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Abstract

Many of the todays visual servoing systems rely on use
of markers on the object to provide features for control.
There is thus a need for a visual system that provides
control features regardless of the appearance of the o0b-
ject. Region based tracking is a natural approach since
it does not require any special type of features.

In this paper we present two different approaches
to region based tracking: a) a multi-resolution gradi-
ent based approach (using optical flow) and b) a dis-
crete feature based search approach. We present ezx-
periments conducted with both techniques for differ-
ent types of image motions. Finally, the performance,
drawbacks and limitations of used techniques are dis-
cussed.

1 Introduction

Visual tracking is extremely useful for robotic interac-
tion in a dynamic world and is assumed to be a solved
problem. For visual servoing tasks, tracking is an ob-
vious prerequisite. However, most reported work on
visual servoing still relies on use of artificial markers
that simplifies figure-ground segmentation and asure
robustness over time. Horaud, as an example, in [8)
uses four round markers on a robotic gripper to align
the gripper with the object to be grasped. A good
overview of visual servoing and feature selection can
be found in [12].

For operation in a dynamic setting, as for example
encountered in service robotics, it is unrealistic to use
markers and engineer the environment. For that rea-
son, researchers have adopted other approaches such
as region or feature template based tracking. A feature
template is a 2D entity that represents a portion of an
image. During the tracking sequence, the object of in-
terest can be represented by one 2D template or within
a multi-template framework where the configuration
of individual templates is constrained by some model
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based information. Two different approaches to region
based tracking are considered in this paper: optical
flow based tracking and correlation based tracking.

Smith et al. [13], developed a system for detec-
tion and tracking of independently moving objects
against a non-stationary background. Motion was
estimated through tracking of image features (cor-
ners and edges) and segmentation was based on an
affine motion model. The system was tested on video
streams taken from a moving platform (a vehicle trav-
eling along the road).

Brandt, Smith and Papanikolopoulos (2] developed
a system using the sum of squared differences (SSD)
optical flow measurements as input to the visual con-
trol loop. Hager (7] developed the XVision system
that has been widely used for manipulation tasks [6].
The system gives a possibility for off-line model selec-
tion and performs well when there is good agreement
between the model and the actual motion. However,
for the case of unexpected object motions the result is
usually a loss of tracking. Therefore, there is a need
for a system that adaptively selects a motion model in
response to current image changes. As pointed out in
(9], translational (rigid) motion model gives more re-
liable results than an affine one when the inter-frame
camera motion is small. However, affine changes are
necessary to compare distant frames to allow determi-
nation of dissimilarity.

In this paper, we present the results obtained for
correlation and gradient based approaches to tracking.
Experimental results are used for evaluation of the
technique and a comparison that determine the best
operational characterisitics for each of the techniques.
In Section 2 we introduce the different motion models
and present the two implemented tracking techniques:
region and gradient based. In Section 3 we outline
the implemented system and give an overview of the
region content evaluation. Experimental results are
presented in Section 4. A short summary and conclu-
sions are given in Section 5.
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2 Image Based Motion

In general, motion estimation problem involves SSD
minimization where the minimization process is per-
formed by using a discrete search or Gauss—Newton
type of minimization. Both methods assume intensity
constancy between successive image frames:

I(x,t+1) = I(x - v(x,p),?) (1)

where x = (z,y) is spatial image position of a point,
I is the image intensity, v(x, p) denotes image veloc-
ity at that point and p is the number of parameters
of the velocity model. We can determine the motion
parameters by minimizing the residual:

€= //[I(x, t+1) - I(x — v(x,p), ) w(x)dx (2)

where the summation is performed along the feature
window (region of interest) and w(x) is a weighting
function that is, in the simplest case, w(x) = 1. In
our implementation we used a Gaussian-like function
to get rid of a window edge effects. Eq. 2 is a basic
structure for computing image motion where the func-
tion v(x) denotes the function of motion that can be
parameterized in various ways, e.g. for the affine flow
this function will depend on 6 different parameters.
To minimize the residual 2, we have to differentiate it
with respect to the unknown parameters of the motion
model v(x), see [9] for detailed derivation.

2.1 Models for Image Motion

Depending on the expected 3D motion of the object,
we can use one of the following motion models:
Translational 2D motion model:

()-(x)r o

Rigid 2D motion model:
T\ _ o _ [ cosB —sind
( v ) _Ro( Yo )+T’ Ro_(sinﬂ cosf )
4)

Affine 2D motion model:

BRI SRR

where s;, s, and 7y are scale parameters.

2.2 Correlation vs. Gradient

The use of correlation in pattern matching goes back
to the early 60°. It has usually been criticized as com-
putationally costly, prone to errors, and unable to pro-
vide a general solution for view—point invariant object
recognition [4, 3). There are several types of correlation
measures, e.g. direct correlation, mean-normalized
correlation, variance-normalized correlation and sum
of square differences (SSD). A study of comparison on
different correlation methods, performed by Burt, Yen
and Xu [3], showed that a direct correlation method
and SSD can perform nearly as well as the more com-
plicated methods. An abundance of efforts has been
devoted to using different optimization techniques for
speeding up the correlation [2, 11]. However, most
of the techniques assume only translational changes
between frames which rearly happens in a highly dy-
namic environment such as a robotic workspace.

On the other hand, a multiresolution gradient based
approach is a model based approach [1, 9, 7] where the
model fitted to the data constrains the overall struc-
ture of the estimated motion. This technique can be
used to find one [14] or multiple moving targets in
the image. It can also be applied to region tracking
assuming a constant motion over the region.

cameRAs
'

Figure 1: Experimental setup

3 Implementation

Image content or the richness of the region to be
tracked is very important for reliable tracking. One
of the common problems is the aperture problem (in
the case of a horizontal edge just a vertical compo-
nent of motion can be retrieved). For that reason,
researchers have proposed different features for track-
ing (corners, lines, junctions, etc). In general, a good
region is the one with a high spatial frequency content.
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As proposed in [9] a matrix:

( 9; gzgz{ ) (6)
929y 9y

where g; and g, are first derivatives of the im-
age, should be above noise-level and well-conditioned.
This implies that the both eigenvalues are large and
the order of difference between them should not be
large. Applying this to local windows of limited size
can result in a large number of candidate regions, es-
pecially in the case of salt-and-pepper textures. For
that purpose we also added a cornerity constraint that
gives higher priority to corners and high curvature fea-
tures. Kitchen and Rosenfeld in [10] define the corner-
ity  as follows:

. = gzzgz + gyygg - 2gmygzgy
9 +9;

(7)

The features detected this way will be used in the
matching process between distant frames to retrieve
the affine transformation for the discrete search ap-
proach. The features are matched by fast correlation
as proposed in [5].

3.1 Discrete Search Approach

We have implemented a matching-based SSD ap-
proach combined with a dynamic pyramiding tech-
nique and search optimization techniques as proposed
in [2]. Proposed optimization techniques are loop
short—~circuiting, heuristic best-place search position
and spiral search. While the mentioned system used
the original image as the input signal, we have also
tested the performance of our system by using the gra-
dient and the Laplacian of the original image. Since
gradient and Laplacian performed worse in the case
of high frequency noise, the results presented here are
obtained with the raw image data. However, gradi-
ent and Laplacian perform well in the case of low fre-
quency noise like reflectance and that should be kept
in mind during the implementation stage.

The size of the search window is in direct relation-
ship with the computational cost so it has to be prop-
erly selected. Too small search window will not be
able to capture the significant position changes, while
too large window will result in low tracking frequency.
By using dynamic pyramiding approach we are able
to perform reliable tracking during large displacement
and enhance the positioning accuracy during small dis-
placement. For more details, see [2].
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3.2 Gradient Based Approach

Minimizing the objective function 2 for the affine mo-
tion model we obtain the following equation:

$I2 ©I2z SIfy TI.I, TI.Iyxz ZLIy
SI2z? TI12zy S Iz SI1,2% T I,zy
TI2y? TSIy SLlzy IIy°

2 Sha Sgy %7 B
TIiz?  TIlizy
b3 b
8)
where a = [a1,a2,a3,a4,a5,a5]7 and
B = — [SLI, SLLz SLLy SLI, SLie SLy]"

9)
and matrix on the LHS in the Eq. 8 is symmetric. It
is straightforward to see that we are able to use the
same equation in the case of translational and rigid
motion by choosing just those raws and columns that
correspond to the model parameters.

The main difference between the two approaches is
that the discrete search approach can bee seen as the
global minimization while the gradient based approach
is a local minimization method. Therefore, the latter
one can result with local minima. In both cases we use
Kalman filter in order to predict the position of the
region of interest in the next frame, to enable selective
processing.

4 Experimental Evaluation

We wanted to test the accuracy of tracking as well
the robustness during significant background changes.
Therefore, the following experiments were conducted:

e Experiment 1. Tracking a planar patch that
undergoes translational and rigid motion as ex-
plained in Section 2.1.

o Experiment 2. Tracking a region that is com-
prised of a part of a rigid object and its back-
ground.

e Experiment 3. Tracking a region that under-
goes affine motion.

During the experiments, the size of the image window
was chosen to 50x50 pixels. The initial size of the
search region in the case of discrete search was 4 pix-
els, but if the displacements were large compared to
the search area, the pyramid level was increased. In
the case of small displacements, the pyramid level was
decreased, i.e. a motion adaptive scale selection was
used.



4.1 Experimental Setup

An external camera system was employed with a
stereo pair of color CCD cameras, as shown in Fig. 1.
In the experiments presented here, the objects being
tracked were mounted on a PUMAS560 robotic arm.
The movement of the arm was under external control.

4.2 Experimental Results

Experiment 1. A planar patch that moves in a plane
parallel to the image plane with constant velocity is
tracked. The evaluation used XVision, gradient and
search based approaches at two different velocities of
the manipulator. The results are presented in Fig. 2
and Fig. 3 .

13 pxl/s | 31 pxI/s
Error Position | Position
MSE Gradient 14.0 17.6
MSE XVision 9.6 28.2
MSE SSD 17.8 36.6
STD Gradient 5.6 5.2
STD XVision 8.8 13.3
STD SSD 4.7 19.6

Table 1: Mean squared error and standard deviation for
the whole test sequence. The results are presented in Fig. 2

13 pxl/s | 13 pxl/s | 20 pxl/s | 20 pxl/s

Error Position | Angle ! | Position Angle
MSE Grad. 9.0 -10.8 94 -10.1
MSE XV 36.1 -45.4 38.9 -44.6
MSE SSD 9.6 10.2 10.6 9.1
STD Grad. 7.2 28.8 6.0 28.2
STD XV 29.4 13.8 31.0 23.3
STD SSD 7.7 29.3 8.0 27.9

Table 2: Mean squared error and standard deviation for
the whole test sequence. The results are presented in
Fig. 3.

a) Translation: The manipulator moved so that
the motion of the patch was purely translational. The
speed in the image coordinates was 13 pixels/s (in
average) and 31 pixels/s, respectively. Fig. 2(a) il-
lustrates that all methods maintained tracking of the
target object. Changes in motion are modest and this
is thus to be expected. For the faster translational mo-
tion shown in Fig. 2(b), the XVision system has a sig-
nificant lag during the frames 30 to 65. As the motion
is reversed the lag is gradually eliminated and finally

*The angular error is presented as mean error.
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Figure 2: Translational Motion: the speed of the ma-
nipulator was (a)10cm/s (13 pxl/s) and (b)25cm/s (31
pxl/s).

the system converges to the right position when the
manipulator brought the patch back into the search
window. Mean error and standard deviation in the
position are presented in Table 1.

b) Rigid Motion: The manipulator moved so that
the patch rotated 50° from the initial position in both
directions while translating in the image plane. The
speed in image coordinates was 13 pixels/s (in aver-
age) and 20 pixels/s, respectively. The results are
presented in Fig. 3 and Table 2. After 20th frame,
XVision lost the target in both sequences. Fig. 3(b)
shows that SSD gave an incorrect response after the
36th frame for the case of increased speed.

The presented results show that both methods per-
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Figure 3: Rigid Motion: the speed of the manipulator
was (a)10cm/s (13 pxl/s) and (b)15cm/s (20 pxl/s).

form well during translational motion. However, the
increased size of the tracked region (more than 60x60)
adds heavily to the computational complexity for the
discrete search approach, which results in loss of track-
ing or poor accuracy, if we use a high resolution pyra-
mid.

For rigid motion, the increased parameter space for
the discrete search approach limits the speed of the
algorithm. We are still able to perform the tracking
for a low velocity case but the techniques fails when
the velocity is increased. We tested the algorithm with
a high velocity while decreasing the size of the region
and the algorithm performed well. We may conclude
that the gradient based approach should be used if the
size of the tracked region compared to the image size
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is large.

Experiment 2. In this experiment, the motion of
the patch was translational and the speed of the ma-
nipulator was 25cm/s or 31 pixels/s. In addition, the
patch comprised a significant amount of background
that varied over time, see Fig 4.

Fig. 5 and Ta-

Figure 4: Two example frames during tracking with
varying background.

ble 3 illustrate that all methods maintained tracking
although XVision deviated from the true position be-
tween frames 30 and 50. The discrete search method
performed well although the spatial content of the re-
gion varied significantly. The reason for this is that
during the high velocities (which was the case in this
example), the pyramid level was increased and the low
resolution image region still contained enough infor-
mation to maintain the tracking.
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Figure 5: Translational motion with varying back-
ground: the speed of manipulator was 25cm/s (31
pxl/s).

Experiment 3. By retrieving affine motion we can
detect change in scale and shear in addition to the
translational components of the motion and angle.

In the case of discrete search, we retrieve the affine
model by matching features between successive frames



Error Position
MSE Gradient 8.6
MSE XVision 29.2
MSE SSD 6.8
STD Gradient 7.7
STD XVision 7.7
STD SSD 5.3

Table 3: Mean squared error and standard deviation for
the whole test sequence. The results are presented in
Fig. 5. The velocity in the image plane was 31pxl/s.

as explained in Section 3. In that case, we need a min-
imum of 3 points but since the data are noisy, it is bet-
ter to solve an overdetermined system and use (robust)
statistics to get rid of the outliers. Some examples can
be seen in Fig. 6. In the case of the gradient based ap-
proach, rather than solving the 6x6 matrix in Eq. 8,
we first solve for translational and rotational motion
and, after that, for shear and scale parameters.

Retrieving the six parameters of the affine mo-
tion model is usually performed in a Newton-Raphson
style minimization procedure[9], which requires a few
frames before it converges to the right solution.

In the present implementation, we start with the
simplest model and the dissimilarity measure between
the first and the current image is used as a measure of
goodness of the motion model. We use cross correla-
tion as a dissimilarity measure and maximum thresh-
olds are predefined for each motion model.

The estimated parameters are used to warp the new
image. After that, the temporal filtering is performed
between the warped and the last image to update the
motion parameters. With cross correlation as the dis-
similarity measure, we are not able to detect the actual
change in the image (lost tracking, occlusion, wrong
model) so the future work will be pursued on this is-
sue.

5 Summary and Conclusion

The availability of robust methods for tracking of ob-
jects is of tremendous value for robotics in general.
It is well known that no single technique is robust to
changes in objects appearance and illumination. The
methods available have thus been specialized and the
environment has been engineered to provide the re-
quired robustness. In this paper we have analyzed two
different approaches to motion estimation/tracking in
combination with three different motion models.

Template based techniques that typically use direct
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Figure 6: First, last image and the retrieved image for
three different motion sequences.

Method ty ty | 0] sz | sy vy
Gradient | 12.2 [ 103 |0 | 1.4 | 1.3 | 0.006
XVision | 116 | 99| 01413 0
SSD 131 98 10|14 | 1.3]0.057
@
Method te ty 0] sz | sy ¥
Gradient 12 1103 [13]11]0.03
XVision {123 10.7]03|13]11]0.02
SSD 15108 (03]13|111}0.13
(b)
Method iz |ty 0| sz | sy Y
Gradient 111 0/02]09]091 0.01
XVision | 145 | 1 (0309 |08 | 0.02
SSD 13| 1]02[09]09|-0.03

c)

Table 4: Retrieved affine parameters between the first
and the last frame for the three image sequences showed
in Fig. 6

image comparison as a basis (with a metric like SSD)
are well suited for small image changes as handling
of large changes requires search of significant parame-
ters spaces (in particular for general 3D motion). The
method is easy to implement. One can expect that the
method will perform well for limited size region that
has a limited motion. To eliminate the need for au-



tomatic updating of templates it is desirable that the
illumination, spatial content, etc. are quasi-static and
the object is supposed to be planar or at least convex.
An alternative to template based matching is fitting of
a motion model to a gradient field (the motion field).
Traditionally, motion fields have been very noise sen-
sitive as minimization over small regions results in
noisy estimates. For larger regions (assuming rigid
motion of a single object) the motion estimate can be
computed using least square techniques, which should
provide robust results in the presence of limited noise.
For noisy images it might be better to use least median
square. The above considerations have been evaluated
in a real world scenario.

Template based tracking has involved both a new

template matching method and the well known XVi-
sion system. In addition, an adaptive gradient based
method has been tested. The results clearly illustrate
that the template based technique is very powerful for
small scale motion of limited complexity. For larger
motion it is fairly easy to cheat the systems. The
gradient based approach provides very robust motion
estimates and through use of a scale selection method
it can adaptively select the region of interest to ac-
commodate varying motion. The method is however
only robust for estimation over large regions as the es-
timates otherwise become very sensitive to noise.
Motion is almost never time-invariant and in most
cases it involves 3D motion (for real scenes). To ac-
commodate this a more advanced motion model has
been introduced (affine motion). The new motion
model is well suited for true 3D motion, but it overfits
data for simple rigid or translational motion. Through
adaptive model selection it is however possible to pro-
vide robust results over complex motion sequences.
Results on tracking of a robot gripper are very en-
couraging.
Overall a powerful framework for adaptive model se-
lection and real-time tracking of objects has been pre-
sented. The method enables tracking of relatively fast
moving objects in the presence of clutter, etc. Future
research will emphasize generalization of the approach
to enable tracking of multiple moving objects or track-
ing of articulated objects.
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