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Abstract— Probabilistic roadmap methods (PRMs) have been
successfully used to solve difficult path planning problems but
their efficiency is limited when the free space contains narrow
passages through which the robot must pass.

This paper presents a new sampling scheme that aims to
increase the probability of finding paths through narrow pas-
sages. Here, a biased sampling scheme is used to increase the
distribution of nodes in narrow regions of the free space. A
partial computation of the artificial potential field is used to
bias the distribution of nodes.

I. INTRODUCTION

Probabilistic roadmap methods (PRMs) have been success-
fully used to solve difficult path planning problems but their
efficiency is limited when the free space contains narrow pas-
sages, [1]–[5]. The key idea of the basic PRM is to randomly
distribute a set of nodes in the robot’s configuration space and
then connect these nodes using a simple local planner (usually
a straight line), to form a graph, known as a roadmap. This
roadmap is supposed to capture the connectivity of the free
space, Cfree. If the roadmap is successful in capturing the
connectivity of the free space, path planning may be reduced
to a graph search.

The random sampling scheme used in basic PRMs does
not work well when the configuration space contains narrow
passages through which the robot must pass. This is because
the random sampling scheme tries to distribute nodes with
constant density in Cfree and the volume spanned by the
narrow regions of Cfree makes up only a small fraction of
the total volume spanned by Cfree. Thus few nodes will end
up in narrow regions, making it difficult for the planner to
find a feasible path through the narrow passage. One way to
solve this problem would be to bias the sampling in order to
provide increased node density in narrow regions.

This paper presents a new planner, the artificial potential
biased PRM (APBPRM). This planner uses a biased sampling
scheme that can improve the performance of PRM planners in
situations where the robot must pass through narrow passages.
The key idea behind this new planner is to use an artificial
potential field to increase the node density close to obstacle
borders and especially in narrow regions. The artificial po-
tential field is computed from a partial solution of Laplace’s
equation (section IV-B) in the workspace W of the robot.
Information from this potential field is then used to increase

the node density along C-obstacle surfaces, and especially in
narrow and concave regions.

This paper is organized as follows. In Section II, a short
review of the related work is given. In Section III, the
properties of our method are described, and basic methodology
is outlined in Section IV. The implementation is discussed in
Section V. Experimental evaluation and results are presented
in Section VI. Finally, we conclude with a short summary and
suggestions for future work in Section VI-B.

II. RELATED WORK

A number of schemes dealing with the narrow passage
problem in PRMs have been proposed [1], [2], [5], [6]. They
usually work by first distributing nodes uniformly throughout
C and then, using information attained from this sampling
of C, enhance the roadmap. This enhancement is done in
different ways.

In [5], if the roadmap is disconnected in places where Cfree

exists, this place is considered to correspond to some narrow
passage or a difficult region of Cfree. Nodes in such regions
are then expanded. Expanding a node q corresponds to adding
more nodes in its neighborhood. All nodes in the roadmap
are given a positive weight w (q) which is a heuristic mea-
surement of the “difficulty” of the neighborhood of q. Thus,
w (q) is larger whenever q is considered to be in a difficult
region of Cfree. With w normalized (

∑
∀q w (q) = 1), nodes

are repeatedly selected from the roadmap with probability
P (q is selected) = w (q) and then expanded. Several ways
to define the heuristic w (q) are given in [5]. One of these
are similar to the method discussed in [4], using a w (q) that
is inversely proportional to the number of neighbors. This
method has the drawback that collision detection, roadmap
construction and roadmap search have to be performed several
times.

The planner in [1] uses the notion of dilated free space to
increase the density of nodes near the boundary of Cfree.
This means that Cfree is expanded, allowing the robot to
“penetrate” a certain distance into obstacles. Nodes are then
distributed in this dilated free space. Those nodes found to
lie outside Cfree are then “pushed” into Cfree by a local
resampling operation. This method would presumably fail
given a task where very thin objects are present, making it
impossible to expand Cfree.



In [2], an obstacle-based PRM (OBPRM) planner is con-
sidered. This planner tries to add sample points close to or
on C-space obstacle surfaces, similar to our APBPRM. The
OBPRM described in [2] works in three steps. First, there
is the node generation step, in which nodes are distributed
in C in a way that increase the nodes density at C-obstacle
surfaces. This is accomplished by finding configurations qi

that intersect with C-obstacles (i.e. qi /∈ Cfree). From these
configurations, “rays” are shot out in random directions and
the bounding surface of the C-obstacle is located by means
of binary search. The second step is the roadmap connection
where several more powerful local planners are used. First, the
simple straight line planner is used to connect the nodes in C,
and then, in regions found to be difficult, more advanced (and
hence slower) planners are used. In the third step, the more
powerful planners may also add new nodes to the roadmap,
increasing the connectivity of the roadmap. This OBPRM
actually deals with a quite general path planning problem with
obstacles and APBPRM could easily be incorporated into this
general planner in the node distribution step, possibly reducing
the number of times the more advanced planners need to be
invoked.

III. PROPERTIES OF APBPRM

Because of the probabilistic completeness of PRMs (section
IV-E), they can solve any problem given that a sufficiently
large number of enhancements are made to the roadmap.
This fact implies that a biased sampling scheme might not
be necessary. However, this is not entirely true. One obvious
reason to prefer a biased sampling scheme is that graph search
time is reduced, since for every enhancement step the roadmap
has to be rebuilt and searched again. Also, the enhancement
steps often tend to oversample the “open” regions of C,
creating a roadmap with more nodes than is actually required
to solve the problem (increasing search time). Another issue
arises when there are two (or more) ways to reach the target
and one way is shorter than the other but contains a narrow
passage (Figure 1) .

A classical PRM planner could probably find the “long way
around” (dashed line in Figure 1) fairly easy, given a suitable
number of initial nodes in the roadmap. If the planner finds a
solution to the path planning problem, it will not perform an
enhancement step. While this behavior might be acceptable
in some cases, it will sometimes be more important to find
the shorter path. There is, of course, a trade-off here. A robot
can travel with a higher speed if it decided to take the “long
way around” because it would have to be less concerned with
bumping in to the walls, thus the time required is not directly
related to the length of the path. If such aspects are taken into
consideration, the function that measures the “goodness” of a
path in C-space might have to be changed to penalize paths
that are too close to obstacle borders. The graph searching
algorithm should then optimize on this “goodness” function
rather than the C-space distance.

From the planners perspective, it is better to find both paths
and then choose the best, according to some metric. The

APBPRM would have a much higher probability of finding
the narrow passage path (solid line in Figure 1), given the
same number of initial nodes as the classical PRM planner.
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Fig. 1. A point shaped robot planning a path from S to T in an environment
containing a narrow passage. APBPRM yields the solid line path and standard
PRM yields the dashed line path.

A. Computational Benefits

Using the potential function to bias sampling in a PRM
planner could also provide some computational benefits. First
of all, since the APBPRM planner is less likely to perform the
enhancement step, roadmap connection and search time could
be reduced. Since node distribution time usually requires a
few percent of the total computation and the rest is used for
roadmap connection/search, it would be preferable to minimize
the number of connections and searches made. Although
APBPRM adds somewhat to the time required for distributing
nodes, it is presumably better than performing one or more
extra connect/search steps.

Since APBPRM uses a partial solution of Laplace’s equation
to bias the search, one could easily imagine a scheme where
a more accurate solution of Laplace’s equation is computed
(more steps in the FDM (Finite Difference Method, see section
IV-B) solution). This solution could then be used for gross
motion planning or to guide the search algorithm, i.e. search
“down-hill” first. Using this scheme would minimize the time
“wasted” when computing the partial solution to Laplace’s
equation. However these effects are not considered in this
paper.

IV. METHODOLOGY

This section provides a formal description of the path
planning problem, introducing the reader to the notation used
in this paper. This is followed by the theoretical foundation of
the APBPRM planner.

A. The Path Planning Problem

Let A denote an arbitrary robot, (an agent) consisting of
one or more rigid bodies with N degrees of freedom (dof).
The path planning problem solves the problem of connecting,
by a continuous path, a point qc

start to any point qc
goal ∈

Cfree that satisfies the condition: qc
goal → qw

goal under the
constraints of the forward kinematics of A. Here qc denotes
a point in the robot’s configuration space and qw denotes a



configuration (position and orientation of a specific part of
the robot) in the robot’s workspace. Cfree is the subset of
the robot’s configuration space available to the robot, i.e. not
occupied by obstacles.

B. Theoretical considerations

Another type of planners, known as potential field planners
[7]–[9] use gradient decent on a potential function φ(q)
defined over C to solve the path planning problem. In general,
Laplace’s equation:

∇2φ(x) =
N∑

i=1

∂2φ

∂x2
i

= 0 (1)

can be used to describe the potential of a particle in free
space acted on only by gravitational forces, [10] which is the
property artificial potential methods try to mimic. Because of
this property, Laplace’s equation is often referred to as the
potential equation.

Solving (1) in Ccon with the potential φ held fixed at 1
(Dirichlet boundary condition [10], [11]) on all points qc /∈
Cfree and at −1 on all points qc → qw

goal, will result in
an artificial potential field φc in Ccon. Performing gradient
descent on φc will result in a path from the starting point
qc

start to a minima qc
min. If qc

min → qw
goal (a solution has

been found) the planner is done. However, if qc
min � qw

goal

(a solution has not been found), qc
min is a local minima that

must be escaped from. This escape can be achieved using of a
random walk or a local search. After the escape from a local
minima, a new gradient descent may be performed and a new
minima is located. This process can then be repeated until a
solution has been found.

One drawback of the potential field approach is the cre-
ation of local minima that does not correspond to a goal
configuration. If the world in which the robot operates is
complicated, containing many objects or objects of complex
shape, the robot may get stuck moving from one local minima
to another not reaching the goal in the required time. Another
problem is that, as the dimensionality of C increases, the time
required to compute φ grows rapidly. The problem with high
dimensional C may be circumvented by computing φ in W .
Since 1 ≤ dim(W ) ≤ 3, φ may always be computed in W
in a relatively short time (compared to C that may have 10s
of dimensions). Once the potential φw(x) is known in W , the
potential φc(q) for a specific location in C may be computed
by summing the potential for all points in the region Ω ⊂ W
occupied by A, [9]. This relation can be written as

φc (q) =
∑
∀x∈Ω

φw (x) (2)

Equation (2) makes it possible to use potential fields for
higher dimensions of C than it would otherwise be feasible.
However, in order to perform gradient descent not only the
potential of the current configuration must be known but
also the potential of all neighboring configurations. The time

required to compute all those potentials will eventually grow to
unacceptable values but it is still much better then computing
φ in C explicitly.

The potential function can be computed numerically using
standard finite difference methods (FDM) [7]. Since (1) can
be used to describe voltages in a resistive grid, a resistive grid
can be used to obtain an analog solution to φ in a matter of
microseconds, [7], [11].

C. The Narrow Passage Problem with Artificial Potential
Fields

Artificial potential field planners performs well in relatively
uncluttered workspaces. However, if the robot has to move
through a narrow passage artificial potential field planners, just
as PRM planners, experience problems. This is because the
potential in a narrow passage will be high. If a local minima
exists near the entrance of a narrow passage it is unlikely that
the planner will be able to escape its minima through the high
potential ridge in the narrow passage.

D. APBPRM

When solving (1) numerically in the region Ψ, itera-
tive methods such as Jacobi iteration, Gauss-Seidel itera-
tion, Crank-Nicolsons method or Successive Over-Relaxation
(SOR) can be used [7], [11]. For (1), these methods essentially
replaces each grid point’s value with a weighted average of
its neighbors. This is then repeated iteratively until a stable
solution is found.

Instead of computing the solution of Laplace’s equation,
APBPRM uses the idea that, while solving for the potential
φ, iterative methods will in general cause the potential to rise
more rapidly in narrow regions. An intuitive way to visualize
this is that a grid point that has a Manhattan distance of n
to the closest boundary point will remain at (the initial) zero
potential for the first n steps of the iterative computation. Grid
points close to the boundary of Ψ can, on the other hand,
be updated many times during the first n iterations and thus
rise to a high potential. This is especially true for grid points
surrounded by boundary points, such as grid points in narrow
or concave regions of Ψ.

APBPRM computes φN , the first N steps of a solution to
φ using FDM and uses this to bias the distribution of nodes in
the roadmap. The node distribution scheme used by APBPRM
works as follows:
First a set of nodes, Qrnd, is distributed at random uniformly
throughout C, keeping only those nodes q ∈ Cfree until Qrnd

contains M nodes. Then more nodes are randomly distributed
in the same way but keeping only those nodes q ∈ Cfree with
a probability P given by (3), where kφ and kr are arbitrary
real constants, until the set of nodes Qapb contains K nodes.

P (q is kept) =




0 if w(q) < 0
w(q) if 0 ≤ w(q) ≤ 1
1 if w(q) > 1

(3)

where w(q) = kφφN (q) + kr



Using the probability given by (3), all nodes are kept with
at least the probability kr (unless kr < 0 which might be
interesting to investigate in some high dimensional cases), and
the probability of keeping a node is increased proportionally
to φN . The set of nodes in the roadmap is finally constructed
by combining the two sets of nodes to a new set Q = Qapb ∪
Qrnd that form the nodes of the roadmap. This will result in
denser sampling of the C-space close to obstacle boundaries
and especially in narrow and concave regions. The idea that a
denser distribution of nodes along C-space surfaces helps to
guide the robot through narrow passages is also supported by
[2], [6].

E. Probabilistic Completeness

In this section the probabilistic completeness of APBPRM is
discussed. A path planner is called probabilistically complete
if the probability of solving any given problem approaches 1
as the planning time approaches ∞, provided that a solution
exists. A proof of the probabilistic completeness of PRM
planners is given in [4].

Because APBPRM is a simple extension to normal PRM
it has the same probabilistic completeness as other PRM
planners. This means that APBPRM is able to solve any
given problem for any given robot for which a solution exists,
given sufficient running-time and that the robot is locally
controllable, [12]. The property of local controllability is
further discussed in [12] and essentially means that a robot
A always can move in a neighborhood of q for any given
q ∈ Cfree.

V. IMPLEMENTATION

To test the theoretical foundation of APBPRM, a sample
PRM planner with support for artificial potential biased sam-
pling was implemented. Pseudo code for the APBPRM planner
is outlined in algorithm 1. The planner used in the experiments
used the Lazy evaluation scheme presented in [4].

Algorithm 1 A single path planning query.
world←Load world from file

if(qstart or qqoal is not valid)
return FAILURE

Compute potential for world

nodes ←Distribute nodes according to policy
Add nodes to roadmap
Build graph in roadmap

while(qstart and qqoal are connected)

path←Shortest path from qstart to qqoal in roadmap

if(path is collision free)

return path

remove illegal edge and/or node in path from roadmap
end while

return FAILURE

The world is modeled as a uniform and variable resolution
grid with the world coordinates normalized, i.e. x, y, z ∈
[0, 1]. A World object begins by loading a bitmap image
representation of the world where the obstacles are marked

by a 1 and the free space is marked by a 0. Once the world
representation is loaded the World object computes and stores
φN . The World class provide access to the partial potential
for points in W (truncated to the nearest grid point) and a
function that tests if a point in W lies in Wfree.

A RoadMap object is provided with a list of nodes and a
start and goal configuration. It begins by building the roadmap
graph. All nodes, including the start and goal nodes, are
inserted in an array and are provided with a unique hash key
for efficient reference. In addition all nodes are provided with
pointers to their adjacent nodes.

The complexity of building the graph is O (n log (n)),
where n is the number of nodes in the roadmap. However,
building the roadmap is a parallel process and can thus take
advantage of multi processor machines. Once the graph is
built, the RoadMap object can be queried for a solution
to the path planning problem. The graph is now search for
the shortest possible solution path using Dijkstra’s algorithm
[13]. Dijkstra’s algorithm has O ((e + n) log (n)) complexity,
where e is the number of edges and n is the number of nodes
in the roadmap. Better algorithms that use a heuristic to guide
the search, such as A* search, exists [4], [14] but were not
used because the behavior of a complete algorithm is easier
to understand and analyze.

Once a path is found, it is checked for validity. The collision
checking from [4] is used for high efficiency. If the path is
valid the planner is done, if not the edges and nodes found to
be illegal are removed and the graph is searched again. This
is repeated until either a solution path is found or the goal
and start configurations get disconnected. If the goal and start
configurations get disconnected the planner reports failure. No
enhancement step is implemented at this stage.

VI. EXPERIMENTAL EVALUATION

To measure and compare the performance of APBPRM vs
PRM, four path planning tasks with a point shaped robot in
two dimensions were performed. Figure 2 shows the different
workspaces of the planning tasks. Each task was performed
100 times with both biased and random sampling and the prob-
ability of reaching the goal without requiring an enhancement
step was calculated. In addition, the average number of paths
that were tested for collision was calculated. The planning
task was performed using a different number of nodes in the
roadmap (100, 250, 500, 750). The results of these simulations
can be seen in Table I.

Results are averaged over 100 trials. The start and goal
configurations were the same for every trial (although different
for each world). In all simulations nodes were kept with a
probability given by (3) with φ100 and kr = 0.1. When
using the biased sampling scheme no nodes were distributed
at random (i.e. Qrnd is empty) but rather the connectivity of
open regions was captured using kr = 0.1. The world was
modeled as a 180× 180 grid. The number of neighbors were
limited to a maximum of 100.



(a) (b) (c) (d)

Fig. 2. The different worlds used to evaluate the performance of APBPRM, each world shows an example path.

TABLE I

SIMULATION STATISTICS FOR THE DIFFERENT WORLDS IN FIGURE 2.

A B C D

N S GR PT GR PT GR PT GR PT

100 RND 0 20 0 36 0 82 41 5

APB 10 86 1 362 10 262 69 21

250 RND 43 287 2 277 45 361 81 18

APB 84 865 68 2643 84 866 97 146

500 RND 92 1357 22 1305 90 789 97 59

APB 99 3352 100 7505 99 1739 100 440

750 RND 100 2647 61 2953 98 1069 100 115

APB 100 5887 100 11684 100 2381 100 597

GR: Chance of reaching the goal without requiring an enhancement step (%).
N: Nodes in the roadmap.
PT: Number of paths tested.
S: Sampling strategy. RND = uniform random sampling, APB = APB
sampling.

A. Experimental results for a 5 dof Planar Link Robot

This section shows some of the preliminary results of
APBPRM when applied to a 5 dof planar arm. Because the
planner uses a complete algorithm, it is not possible to use the
amount of nodes needed ( Because the planning time would
be too long) to provide sufficient resolution in C-space, thus
giving poor results. Also no investigation of the effect of the
parameters kφ and kr in (3) has been performed.

It is clear from the results that APBPRM can be used to in-
crease the probability of finding paths through narrow passages
for a point shaped robot. The success of APBPRM indicates
that denser sampling around C-space obstacles surfaces aid
the planner in narrow and cluttered regions.

At this stage, no effort to incorporate the gradient of the
potential function into the roadmap search has been done.
However, this is an interesting idea that will be further investi-
gated. The preliminary results for a 5 dof planar arm indicate
that the success of APBPRM decreases some with increased

TABLE II

PLANNING RESULTS FOR THE 5 DOF PLANAR ARM IN THE TWO WORLDS

FROM FIGURE 3. AVERAGE RESULTS OVER 100 TRIALS.

A B

Sampling GR PT GR PT

APB 78 14.9 30 18.0

RND 69 5.0 23 3.3

GR: Chance of reaching the goal without requiring an enhancement step (%).
PT: Number of paths tested.

dimensionality of the C-space. This is not necessarily true and
will be investigated as part of future work. For instance the
relatively poor performance reported in section VI-A could be
due to a bad selection of parameters in (3). If kr is too high
the sampling of the C-space will be too gross, i.e. nodes are
kept too easy. Combined with a uniform random sampling it
might even be interesting to evaluate the performance with
kr < 0.

It is often easy to find situations where heuristic methods
fail, this is also true for APBPRM. What APBPRM provides
is another way of handling the narrow passage problem,
increasing the set of “tools” available for people who construct
motion planners to be used in real world applications.

Some of the drawbacks of the proposed approach is that
since the potential function is usually quite steep near obstacles
the planner will tend to “crawl” near the edges of obstacles.
While this is not an issue during planning for a massless agent
in an completely known environment, it is when planning
motions for real physical robots in an approximation of the
real world. In the real world, the robot requires some minimum
clearance to the obstacles. Also, the robot has to move more
slowly when close to obstacle boundaries to avoid the risk
of collision. APBPRM may generate paths where the robot
crawls along the edges of obstacles. The computation of
the solution to Laplace’s equation in R

3 is quite expensive,
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Fig. 3. Two tests with a 5 dof planar arm. The start and goal locations are shown (solid lines) as well as some intermediate positions.

limiting the usefulness of APBPRM in environments with
moving obstacles. However methods for dealing with such
cases exists and can be incorporated to the APBPRM planner
[15], [16].

B. Future Work

In this paper, we have presented a new sampling scheme
used to increase the probability of finding paths through
narrow passages. Here, a biased sampling scheme is used to
increase the distribution of nodes in narrow regions of the free
space. A partial computation of the artificial potential field is
used to bias the distribution of nodes.

Some of the ideas presented in section IV-B have not been
implemented or tested. One of the interesting future develop-
ments would be to investigate the performance gained when
adding biased sampling to existing PRM planners and using
their more efficient search algorithms. Also, the possibility to
use the potential function as a heuristic in search algorithms
such as A*-search will require further investigation. The effect
of the parameters kφ and kr in (3) needs to be evaluated.
Finally we will investigate modifications to (3). For instance
using w(q) = kφ

√
φN (q) + kr might lessen the tendency to

crawl along edges.
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