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Abstract

Ultrasonic sensors are still one of the most widely
used sensors in mobile robotics. A notorious problem
in the use of sonar data is the lack of good spatial
resolution, which typically results in a high uncertainty
in the resulting map of the environment. In this paper
a triangulation technique is used for filtering of data so
as to obtain an improved grid map of the environment.
The basic technique is described and it is outlined how
it can be used for identification of natural landmarks.

1 Introduction

Almost all mobile platform are equipped with ultra-
sonic sensors (sonars) that are used for local mapping
of the environment. Examples of such work is illus-
trated in [1, 2, 3, 4, 5, 6].

It is however characteristic for much of this work
that the limited spatial resolution of the sonars results
in ’fuzzy’ maps, that require a large number of sonar
readings or significant post-processing.

In this paper a filtering technique that enable ro-
bust estimation of features in the environment is pre-
sented. The technique relies on triangulation of sonar
readings recorded from different positions for estima-
tion of the location of structures in the environment.
The triangulation technique provides a fast method
for estimation of structures. When combined with a
voting method the result is an improved spatial reso-
lution and a more robust map of the environment.

Initially the physics of the sensors is briefly re-
viewed, the underlying assumptions are explained to-
gether with the terminology used. The basic technique
is then developed in section 3 and 4. Section 5 then
describes how we can apply the method when building
grid maps. Finally it is explained how the technique
can be used for robust estimation of features in sec-
tion 6.
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2 The sensor

The ultrasonic sensor transmits a short ultrasonic
pulse, and the time for return is then measured. Based
on knowledge of the transmission speed of sound in air
(=~ 330m/s) and the time of flight it is trivial to com-
pute the distance to the target that reflected the pulse.
The sound pulse does not propagate along a straight
line, but is propagated within a cone. The most fre-
quently used sonar sensor, the Polaroid environmental
transducer, has a beam width of 12° (the half beam
width). This propagation pattern must be taken into
account when the sensor is used for mapping of the
environment, as it is impossible from a single sensor
reading to determine the position of the target within
the beam.

Assumptions Throughout the rest of the paper the
following assumptions will be made: (i) when the
robot is within a small radius the same structure in
the environment will give rise to the reflection (i.e.,
only a single major target returns the signal), (ii) the
size of the target is small (i.e., it is the same point on
the target that returns the signal), (iii) the beam of
the sonar is assumed to be a conic. Only a two di-
mensional map of the environment is constructed and
it is therefore assumed that the shape of the beam is
a circular arc (of 24°).

Terminology It is assumed that the mobile plat-
form has m sonars that are distributed on the robot
at known locations. We use the following terminology
in the algorithms and the derivation of the underlying
equations.

T Estimated target data represented as T =
{(zT, Y1), e, (Zs5,Ys)}, Where (zr,yr) is the es-
timated location of the target, n; is the number
of triangulations that have been done to obtain
(zr,yr) and (z,,ys) is one of the n; + 1 sensors



positions that have been used in the triangulation
of the target.

R; Reading from sonar i represented as R; =
(xs;,Ys:,7i,Ti) where v is the direction of the
sonar with respect to the x-axis of a local coordi-
nate system, and r is the range reading.

3 Triangulation

Given the assumption that the same target will re-
turn a signal if two sonars are fired from almost the
same position, it is possible to estimate the target lo-
cation using simple triangulation. Given two sensors
readings recorded from different positions, a situation
as shown in figure 1 arise.
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Figure 1: The idea behind triangulation. The inter-
section between the arcs specify the location of the
common target.

The intersection between the arcs defined by the
readings specify the location of the common target.
This intersection can be found as the solution of the
following system of equations:

(zr— 2, + (yr —vs,)> = 11’
(zr — Isz)z + (yr — ysz)2
(zT,yr) € beam 1,2
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The solution (including false roots) can be derived as:
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In the algorithm described in this paper the first so-
lution that satisfies all three equations is chosen.

4 Hypothesis generation and verifica-
tion

The equations allow estimation of the position of
a single target. It is, however, well known that sonar
readings are noisy and it is consequently of interest
to be able to integrate the resulting estimate into a
hypothesis verification scheme.

This can easily be achieved if multiple sensors read-
ings from several positions are integrated. To achieve
this, a time window of sonar readings is maintained.
The time window of readings is shown in figure 2.
Each column contains a time instance of readings from
all m sonars. A new set of readings is only inserted
into the table when the robot has moved a certain
minimum distance (we have used 5 cm in our experi-
ments). The time window contains a total of n sam-
ples. The oldest samples are in the first column. In
practical terms the window is implemented as a circu-
lar buffer with n entries. '
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Figure 2: Temporal window for storage of sonar read-
ings. A new set of readings is only inserted into the
table when the robot has moved a certain minimum
distance.

Using the temporal window in combination with a
simple voting scheme, it is possible to generate a set
of stable target hypotheses. For each hypothesis we
store the location and the number of votes received.
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The hypothesis generation and verification is shown
in the algorithm below

fori=1-m (1)
ng = 0 (2)
Er = s, + Tin - €0S(Yin) (2)
UT = Yoy, + Tin * $i0(Yin) (2)
forj=(n-1)—=1 3)

fork=(—-2)— (1+2) (3)
if (Zr,yr) € beam of Ry; (4)
Te = \/(fT - z-'31”‘)2 + (QT - yskj)2 (4)

if | re —rij |< tol (4)
(55", Y2 = triang(Rin, Ris) (%)

if (52", y5") € beams of Rin & Ri;  (5)

Zr = 7ig (neZr + 27™) (6)

Ir = iy (negr + v (6)
ne=mns+1 (6)

if ng > 2 (7
Store T; = {(Z1, §r), nt, (Ts:1n Ysin )} )

The algorithm operates as follows: (1) For all sen-

sors, (2) initialize a new hypothesis at the centre of the
beam with count 0, (3) loop over the part of the table
that can generate stable hypotheses (example: if for
instance 7 = 0 in the algorithm, the interesting part
of the table is the shaded area in figure 2), (4) if the
hypothesis is within the beam corresponding to read-
ing Ri; and the expected range reading r. does not
differ to much from the actual range reading ry;, (5)
triangulate the measurements and check if the target
location is inside the beams of the readings R;, and
Ry;, (6) if so, update the hypothesis (recursive mean)
and increment the hypothesis count (see also figure 3),
(7) finally store the hypothesis that received multiple
votes.
It should be pointed out that the tol variable occurring
in the code is dependent on n;. It is more generous
when we have a 0-hypothesis, and then it decreases
as n; increases. The algorithm is efficient as it only
involves less than 10 operations for the check of beam
membership, and less than 100 operations for the tri-
angulation.

5 Map building

The algorithm in section 4 has been evaluated for
map generation for a robot. The mapping of the en-
vironment uses an occupancy grid [2]. In the original
formulation by Elfes, the environment is tessellated
into a Cartesian grid, where each cell contains a num-
ber between 0 and 1. Zero indicates that the grid
location is free, while a one indicates that the grid lo-
cation is occupied. Many have used this framework
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Figure 3: The idea of fusing sonar measurements
which are likely to have come from the same target. A
0-hypothesis (left) is just a way to get started and is
replaced if we can find a sonar measurement to create
a l-hypothesis (middle). A 2-hypothesis (right) can
be created from three sonar measurements by taking
the mean position from two triangulations (}—’L%'—Eﬁ).

for map generation, where a probabilistic model for
the sonars is used for updating of the map, see for
example [7, 2, 8].

We have chosen to use a modified version of the oc-
cupancy grid. The map is updated using the following
rules:

1. The map is initialized to 0.

2. When a new hypothesis T; is generated by the
algorithm in section 4, the corresponding cell
(Zr,Pr) is set to n;. The number n; is obvi-
ously a measure of the belief that the cell is oc-
cupied. If the corresponding cell already holds a
value larger than 0, the larger of the new and the
already stored value is used.

3. Cells on the line from the target (Zr,Jr) to the
sensor position (zs,, ,¥s;,) supporting the target
hypothesis are set to zero.

This technique, at least in its present state, is best
suited for static environment. Moving objects does
not accumulate enough readings to build a strong hy-
pothesis. This implies that moving objects will be
filtered out from the map, making the extraction of
static landmarks easier. Landmarks can be detected
in the map as cells holding clusters of large values.



6 FEvaluation

To evaluate the method for map construction, we
have implemented the algorithm on a Nomad 200. The
robot has 16 sonars, distributed evenly around the top
of the robot. The temporal window size is therefore
16 x n. In our experiments we used n = 7, but the
number could be changed in response to the environ-
ment being mapped. The technique was initially eval-
uated in a corridor setting. A picture of the corridor
is shown in figure 4.

We have chosen to compare the algorithm to the
widely used algorithm by Borenstein [8, 3]. The raw
sensors readings are shown in figure 5. The results
obtained with the Borenstein algorithm is shown in
figure 6. Finally the results obtained with the tech-
nique presented in this paper is shown in figure 7. In
the grid maps we have used a cell size of 5 cm.

Figure 4: Picture of the corridor. During the experi-
ment the robot followed the corridor passing five doors
(two of them were closed) until it reached the boxes on
the left side. The speed of the robot was 7 inches/sec.

From the raw sonar map it is obvious that the data
contains a fair number of out-layers, and it is difficult
to determine the precise location of the doorways. In
the results obtained with the Borenstein algorithm it
can clearly be seen that many of the outliers have been
removed, but the positions of the door posts are still
uncertain (fuzzy clusters of high confidence).

In the results with the proposed technique, it is
apparent that more outliers have been removed and
the location of the door-posts is more accurate. Each
presented integer in the map corresponds to a ns-value
for a cell in the map.

For landmark detection the high values in the map
can be used. Figure 8 shows the highest values in the
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Figure 5: Raw data from the corridor run. Each range
reading is here presented under the assumption that
the target was hit in the center of the sonar beam.
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Figure 6: Corridor grid map when applying the Boren-
stein method [8]
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Figure 7: Corridor grid map when applying the tech-
nique in section 4. Each presented number is the as-
sociated strength value n; to a specific cell.

Figure 8: The best triangulations from figure 7. They
all correspond to door posts, with the exception of the
two top ones, which correspond to a good ultra sonic
reflector within a room associated with an open door
in the corridor.
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Figure 9: View 1 of the laboratory.

Figure 10: View 2 of the laboratory.

Workstations Denning

Denning & Chair Flat folded box

Figure 11: Raw data from the laboratory run. Each
range reading is here presented under the assumption
that the target was hit in the center of the sonar beam.
The speed of the robot was 7 inches/sec.

Figure 12: Laboratory grid map when applying the
Borenstein method [§]
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Figure 13: Laboratory grid map when applying the
technique in section 4. Each presented number is the
associated strength value n; to a specific cell.
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Figure 14: The best triangulations from figure 13. An
interesting question is if we can interpret this data as
positions of natural landmarks to be used for naviga-
tion and localization?
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map, and as can be seen in this case they all corre-
spond to door posts, with the exception of the two
top ones, which correspond to a good ultra sonic re-
flector within a room associated with an open door in
the corridor.

The corridor represents a highly structured envi-
ronment that is well suited for the technique pre-
sented here. A far more unstructured environment
was also tested, our robot laboratory. In figures 9 and
10 the lab environment is shown from two different
view points. The major objects have been marked
with arrows for easier interpretation of the map pre-
sented below.

In figure 11 the raw-data from the run is shown,
together with the robot trajectory and the major ob-
jects. Figures 12 and 13 show the result of filtering the
raw-data with the Borenstein method and our tech-
nique, respectively. Both maps contain the essential
data from the raw data picture, however, the triangu-
lation map is more sparse. In figure 14 we have filtered
out the highest n;-values in the map. For instance we
note that the both Denning robots (Rob & Cop) seen
in figures 9 and 10 are quite good ultra sonic reflectors.
An appealing idea would be to store the positions of
the best ns-values and use them as natural landmarks
for localization and navigation. We are planning to
evaluate this idea by experiments in the future, and
hopefully we will have the opportunity to come back
upon this matter.

7 Summary and Conclusions

A triangulation based technique for clean-up of
sonar maps has been introduced. In combination with
a simple voting scheme it is possible to generate maps
that allow for accurate estimation of high visibility
sonar targets, like walls and doorways. The technique
has been evaluated on a Nomad platform, where good
results have been obtained. In comparison to other
techniques, an improved spatial localization has been
achieved. In present experimental work the method
is being evaluated in the context of several different
settings to allow determination of the generality and
robustness of the technique.
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