
Vision SLAM in the Measurement Subspace∗

John Folkesson, Patric Jensfelt and Henrik I. Christensen
Centre for Autonomous Systems

Royal Institute of Technology
SE-100 44 Stockholm

[johnf,patric,hic]@nada.kth.se

Abstract— In this paper we describe an approach to feature
representation for simultaneous localization and mapping,
SLAM. It is a general representation for features that ad-
dresses symmetries and constraints in the feature coordinates.
Furthermore, the representation allows for the features to
be added to the map with partial initialization. This is an
important property when using oriented vision features where
angle information can be used before their full pose is known.
The number of the dimensions for a feature can grow with
time as more information is acquired. At the same time as
the special properties of each type of feature are accounted
for, the commonalities of all map features are also exploited
to allow SLAM algorithms to be interchanged as well as
choice of sensors and features. In other words the SLAM
implementation need not be changed at all when changing
sensors and features and vice versa. Experimental results
both with vision and range data and combinations thereof
are presented.

Index Terms— Vision SLAM, Representation, Features,
Symmetries, Constraints

I. INTRODUCTION

Building maps as a robot moves through an environment
at the same time as using this partially built map to
maintain localized is known as as simultaneous localization
and mapping, SLAM. The SLAM problem is central to
autonomous mobile robotics. The representation of the
maps can take on various forms, e.g. occupancy grids [1],
raw sensor data [2] and features [3]. We are interested in
the representation of features in terms of their position,
orientation size and so on.

Some requirements of a good representation are that: i)
all the information from the measurements of the features
can be used to improve the state of the feature while
preserving invariants, ii) can represent both size and po-
sition information, iii) can represent connections between
different features such as walls that share a corner point,
iv) handles any kind of sensor and any kind of feature.

The SLAM area has progressed fast over the last few
years. Most of the work have been focused on finding
methods that address the issue of computational complexity
of SLAM. Examples are CEKF [4], FastSLAM [5] and
SEIF [6].

The laser scanners have become the standard sensors in
the field. They are ideally suited to making measurements

∗This research has been sponsored by the Swedish Foundation for
Strategic Research through the Centre for Autonomous Systems.

in SLAM. However, they can be less useful in highly
cluttered environments and they are both expensive, heavy
and draw much current. For these reasons, and others,
doing SLAM with a camera is attractive. A SLAM algo-
rithm using a simple webcam would widen the range of
applications that could use SLAM significantly compared
to when a laser scanner has to be used.

Single monocular camera images provide bearing only
information and this type of information is more difficult
to use than the bearing range combination provided by a
laser scanner. On the other hand using a camera one can
find unique characteristics of features based on the pixels
in and around the features. This might lead to more reliable
feature matching than is possible with a laser scanner.
There has been some SLAM work done with cameras.
In [7] ’landmarks’ which are not features in our sense are
used. These landmarks are rather tracked pixel regions. A
permanent map is not built, instead new features are created
upon returning to the same region. In [8] SIFT features
are used to do SLAM. Each image typically contains
hundreds of features that have to be matched to the map
also containing a large number of features.

We would like a to have features that correspond more
closely to objects in the environment.

II. THE FEATURE MODEL

As our model is similar to the SP-model [9], we will
try to make the notation similar as well to bring out the
parallels between the models. The main difference is the
choice of parameterization of the features in terms of sets
of points rather than a single transformation. This allows
for more general features.

A map feature is parameterized by a set of coordi-
nates. There are three different kinds of coordinates, 3-
dimensional, {x3D

f }, 2-dimensional, {x2D
f } and scalar co-

ordinates, {xSf }. There can be any number of coordinate
vectors depending on the type of feature. Each of the three
kinds of coordinates has its own rules for how it transforms
under translation and rotation of the observation frame.

Let s denote the sensor frame, r the robot frame and m
the map (or global) frame. A feature coordinate in the map
frame then becomes xm,f . For brevity we will sometimes
drop the m and also denote a feature measurement in the
sensor frame with o (observation), i.e. xo = xs,f . We can

write the transformation rules:

x3D
o = R3D

m,s(x
3D
m,f − x3D

m,s), (1)

x2D
o = R2D

m,s(x
2D
m,f − x2D

m,s), (2)

xSo = xSm,f , (3)

where Rm,s is the rotation matrix from the map frame
to the sensor frame. Note that the 2D rotation matrix is
not a normal rotation matrix as we define the 2D points
as extending to plus/minus infinity in the z direction. See
Appendix for more details.

We are now ready to introduce the Measurement Sub-
space, M-space, coordinates, xp. The M-space is an ab-
straction of the measured subspace of the feature space
that reflects the symmetries and constraints. Let xp denote
the M-space coordinates corresponding to the map feature
coordinates xf . Changes in xp cause changes to the feature
coordinates, xf . The actual values of the xp are never
known. What is known is the linear projection from small
changes δxf to δxp. The projection matrix is denoted by
B(xf) and the dual of it by B̃(xf). They are non-linear
functions of xf .

δxp = B(xf)δxf (4)

δxf = B̃(xf)δxp (5)

Ipp = B(xf)B̃(xf) (6)

The M-space can be of lower dimension than the space
of xf so that some parts of xf are set via some other means.
Ex: A map consisting of line segments. The distance to and
direction of the lines are typically measured and not the
tangential position of the line as it is difficult to measure
reliably. The line segment might be represented as two 2D
points, i.e. four dimensions in total. The xp would have
two dimensions though, corresponding to the distance and
angle dimensions.

We allow the M-space to grow dimensions as more in-
formation is acquired about the features. The M-space will
start out with zero dimensions and thus no coordinates. As
information is gathered about the feature, we call this dense
information, thexp will gradually grow in dimensions. An
example, looking once again at a map of line segments,
will make this clearer. With a laser scanner as sensor, the
dense information would be the scan points. Upon the first
observation there is no prior information and thus the line
segment will have a P-dimension of 0. The observation will
add some dense information about the feature but will, in
general, not be sufficient to initialize the wall in the M-
space. Another reason for not initializing a features at the
first observation is to be able to reject false measurements.
The thresholds for adding dimensions can be based on
the covariance of the point cloud in those directions, the
number of points and the length of the observed wall.
Eventually enough dense information will be collected to
set the angle and distance from the origin of the wall but

typically not the exact position of the end points along the
wall tangent vector. This will cause the dimension of xp
to grow to 2. The B matrix is then given by:

Bwall =
(

cos γ
L

sin γ
L

− cos γ
L

− sin γ
L

cos γ sin γ cos γ sin γ

)
/
√

2, (7)

where L is the length and γ is the angle between the
wall normal and the x-axis (in the m-frame). Note how
the first row of the B matrix corresponds to a rotating
motion around the center of the line, whereas the second
row corresponds to motion orthogonal to the line. As more
dense information is collected the number of rows in B
might increase to 3 or 4, adding tangent components for
the endpoints.

We project the statistical properties of the measurements
onto the M-space so that all probabilities are expressed in
terms of changes to the xp. Therefore, the world based
coordinates have no special significance to us. In contrast
to the SP-model, where re-centering is done to keep the
statistics in the xp consistent with the world based coordi-
nates.

III. MEASUREMENTS

This leads us into a discussion of the measurements
which we denote by v. These measurements along with
the predicted feature coordinates in the sensor frame, x̂o,
are used to calculate an innovation η(xo,v), with expected
value of 0. Near the prediction and measurement we have,

δη = Jηv(x̂o,v)δv + Jηo(x̂o,v)δxo. (8)

where Jηv and Jηo are Jacobians.
We now have all we need to calculate the effect of our

measurement on the predicted feature coordinates in the
sensor frame, x̂o. These depend on the sensor pose, xs and
the feature coordinates in the map frame, xf in a known
way. Similarly xs depends on the robot pose and robot to
sensor transformation and δxf depends on δxp in known
ways. Thus we can calculate the effect on η of changing
any of these coordinates. Using a first order approximation
we can write:

δxo =

(
JosJsr︸ ︷︷ ︸
robot pose

JosJss︸ ︷︷ ︸
sensor pose

Jof B̃f︸ ︷︷ ︸
features

) δxm,r
δxr,s
δxp

 .

(9)
Here Jsr and Jss are the Jacobians from the transformation
Ts = Tm,s = Tm,r ⊕ Tr,s. That is to say Ts has 6
coordinates that describe the transformation to the sensor
frame, xm,s. These can be calculated from the coordinates
of Tm,r and Tr,s. So,

Jsr =
∂xm,s
∂xm,r

, (10)

Jss =
∂xm,s
∂xr,s

. (11)

These calculations depend only on the transformations to
the sensor frame and are independent of the feature. In gen-
eral they are 6x6 matrices. One will normally be interested
in changes to a smaller number of the coordinates. For
instance, the sensor may be fixed relative to the robot or
only have pan and tilt movements. Only those components
need be calculated here. For example, assuming a fixed
transformation from robot to sensor δxr,s = 0 and (9)
would simplify.
Jos and Jof are the Jacobians from the transformation

To = Ts,f = 	Tm,s ⊕ Tm,f . This is a generic calculation
depending only on the 3 sets of coordinates, (i.e. 3D, 2D
or 0D) and the sensor transformation. It has the same form
for all types of features and measurements.

To summarize, it is only the definition of η, Jηv , Jηo
and Bf that depend on the type of feature. The rest of the
SLAM problem looks the same. This can be exploited to
write SLAM code that is separated from the details of type
of feature.

IV. THE FOUR PHASES OF SLAM

We now outline the four phases of a generic SLAM
algorithm using the M-space. The first two steps might
look slightly different depending on the specific SLAM
algorithm being used.

Prediction: Predict the sensor pose xm,s and match
all measurements to the map based on some criteria such
as Mahalanobis distance. For unmatched measurements,
create new features with M-space dimension 0.

Update: Calculate the innovation and the Jacobians
needed to perform an update as described above. These can
be used by the SLAM algorithm to calculate a change in
xp, as well as to the estimated robot pose and if needed the
covariance1. Apply the change in xp to the feature by (5).
This causes the B matrix to change but that has no effect
on the xp covariance.

Add Information: For each feature add the new dense
information. This information could be in the form of
an occupancy grid, a cloud of laser scan points or a list
of bearing only information. The dense information will
be used to adjust the feature’s coordinates orthogonal to
the M-space. Thus a wall, for example, might have its
endpoints slide tangential to the wall. These changes do
not affect the M-space, but we see from (7) that the B
matrix will change.

Extend: Try to extend the M-space if enough new
dense information was collected during the add information
phase.

Notice that part of xf can be shared between two differ-
ent features. Thus, a wall described by two 2D endpoints
could share a corner point with another wall. This then will
force the corner to always be consistent with measurements

1Some SLAM algorithms, such as Robust SLAM, do not calculate the
covariance, [10].

of both walls. The B matrices for this point on both features
would then be the identity matrix.

The issue of feature initialization is important. Initial-
ization can be handled, for example, by forming a pseudo-
measurement in the EKF case. Other SLAM methods may
not require any initialization. Alternatively, one could use
a delay in the filter between the add information and the
predict-update-extend phases. This will allow more dense
information to be collected from later measurements which
increases the chance of being able to extend the M-space
before the update.

The movements of the feature coordinates orthogonal to
the M-space need to be tracked. The endpoints of walls
and lines are extended to points consistent with the longest
observations of the features. For vision features we move
the feature to a position consistent with the last observation
of it and the M-space coordinates. As long as the bearing to
the feature does not change too much we can find it in its
predicted position in the next image. This is the only visual
tracking that was used in our experiments. All this is part
of the routine for adding information on a feature. When
enough dense information is collected in the form, for
instance, of a point cloud, the covariance of the cloud is use
to estimate the uncertainty of the new M-space coordinate
dimensions.

To avoid accumulating too much dense information on a
certain feature a mechanism for removing old information
is needed. Older information needs to be removed since
it cannot be combined reliably with newer information. In
this paper we attach a measure of the ’distance’ along the
path to each piece of dense information. Our ’distance’
metric reflects the fact that errors in rotation are both more
serious and larger than the errors in robot translation. In
practice, when the feature is a good one, the information
is used rather quickly to extend the M-space and so this
mechanism is not a sensitive part of the method.

For the example of EKF SLAM the predict step is as
usual except that the change in xf uses (5). The update
step is also more or less as usual:

δx = Wδη, (12)

W = CJT (JCJT +R)−1, (13)
δC = −WJC, (14)

R = JTηvCvvJηv, (15)

where C is the covariance, δx includes the pose, parame-
ters2, and and xf of each feature. J is (aside from its null
columns):

J = Jηo

(
Jos
(
Jsr Jss

)
Jof B̃f

)
. (16)

We emphasis that Bf is recalculated every time that xf
changes. The true mapping is non-linear so the linearization
must be done around the current state.

2Parameters that can be estimated includes for example, sensor poses,
wheel parameters and camera parameters

Expressing other probabilistic SLAM algorithms in M-
space is also straight forward. One might not have explicit
predict and update steps but one can formulate a similar
alternating sequence of adding information/extending with
estimation/matching.

V. AN EXAMPLE:
HORIZONTAL LINE FEATURES WITH A CAMERA

As an example of the utility of this approach we will
show how camera images of lines that are known to be
horizontal, (such as lines on the ceiling), can be used
to form map features with a P-dimension of 0, 1 or
3. The feature is parameterized by two 3D points, its
endpoints. This example illustrates the strength of the M-
space; it can handle constraints, the lines are horizontal,
and symmetries, the endpoints can slide tangent to the lines
with no change to xp and can use partial information,
tangent direction initialized but position not sufficiently
well known. With one observation of a horizontal line
its position is constrained to be in the plane defined by
the camera and the vectors from the camera to the line
end points. Given the that the line is horizontal we get
an estimate of its tangential direction. The position of the
line, i.e. position orthogonal to the tangent direction in the
xy-plane and the height of it line is not known. As long
as the camera moves in the same plane the position of
the line remains unknown. By moving sufficiently towards
or away from the line its position can be determined by
triangulation.

c

sre

t

Fig. 1. Image measurement of the ceiling where a horizontal line segment
has been detected. The vectors s and e point out the end points of the line.
The entities c, r and t are derived from s and e and are used to define
the innovations. The two short lines attached to the end of the horizontal
line give the directions corresponding to the B-matrix for a line with 1D
M-space.

The situation where we know the tangent but not the
position is particularly interesting. This leads to a B matrix
that looks like:

B =

(
cos γ sin γ 0 − cos γ − sin γ 0

)
L
√

2
. (17)

Here γ is the angle between the projection of the normal
to line into the xy plane and the x-axis. This B matrix, and
thus the M-space, corresponds to a rotation of the line in
the xy plane around its center. The measurements consist of
two pixels in the image corresponding to the line end points
and the focal length of the camera. These measurements
give rise to two vectors in the camera frame which point
to the end points of the detected line segments. Call these
vectors s and e (see Fig. 1).

s = (−v0, v4,−v1), and e = (−v2, v4,−v3). (18)

Here the camera axis is along the y direction and (v0, v1)
and (v2, v3) are the start and end point in image plane and
v4 is the focal length. Using the following entities (see
Fig. 1),

c =
s× e
|s× e|

, r =
e + s
|e + s|

, and t =
e− s
|e− s|

, (19)

we can define an innovation as,

η = c · t̂. (20)

Here t̂ denotes the prediction of t calculated using predic-
tions ŝ and ê of s and e.

We can then calculate Jηo(xo,v) and Jηz(xo,v) by
differentiating this innovation.

When the robot has moved enough sideways with respect
to the line, the position of the line can be initialized from
the resulting dense information using triangulation. This
leads to the B matrix,

B =

 cos γ
L

sin γ
L 0 − cos γ

L
− sin γ
L 0

cos γ sin γ 0 cos γ sin γ 0
0 0 1 0 0 1

 /
√

2.

(21)
where the second row corresponds to motion in the xy
orthogonal to the line and the third row corresponds to
changing the height of the line3.

Now the innovation can be two dimensional and for the
second component we take:

η2 = c · r̂, (22)

To summarize, given the assumption of horizontally we
are able to quickly use the tangent direction to correct the
robot orientation. As soon as the robot gets motion normal
to the line we can extend the M-space to 3D and fix the
line in space.

VI. EXPERIMENTAL RESULTS

We mounted a simple low cost web camera pointing
straight up at the ceiling on robot already equipped with a
SICK laser scanner.

The robot was driven through several rooms ending up at
our starting position. We collected odometry, laser and im-
age data. The images had size 320x240 and were collected

3Note how the third row constrains the vertical motion of the line such
that its stays horizontal

Fig. 2. Example image from the webcam with two line features and a
lamp feature detected.

at 10Hz. The images were processed using the OpenCV
library. As a first step the radial and tangential distortion
were compensated for. The camera was calibrated using
standard camera calibration software and was found to have
a focal length of about 508 pixels. Two types of features
were extracted, lines and points. Lines were extracted using
the Hough Transform. For point features we used the center
of lamps of circular shape that were detected based on
their intensity. Figure 2 shows an example image from
the webcam with two lines on the right side and a lamp
feature extracted. The height of the linear structures above
the camera varied between 1.5 and 2.5 meters. Figure 3
shows image snapshots from the environment. Especially
in the corridor where the ceiling has a fine grid there are
a number of false line readings that have to be rejected by
the matching method.

Fig. 3. Snapshots of the ceiling along the path showing the line detection
output.

The dense information was gathered by the map features
as lists of bearings for the image features. For each item on
the list there is a pair of bearing vectors in the map frame,
the xyz position of the camera along with a ’distance’ along
the path of the robot.

Since we assume the ceiling lines to be horizontal we

are able to initialize the tangent direction after only a
few observations. Initialization of the position of the line
requires that the robot move toward or away from the line
in order to get a triangulated fix on the line. We found that
for lines parallel to the corridor, this type of movement
often occurred only after traveling a considerable distance
down the corridor. It was important therefore that we could
still use the lines to adjust the robot’s heading for which
the M-space provides the means.

Fig. 4. The map obtained using only the camera images consists of
lines and lamps on the ceiling. The true map of the walls in the lab is
also shown for reference. One can see that the robot passes through the
center of the doorways and that the rectangular nature of the ceiling lines
is maintained indicating good accuracy. The lighter lines have M-space
dimension of 1 (direction only) while the darker lines have 3. The squares
are the ceiling lamps which were also used for doing SLAM.

Besides the visual features, lines were also extracted
from the SICK data using the Range Weighted Hough
Transform.

We demonstrated the principles of our feature represen-
tation using a standard Extended Kalman Filter, EKF. The
results for using ceiling lines only were very good. We
were easily able to find the same lines upon returning to
the rooms a second time and the SLAM algorithm managed
to correct the angular error in the odometry. We ended up
with less than 0.5 degree error upon returning and less than
0.5 cm in y and x. The trajectory followed by the robot can
be seen in Figure 4. The robot started/ended in the room
in the lower left corner.

We also detected the ceiling lamps as 3-D point features.
These features could then be combined with the lines giving

Fig. 5. The same map from another viewing angle. One can see that the
features are also at the correct height. The ceiling height is higher in the
rooms than in the hallway.

valuable information about movements down the corridor
where all the lines were in the same direction. The lamp
features were widely spaced and reliably detected, making
matching easy. The lamp features could be given to the
SLAM program as M-space features treated exactly the
same as the lines were. The results are shown in Figure 4
and Figure 5

Using only the 5 lamps we were able to reduce the odom-
etry error upon return by one order of magnitude. When
combined with the lines they gave some improvement in
the distances along the corridor.

Using the SICK scanner was complicated by the glass
doors of our lab and a large curved wall in a critical
position. We were nevertheless able to get results very
consistent with the camera. The final position was in this
case also correct to less than 0.5 degree and less than 0.5
cm in all directions.

Several of the walls were able to give full endpoint
information, P-dimension grew to 3 and in some cases 4.
This was when the laser scan could clearly see the end
of the wall. In addition, in two instances we were able to
constrain the endpoints from different walls to be the same
point, a corner. The criteria for merging the endpoints was
simply close proximity of the estimated points.

We were able to build consistent and correct maps using
all combinations of these three features with no need for
retuning the parameters between runs.

VII. DISCUSSION

The results of the experiments confirm the validity of
our approach. We were able to have features that only
gave valuable heading corrections to the robot while others
were able to also give distance along one axis. Some wall
features were able to reach their full M-space dimension
of 4 and corner constraints became implicit.

The EKF program and most parts of the matching were
identical for the three kinds of features. Only a small
amount of code was written to calculate the innovations

for each feature type and to collect and analyze the dense
information. Of course, one still has to extract the feature
measurements with special code for each feature but the
map representation and SLAM is standardized. One can
thus use the same SLAM code in various environments
with different sensors and features.

For our lab we found the horizontal line feature to
be very practical. These horizontal lines are rather novel
features due to the existence of both symmetries and
constraints. This then required a more sophisticated feature
representation than simpler features. Having features that
could use partial information and then expand in dimension
when more data was available also proved to be very
valuable.

We were also be able to combine laser and camera data
to make a fused map. Using more than one type of sensor
for feature detection will give higher reliability to SLAM
or simple localization. With this M-space approach adding
features and sensors is straight forward. It is able to handle
a much wider range of features than other representations.
All invariances are maintained automatically by the B
matrices.

In future work we plan to show that this representation
can be the basis for a valid comparison of different SLAM
approaches. So that the same data, same matching and
mostly the same code will be used to compare the methods.
We also would like to use more information from the cam-
era images, recording visual characteristics of the features
would help in matching the features to the measurements.

VIII. CONCLUSIONS

We were able to demonstrate our general feature rep-
resentation in the context of a robot navigation problem
in an office setting using a camera as our main sensor.
This particular situation required a representation for the
features that could grow as information was added to the
features. As well as having constraints and symmetries
maintained during the update of features.

The M-space feature representation has the advantage of
being able to represent any kind of feature in a standardized
way. Thus most of the calculations of a SLAM algorithm
will be identical. This creates a separation of the SLAM
implementation from the details of the feature representa-
tion, matching and extraction. It breaks the SLAM problem
into four independent parts one of which is solved by the
M-space representation itself.

APPENDIX

We define the 2D points as having an x and y but
extending to plus/minus infinity in the z direction. This then
implies that the rotation to a general frame will produce
a line in the new frame. We use the intersection of that
line with the transformed xy plane as the transformed
coordinates of the 2D point. This may sound strange, but
it is what is needed for the important case of a wall or

vertical pole being observed by a 2D laser scanner. If the
sensor is rotated it will still see a line on the wall but the
end points might be at different heights. R2D

m,s can then be
written terms of the Euler angles θ, φ and ψ as,

R2D
s =

(
cos θ+sin θ sinφ tanψ

cosφ
sin θ−cos θ sinφ tanψ

cosφ
− sin θ
cosψ

cos θ
cosψ

)
REFERENCES

[1] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[2] F. Lu and E. Milios, “Optimal global pose estimation for consistent
sensor data registration,” in Proc. of the IEEE International Confer-
ence on Robotics and Automation (ICRA’95), 1995, pp. 93–100.

[3] J. J. Leonard and H. F. Durrant-Whyte, Directed Sonar Sensing for
Mobile Robot Navigation. Boston: Kluwer Academic Publisher,
1992.

[4] J. E. Guivant and E. M. Nebot, “Optimization of the simultaneous
localization and map-building algorithm for real-time implementa-
tion,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3,
pp. 242–257, June 2001.

[5] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam: A
factored solution to the simultaneous localization and mapping prob-
lem,” in Proc. of the National Conference on Artificial Intelligence
(AAAI-02), Edmonton, Canada, 2002.

[6] Y. Lui and S. Thrun, “Results fo outdoor-slam using sparse extended
information filters,” in Proc. of the IEEE International Conference
on Robotics and Automation (ICRA03), vol. 1, 2003, pp. 1227–1233.

[7] D. Burschka and G. D. Hager, “V-gps(slam): Vision-based inertial
system for mobile robots,” pp. 409–415, 2004.

[8] S. Se, D. G. Lowe, and J. Little, “Mobile robot localization and
mapping with uncertainty using scale-invariant visual landmarks,”
International Journal of Robotics Research, vol. 21, no. 8, pp. 735–
58, 2002.

[9] J. A. Castellanos, J. Montiel, J. Neira, and J. D. Tardós, “The spmap:
a probabilistic framework for simultaneous localization and map
building,” IEEE Transactions on Robotics and Automation, vol. 15,
no. 5, pp. 948–952, Oct. 1999.

[10] J. Folkesson and H. I. Christensen, “Graphical slam - a self-
correcting map,” in Proc. of the IEEE International Conference on
Robotics and Automation (ICRA04), vol. 1, 2004.

