Proceedings of the 2000 IEEE
International Conference on Robotics & Automation
San Francisco, CA » April 2000

BERRA: A Research Architecture for Service Robots

Mattias Lindstrom
mattiasl@nada.kth.se

Anders Oreback
oreback®@nada.kth.se

Henrik I. Christensen
hic@nada.kth.se

Centre for Autonomous Systems,
Royal Institute of Technology,
Stockholm SE-100 44, SWEDEN.

Abstract

The architecture for a mobile service robot is dis-
cussed. The paper covers aspects related to overall de-
sign and implementation. The robot architecture is of
the hybrid deliberative/reactive behavioral type. The
strategy is selection where planning is viewed as con-
figuration. The architecture can be divided into three
layers, one for deliberation, one for task execution,
and one reactive layer. Scalability and a high degree
of flexibility have been primary design goals, making
it easy to reconfigure the system. The system has been
built in an object oriented fashion. An application of
the architecture has been tested in a significant number
of missions in our lab, where one room has been setup
as en ordinary living room.

1 Introduction

A fundamental basis of any intelligent system is the
underlying architecture, which provides the necessary
coordination, communication, and control structures.
In this paper we present BERRA (BEhavior-based
Robot Research Architecture), a research architecture
used in the development of a service robot. The ob-
jective of the service robot is to carry out a wide range
of missions in an ordinary home or office setting. The
missions can for example be fetch-and-carry opera-
tions, such as delivery of mail or give tours of the
office to visitors.

1.1 Service Robot Architectures

A robotic system used in an ordinary household must
be especially robust and reliable and must be prepared
to handle unexpected situations. The architecture of
the system must provide a framework for robust in-
tegration of required skills. For research and develop-

0-7803-5886-4/00/$10.00© 2000 IEEE

ment purposes, an architecture should provide support
for:

A conceptual framework for reusability

e A clear distinction between levels of competence
o Simple integration of new components
Flexibility

Efficient run-time performance

Simple debugging

If the architecture is going to be distributed to other
research labs, or used on a variety of OS, the code
should also be written in a standardized language and
OS specific system calls should be wrapped.

2 Analysis of Architectural Re-
quirements

Before the architecture is outlined, an analysis is con-
ducted that establishes requirements and demands. It
will focus and enlighten issues for the design.

The design should provide a conceptual framework for
research on integration of applications and skills on a
service robot. A service robot requires deliberation in
the form of autonomous planning and communication
with humans. At the same time a service robot must
be able to react instantly to unexpected situations.
Neither deliberation nor reactiveness can be ignored
in favor for the other. Therefore we choose a hybrid
deliberation/reactive behavior-based approach.

To accommodate the demand of flexibility, task se-
lection is carried out according to the planning as
configuration[l] strategy. That is, modules in the re-
active layer can be configured and connected together
in a flexible network.

3278

The initial hardware which the architecture is ap-
plied to, is our Nomad 200 platform (called Asterix).
Equipped with numerous sensors, such as sonars, IR-
ranging, laser range scanner, pan/tilt mounted b/w
stereo camera pair, and a color camera, it embodies a
reasonable complex platform for the testing. The ar-
chitecture must also scale to our Nomad XR4000 robot
(called Obelix), equipped with three onboard comput-
ers, and to our multiple robot team of Nomad Scouts
(called Hewey, Dewey, and Lewey). The architecture
can therefore not be limited to run on one computer,
but must be able to span over a network of computers.

2.1 Deliberate layer

The deliberate part of the architecture needs to un-
derstand commands given by a human operator. To
fit in to its the service role, it would be convenient
if it was able to communicate in the same manner as
humans. This calls for the need to understand and
express itself using speech and gestures.

We do not only wish the robot to understand the op-
erator, but also to effectuate the command in a satis-
factory manner. This requires the need for reasomng
and planning of missions.

A mission often involves transportation. The robot
needs to know where it’s located and understand
names of locations (destinations) given by the human
operator. To travel to a new location in an effective
way, the robot needs to perform path planning. The
path planning should also exploit the possibility to
learn by experience and become more effective.
There is no guarantee that a mission will complete
successfully. The deliberate layer must be able to in-
tercept and recover from a failing mission.

2.2 Reactive Layer

In the reactive layer of a behavior-based architecture,
behaviors act as tight couplings between sensors and
actuators. To reduce complexity, each behavior should
have a simple and well defined task that depends on
as few other components as possible. By minimizing
the complexity of each behavior the architecture can
allow a large number of behaviors. The. architecture
then scales better to more multi-faceted situations.

Sensors will be used simultaneously by different be-
haviors. Thus, a mechanism for sharing the sensors
has to exist. Some sensors take quite some time to
read. To make the system more effective, the reading
of the sensor data could be done once for all concerned

behav1ors Also some basic refinement could be done
in common.

Similarly the output to the same actuator from differ-
ent behaviors could result in an undesirable and erratic
behavior. This means that there has to be some sort
of fusing mechanism involved.

Since this layer controls the motion of the robot, a
near real-time performance is necessary. The sensor
data must not be allowed to get too old before they
effect the actuators.

This layer will grow as new functionality is neeaéd,
thus a generic framework will reduce development
time.

2.3 Task Execution Layer

There is a need for components that bridge the gap
between the deliberate and the reactive layers. The
reactive layer network needs to be configured and
monitored according to the deliberate layers decision.
There is also a need for a functionality that adminis-
trate all components and their whereabouts.

3 The BERRA Architecture

We have chosen to have the components as individial
processes, since concept of a behavior-based architec-
ture maps nicely onto processes and sockets.

To ensure compatibility, the standardized language
C++, is used. Also, together with the ACE[2] pack-
age, portability over a wide range of OS is maintained.
The architecture is designed so that components can
be transparently placed on:any machine in the net-
work, which infers that the system can be run on mul-
tiple computers.

The system is throughout constructed using an object-
oriented approach. Abstract base classes have been
implemented to aid in the making of new modules.
Creating for example a new behavior is done rapidly
and assumes only basic knowledge of the architecture.

3.1 Deliberate Components

Human Robot Interface The human-robot inter-
face (HRI) is the link between the human and the
robot. In our system the HRI understands both ges-
tures and speech. A voice synthesizer is used for au-
dible feedback.

To give the robot and the human a common reference
of locations, a concept of goal-points is used. A goal-

3279

point is a useful location in the world that has been
given an intuitive name, for instance dinner-table or
mailbox.

Planner The main objectives of the planner is to
interpret and fulfill the commands given from one or
more human operators though the HRI. By using prior
knowledge, such as a topological database, the plan-
ner will convert the command into a list of consecutive
states and state data. Each state represents a certain
configuration of the reactive layer. The state data
typically represents a goal-point given in global coor-
-dinates. These states and data will be sent one at the
time to the layer below (called task execution layer).
Upon receiving the message of success, the next item
on the list is conveyed. In the case of receiving the
message of failure, the plan is revised. If the planner
cannot recover from the failure, the human operator
is informed.

3.2 Task Execution Layer

The Task Execution Supervisor The Task Ez-
ecution Supervisor (TES) has the function of man-
aging the reactive control layer. It receives a state
change from the planner and translates that into a
configuration of reactive components. According to
the state, TES informs the controllers what behaviors
they should receive data from.

It also sends relevant state data to the behaviors. At

startup, TES reads a configuration file which contain.

necessary information about the behaviors, and which
behaviors that are to be associated with each state.
This file can be re-read during execution, to allow for
online re-configuration.

Localizer The localizer holds long term information
and is therefore not placed in the reactive layer. Its
function is to find out where the robot is located in the
world, and then track this position. When necessary,
relocalization will be performed. Other parts of the
system can connect and subscribe to this information.

It also translates global (world) coordinates into local
(odometric) coordinates. This is needed by behaviors
depending on goal-points. A behavior depending on
goal-points will automatically receive any correction
of its position from the localizer.

3.3 Generic Reactive Components

Resource To facilitate the sharing of sensor data,
we have created a base class named resource. A re-
source is a server, where the typical clients are behav-
iors (see below). However, a resource can also be a
client to another resource, in order to produce higher
level abstraction of data. When a resource has no
clients, it automatically enters an idle mode, thereby
reducing the load on the computer.

A client who wants to receive information from a re-
source must first establish a connection and request a
subscription scheme.

Presently, three subscription types have been imple-
mented:

e The client send requests each time it demands
new data (the pull paradigm).

e The client will be updated each time new data is
available from the sensor (the push paradigm).

e The client specifies a time interval between up-
dates (the synchronous paradigm).

There are a number of aspects to consider when de-
signing subscription schemes. One is that it’s advanta-
geous in cost to send few large chunks instead of many
small. Another is to reduce the amount of transmit-
ted data by sending a reference to a shared memory
location instead of the data itself.

Behavior The tight coupling between sensors and
actuators are realized in behaviors. A behavior can
connect to one or more resources and allow connec-
tions to made by a controller (see below). The pro-
duction of actuator data can be either time- or data-
triggered. The latter case refers to when a new set of
sensor data is pushed from a resource. The behavior

-can accept configuration data from TES. It will also,

if relevant, inform TES of success or failure. When a
behavior is data-triggered, a timeout period can be set
that states how long time it can wait between sensor
updates. If it expires, a control value, resulting in the
stopping of the actuator, will be produced.

Controller Controllers are responsible for sending
direct commands to the robot’s actuators. Upon a
change of state, the controller receives new directives
from TES on what behaviors the controller should get
data from. The controller then connects to these be-
haviors. The data received from the behaviors is fused
or arbitrated to produce a control signal to an actua-
tor. This behavior fusion mechanism has to be speci-
fied in the implementation of the controller. It could

3280

Planner F==1 HRI

Layer

Deliberate

'
'
v
'

£ .

Localizer Task Execution Supervisor

Process Manager

Task Execution
Layer

I
<<configures>>

o tmmm e

0. 1 .
Resource [~----1 Behavior -t Controller

Reactive
Layer

=3
*

'
: s
3 (]

Hardware

Figure 1: A model of the implemented architecture

for example be an arbitration or a weighted vector
summation of the proposals from the behaviors. Other
schemes use fuzzy logic or voting.

If a specified timeout period between behavior updates
expires, the actuator will be stopped. Also, upon re-
ceiving a stop command from TES; it stops the robot
and disconnects the behaviors and enters an idle mode.

3.4 Process Manager

The process manager (PM) keeps track of all processes
used in the system. It maintains an archive for this in-
formation, where each process has to register its name,
host, and address'. The name serves as a unique iden-
tification key for the process and is used as a reference
by other processes in the system. If necessary, the PM
will also start the requested system component. The
functionality is similar to the CORBA Nameserver[3).

PM has one or more executor daemons, one on each
computer involved. On demand from PM, an execu-
tor will start and kill processes used in the system.
The executors can be viewed as servants of PM, that
gives possibility to reach over all computers used in
the systems. The executor will only act upon requests
from PM, except when the communication to PM is
broken. In such an event, the system is inevitable go-
ing down and the executor will kill all the processes
it has started and return to an initial waiting state.
The executor daemon is started once at the boot of
the computer.

An overview of BERRA is shown in Fig. 1.

lport number or file descriptor

3281

3.5 Communication Issues

At initialization of a process, a port number chosen
by randomization, is registered at PM. By asking PM,
any other process can set up communication with the
process. The advantage of this scheme is that ports are
not hard-coded and will not conflict with each other.
The port number to PM is, however, given to all other
processes through the executor on each computer in
the system.

Each process in the system will have technically two
entry ports. One local for clients on the same com-
puter (using UNIX socket communication) and one
global for clients on other computers (using INET
socket communication). Judging from the address to
the server the client may, if on the same computer,
establish communication with the faster local port.

3.6 Timing and Data flow Issues

For reasons of performance and scalability, issues of
time and data flow will be briefly discussed. Synchro-
nization, and how the data flow is organized, has a
great- iinpact on a systems performance.

In order to address these issues, the following steps
have been taken wherever possible:

e Processes are data- instead of time-triggered
Data. is being pushed instead pulled
Processes are started on a when-needed basis
e Processes enter an idle state when not used

Memory consuming objects are only instantiated
in the active time period

In the reactive layer, timing is of particular impor-
tance. Though, real-time in a strict sense is not called
for, a high and stable quality of service is needed. For
obvious reasons, the most important behavior loop is
the one including avoid obstacle.

The time measured from the moment the sonar re-
source has collected sonar data, to the moment this
data has contributed to a motor command, was in the
early version of the system measured to several hun-
dreds of milliseconds with a great deal of variance. Af-
ter switching to the above outlined scheme, the time
is reduced to 14 milliseconds with very little jitter.

4 Integrated Applications

The BERRA architecture has been tested[4] with the
following reactive components: avoid obstacle, door

traverse, go point, explore, visual follow, visual find,
laser cornerdocking, mail docking, vehicle controller,
sonar resource, IR resource, laser resource and image
resource. In order to evaluate the robot system, one
of our rooms in the laboratory has been transformed
into a furnished living room. Navigation within our
office and living room is very robust. The system has
been tested in hundreds of missions and can run for
several hours without failures. The operator can com-
mand the robot to go to a number of predefined goal-
points. For example, the spoken command, Robot,
go to the dinner-table, will make the robot drive to
the dinner-table in the living room. Other more com-
plicated tasks can also be performed. For example
perform a guided tour where the robot will present
different rooms in the lab.

4.1 Example Mission

An example of the mail delivery mission is described
in detail. The robot is switched on in a room with-
out any prior knowledge except for a map of collected
landmarks. The operator orders the robot to find its
current position. The planner, receiving the order,
sends the state command ezplore to TES. TES finds
in its list that the two behaviors ezplore and avoid ob-
stacle are associated with this state. These two names
are sent to the vehicle controller who requests their
locations from PM. Since these processes do not exist
yet, the executor starts them. The behaviors will, in
the same manner, invoke necessary resources. Now,
their resources can push sensor data to the behaviors,
who will in the same manner push steering proposals
to the vehicle controller. At the same time, the plan-
ner asks the localizer to localize globally. Once the
localizer finds its location, the planner sends stop to
TES, which is relayed to the vehicle controller who is-
sues halt to the motors and disconnects the behaviors.
Since the behaviors are no longer used, they discon-
nect the resources and become idle. Then, the robot
is commanded deliver mail in the living room! The
planner plans a route from the current position to the
mailbox in the corridor. The plan is stored in a se-
quence of tasks, which is sent to TES one at the time.
The behaviors go point and avoid obstacle, takes the
robot to a position just before the door to the corri-
dor. When the go point is done, the planner is notified
and sends the state door. After the behavior door tra-
verse has brought the robot safely through the door,
go point and avoid obstacle takes it to a position close
to the mailbox in the corridor. For the final position-
ing, a laserscanner behavior is used to align the robot

to a corner. This has to be very accurate, since the ac-
tual mail pickup is done by dead reckoning. After the
picking up the mail, the robot returns and announces
the new mail.

4.2 Related Work

Arkin was one of the first to advocate the use of a
hybrid control architecture[5]. The approach was im-
plemented in the AuRA architecture, which is a rather
specific system for experimentation with behavior-
based systems. The system was specifically designed
for operation on a single platform that carries out nav-
igational tasks.

The ROMAN system([6] was designed at TU Munich
for health care services and domestic automnation.
This system is designed around a common blackboard
architecture to which a set of ’expert’ modules are
connected. Examples of experts are obstacle detec-
tion, locomotion, and planning. The system has been
successfully evaluated in a range of different settings,
using specific models for the task domain (i.e. CAD
models of buildings). -

The XAVIER system[7], developed at CMU, is com-
posed of four layers: task planning, path planning,
navigation, and reactive behaviors. The system is
built from a set of standard components for communi-
cation, planning, and behavior integration. The sys-
tem has been in almost daily use since December 1995.
It has served almost 2500 navigation requests from
the Internet with a completion rate of about 95%.
The RHINO[8] system developed at Bonn University
is similar to the XAVIER system and is used as a tour
guide in museums.

Common to all of the above system and many others
reported in the literature is that they exploit a well
defined architecture, where the different components
are tightly integrated. This benefits performance at
the cost of generality and reusability.

At Vanderbilt university, a dual-armed stationary hu-
manoid robot, ISAC, is developed. It’s meant to be
uses as robotic aid system for the service sector such
as hospitals and homes. The architecture is called
IMA[9] and has some similarities to BERRA. It’s a
two-leveled framework, the robot/environment level
and the agent/object level. The former, is a group
of coupled computing modules, similar to our reactive
layer. The latter, consists of a group of components
that describes configurations of modules, similar to
the states in TES. An important difference compared
to BERRA is that deliberation is mixed into the mod-

3282

ules and that there is no demand of tight coupling to
actuators.

The 3T Architecture[10], and similarly AAA[11], con-
sists of three layers, controller, sequencer, and delib-
erator, that group algorithms into, respectively, those
with real-time, fast, and slow responses. The architec-
ture is similar to BERRA in many ways, but differs in
for example that 3T has a centralized sequencer, while
BERRA has true concurrency between all the behav-
iors and modules in the system. This also gives the
strength to distribute the load of the system over mul-
tiple computers at module granularity. In 3T there is
no distinction between a skill that combines informa-
tion into an actual motor command and other skills.
In BERRA there is a special framework, controller, to
fuse outputs from behaviors into motor commands.

5 Conclusions and Future Work

This paper presents a hybrid deliberate/reactive ar-
chitecture for a service robot. One key goal in the
design has been to make new functionality easy to in-
tegrate. Researchers who wish to perform experiments
can for example, with little effort and knowledge of the
underlying system, construct a new behavior. The ar-
chitecture is scalable, to allow for the competence of
the robot to grow. New devices are similarly simple
to add. This is accomplished using an object-oriented
approach.

The immediate future work consists of interfacing the
system architecture with the manipulator control on
Obelix running QNX. The proposed solution(12] is to
consider the manipulator as a behavior.

Acknowledgments

This research has been sponsored by the Swedish
Foundation for Strategic Research through the Cen-
tre for Autonomous Systems.

References

[1] R. C. Arkin. Behavior-Based Robotics. The MIT
Press, Cambridge, Massachusetts, London, Eng-
land, 1998.

(2] D. C. Schmidt. The adaptive communication
environment: Object-oriented network program-
ming components for developing client/server ap-
plications. In In Proceedings of 11th and 12th Sun
Users Group Conference, 1994.

3283

[3] M. Henning and S. Vinoski. Advanced CORBA
Programming with C++, chapter 18, pages 771-
772. Addison Wesley, 1999.

[4] M. Andersson, A. Orebick, M. Lindstrém, and
H. I. Christensen. ISR: An intelligent service
robot. In Sensor Based Intelligent Robots, vol-
ume 1724 of Lecture Notes in Artificial Intelli-
gence, pages 287-310. Springer Verlag, 1999.

[5] R. C. Arkin. Towards cosmopolitan robots:, In-
telligent navigation in extended man-made envi-
ronments. Technical Report COINS 87-80, Ph.D.
Dissertation, Dep. of Computer and Information
Science, '1987.

[6] U.D. Hanebeck, C. Fischer, and G. Schmidt. Ro-
man: A mobile robotic assistant for indoor ser-
vice applications. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Sys-
tems, pages 518-525, 1997.

(7] R. G. Simmons. Structured control for au-
tonomous robots. IEEE Transactions on Robotics
and Automation, 10(1):34-43, 1994.

[8] M. Beetz, W. Burgard, A. B. Cremers, and
D. Fox. Active localization for service robot appli-
cations. In Proceedings of the International Con-
ference on Intelligent Robots and Systems, pages

175-186, 1997.

[9] R. Pack, M. Wilkes, and K. Kawamura. A soft-
ware architecture for intergrated robot develop-
ment. In IEEE Conference on Systems, Man,

“and Cybernetics, pages 3774-3779, Orlando, FL,
September 1997. ;

[10] R. P. Bonasso and D. Kortenkamp. Using a
layered control architecture to alleviate planning
with incomplete information. In AAAI Spring
Symposium on Planning with Incomplete Infor-
mation for Robot Problems, March 1996.

(11} J. R. Firby and M. Slack. Task execution: In-
terfacing to reactive skill newtworks. In AAAI
Spring Symposium on lessons learned from Imple-
mented. Architectures for Physical Agents, Stan-
ford, Calif., March 1995.

[12] L. Petersson, M. Egerstedt, and H. Christensen.
A hybrid control architecture for mobile manip-
ulation. In Proceedings of the International Con-
ferenice on Intelligent Robots and Systems, pages
1285-1291, Korea, 1999.

