) c. (24)
i€stars

Starting with this last equation we note that the C' do not multiply the feature parts of
H~!. Therefore we need not bother calculating these rows to get 7. Furthermore we have
the eigenvector decomposition of H,4, stored in the star nodes so that this last equation is
very easy to compute. We also notice that although this does formally give us the change to
the star feature in the equation for dx;, we will get different feature solutions for each star
the feature is attached to. We therefore set the features separately. The result is we can
ignore the existence of the features completely here in solving for the pose node states.

We must repeat this procedure a number of times to correct for the linearization errors in the
constraint equations. Once the pose states are known we go back and relax all the features.

5 Implementation Considerations

Up to now we have discussed feature measurements in a rather abstract way. We have as-
sumed that the features in the map have some representation and that the representation can
be transformed into different frames of reference. We also assumed that the measurements
will then give us some information on the features relative to the robot at the time of the
observation.

In our experiments outdoors, we have used SICK laser scanners and wall features. The
feature detection consists of a search for lines in the range scans. These lines then give us
at least two numerical measurements, the angle and perpendicular distance to the wall. In
some cases one can also detect the endpoint of the wall. This happens when the robot has
a clear view around the corner of the wall. In other cases one has information on where the
wall is but not where it is not. This then leads to partial observation of the wall.

It is important that we represent the walls in a way that allows for partial observations and
explicit frames of reference. We also need to be able to estimate the pitch and roll of the
robot as it moves or we will not be able to make accurate maps outdoors.



To extract lines from the SICK scans we have used a Hough Transform on the scan data.
One can use any line extraction but the Hough Transform has the the advantage of finding
all the lines deterministicly. If it is properly optimized for the application it is at least as
fast as another line extraction ([Folkesson, 2007).

One further detail of line detection with the SICK scanner is the finite beam width of the
laser. Modeling the beam as having 0 width will lead to bias when observing a wall from
a robot traveling along the wall keeping a close distance to the wall and looking ahead, the
typical situation. Unfortunately, the effective beam width of the reflected laser light from
the wall depends on many factors, such as distance and reflectivity. The reflectivity of the
wall cannot be well predicted. At any rate, we found that for the LMS291 a constant .02
radian beam width gave reasonably good results in these environments. Better models might
be a good idea though.

6 Experimental Platforms

The approach presented above has been evaluated in a number of out-door settings. All of
the experiments have been performed with an iRobot All Terrain Robot Vehicle (ATRV-
2). The robot has no differential and direct control of all 4 wheels, which implies that the
resulting steering is skid-based. The skid steering introduces significant drift in the odometric
feedback. In addition the vehicle has inflated wheels which in general result in a significant
component of systematic drift in the odometry.

To compensate for the odometric drift an on-board inertial measurement unit, CrossBow
DMU-6x, is used for generation of independent estimation of ego-motion. A combined odom-
etry /INS estimation of ego-motion is feed to the SLAM system.

As already mentioned in the previous section, for estimation of environmental features only
the on-board SICK LMS 291 laser scanner is used. The laser scanner is mounted to have a
scan surface that is parallel to the horizontal plane.

7 Evaluation

We will present here results in two outdoor settings using our ATRV robot and the SICK
scanner to detect walls of the buildings. We have kept the tuning parameters of error models,
feature detection, matching and initialization constant for all our experiments.

7.1 Experiment 1 - 100 meter Square with One Loop

The first setting was around an approximately square building measuring about 70 meters
to each side. The area around the building comprises some smaller buildings, parked cars
and fences. These have some usable wall features as well as some things that look like walls
but should not be used, ie. hedges and fences. For this building we have a hand-made map
to compare to..



In the top left figure of Fig. | we show the results for the Extended Kalman Filter on this
data. The robot has explored this building by circling it counter-clockwise starting from 3
o’clock. One can see the typical problem of accumulation of errors which become quite large
by the time the robot completes the loop. The total number of SICK laser scans (at 5 Hz)
is 8,035 (181 segments). This EKF map took only 25 sec to compute off-line.

In the top right figure of Fig. f] we show the results of the full Graphical SLAM solution on
this same data. The results are noticeably better due to the more flexible data association
provided by the graphical method. We show here all the 8,035 pose nodes of the graph. This
map took 159 seconds to calculate off-line. This is slower than the EKF map but much less
than the 1,607 seconds it took to collect the data.

Figure [, second row shows the graph simplification and loop closing results. This map took
130 seconds which includes the time for detection and calculation of the loop closing. One
can see that after closing the loop we have a consistent map which aligns fairly well with the
hand made map.

7.2 Experiment 2 - 100 meter Square with Three Loops

We have a second, more challenging, dataset from this site. The robot was driven by hand
around three loops passing at times through the interior of the building. Fig. [ top left
shows the EKF map which took 85 seconds (8,749 scans, 361 segments). It is essentially a
useless map as the large error on completing the first loop lead to a false matching inside
the corridor.

Next in Figure | we show the result of detecting and closing the three loops using the
graphical SLAM method. This took 486 seconds but lead to a consistent and usable map.

7.3 Experiment 3 - 170 x 260 meters with Three Loops

The final experiment is on the KTH campus. Here we drove the robot by hand for about
1 hour (14,215 scans of 361 segments). There were a number of times that the robot was
driving blind as the SICK scanner had to reboot due to direct sunlight shining into it. The
final map has 312 walls and 3 loops were closed. This is summarized in Figures fj, [] and
B. The map took 1,122 seconds, (18m42s) to make which included detection of the loops.
We have not discussed our detection of the loops as that is a separate algorithm ([Folkesson]
PO005)). It was, however, part of the experiments. This automatic detection was much more
time intensive here as there were many possible combinations of wall matches to check. This
check was done every 100 iterations and included all nearby features that were far apart
along the edges of the graph. The EKF solution on this data was again inconsistent but only
took 313 seconds, without any special loop detection running.

Let us emphasize here that the parameters were not changed between these experiments.
Had we tuned the parmeters for each dataset slightly better results might have been achieved
but we would not have gotten real validation. We have been working with various imple-
mentations of SLAM and graphical SLAM for some time. The values that worked were not



any real surprise.

The final map, Fig. P compares well with a photograph of the campus from above. We can
also notice that the final robot position, Fig. B, is indeed correct as we see it prepared to
re-enter the door it started from. The larger error in the lower right corner was due to direct
sunlight dazzling the SICK while it turned south. This happens at several points along the
path but here it is combined with significant odometry error.

Figure 4: Here we show the first experiment with the EKF solution on top left and the
full Graph solution without star node simplification on lines are the hand made map of the
building which can be compared to the darker, (black) lines of the SLAM map. The pose
nodes of the graph are also shown in the right and below figures. In the second row we show
the results of using the star nodes to simplify the graph and close the loop. We see the graph
just as the loop is detected on the left and just after the loop closing is performed right.



Figure 5: Here we show the second data using the EKF solution (left). The features were
matched incorrectly on closing the first loop leading to a hopelessly inconsistent map. The
Graphical Slam solution is shown in the center and right. We see the graph just as the loop
is detected in the center top and just after the loop closing is performed, left top. The second
and third loop closings are shown in the second and third rows of figures. Notice how the
map is converging to the hand made map.



Figure 6: Here we show the third data set closing the first loop. We see the graph just as
the loop is detected at the left and just after the loop closing is performed to the right.

Figure 7: Here we show the third data set closing the second loop. We see the graph just as
the loop is detected, left and just after the loop closing is performed, right.



Figure 8: Here we show the third data set closing the third loop. We see the graph just as
the loop is detected st the left and just after the loop closing is performed, right. Notice that
the robot (in red) is correctly positioned outside the door to the lab, which it came though
at the start.

Figure 9: Here we compare our graphical SLAM solution to an aerial photo of the same area.



8 Discussion

It is always hard to quantify the quality of a SLAM solution. For example some of the EKF
generated maps here suffered catastrophic failures at specific points. Had these somehow
been avoided the maps would have looked much better. Typically a number of small errors
can have very large effect due to the leverage of long robot trajectories. One needs to look
at both local consistency and global consistency to get a true picture of the performance.
Locally EKF is quite good, so long as no data association errors are made. The EKF maps
cannot be scaled up to very large sizes mostly because of the linearisation in a global frame
of reference.

Our graphical approach has the important advantage of being able to reuse the original
measurements or the summarized local representation of these in star nodes. This then
makes it theoretically scalable to very large maps. We have shown that it can make maps
of data that we could not map with the EKF.

Having the original measurements available for a longer time also allows the delayed inclusion
of data into the map. One can add or remove the data right up until it is included in some
star node. This more flexible use of data is an advantage of our method. There are other
ways to achieve this such as delayed filtering or using a filter with a short history of recent
poses. However this flexibility is achieved, it is essential for a robust SLAM algorithm. It
explains much of the improvement of our maps over the EKF maps before loop closure.

Others investigations of graphical representations to the SLAM problem include (Duckett
gt al., 2000}, Frese and Duckett, 2003). These graphs represent a significantly simplified model
of the underlying probabilities as compared to what is presented here. The measurement
models are linearized in the same way as in an EKF. No effort is made to minimize the effects
of this linearization, though the use of local frames of reference for instance. The relaxation
method is also different than what we present here. Our method is rather more adaptive to
the amount of tension in each edge of the graph.

Early graphs used for loop closing are found in ((Gutmann and Konolige, T999; [Lu and Milios]
[9974). These methods were a source of inspiration to this work. Those graphs were built
up from scan matching while we use a feature based map.

The issue of computational complexity has received much attention in SLAM. The EKF has a
quadratic complexity with the number of features in the map. Our method has a complexity
which is harder to be precise about. The individual updates can be constant time. This
is because they normally involve only local relaxation of the graph. In our experiments we
relaxed the graph quite hard resulting in computation times significantly longer than EKF.
We could have chosen to relax less and get average updates about as fast as EKF. The maps
do suffer but in a gradual way, not catastrophic. The global updates on closing a loop do of
course depend on the size of the graph. The loop closing calculations are all formally linear
in the size of the graph. One might be inclined to claim linear complexity for the whole
process but we will not. The reason is that as the topology of the graph becomes more
complex, (many loops), it takes longer to relax the graph satisfactorily. This observation is
not easily quantified but prevents us from making the linear complexity claim.



So although it takes a linear time to relax the graph, (using for instance a single relaxation
on each node or breaking the graph up into overlapping subsystems and relaxing each of
these exactly), the number of times one must do this relax seems to depend on the topology
and thus the size of the graph.

We should also say that although our method works well it is not infallible. Just as with
all SLAM algorithms changes to the tuning of the many parameters in the models may
cause dramatic differences. Even the timing of the loop closures can make the maps change
dramatically. The fact that we do not re-tune the parameters between the different data sets
is important in this context.

9 Conclusion

SLAM is by now considered a mature problem in robotics. The basic formulation of the prob-
lem is well-known and the objective for a system is well-characterized. That does not imply
that this is an entirely solved problem. As mentioned in the introduction some of the chal-
lenges are convergence in the presence of non-linearities, introduction of global constraints,
management of computational complexity, and flexible handling of data-association.

In this paper a graphical approach to SLAM was presented which addresses these issues.
Using the graph formulation it is easy to test an association. It merely adds a new arc to the
graph which can be removed if it leads to a worse solution. The criteria for determining the
quality of the solution is the energy. This energy is unambiguously given by the probabilities
underlying the measurements.

Non-linearities are computed exactly with no approximation until enough measurements have
been included to assure a good linearization point. The star node is the construction for the
linearization. It linearizes the measurements in a local frame. The non-linear transformations
of the base frame of the star continue to be handled exactly. It is only the much smaller
local movements between nearby features that are linearized. The star node make it possible
to sub-divide the graph into largely independent components which facilitates real-time
operation.

Global constraints are solved by making the approximation that the star nodes are ’inde-
pendent’ in the sense that any feature common to two stars is temporaily considered to be
two separate features. The equations then become largely decoupled. This then allows the
minimum energy state to be found quickly.

The presented framework for graphical SLAM has been presented but also demonstrated for a
number of different environments where the performance in terms of mapping in comparison
to a standard EKF was shown. The introduction and handling of global constraints was
also demonstrated. The framework has generated results that clearly demonstrates it utility
for mapping and estimation in rich environments. Future / current work includes use of
the framework in sparse environments, integration of a richer variations in features, and
integration of the SLAM framework with representations that are more topological by nature.
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