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Abstract

This paper presents an algorithm for active explo-
ration of the environment by a mobile robot when per-
forming global localization. During the localization
process interesting regions for future exploration are
selected based on already detected features and on the
hypotheses generated by the localization algorithm.
The localization process is improved by presenting it
a richer set of features. The proposed algorithm pro-
vides highly robust global localization in real world en-
vironments with very low computational effort spent
in finding exploration goal points. - Experimental re-
sults are given, demonstrating the effectiveness of the
algorithm in a number of different situations.

1 Introduction

This paper proposes an algorithm for active explo-
ration (AE) in the field of global localization. Global
localization is the problem where a robot, holding a
map of the environment, should determine its posi-
tion and orientation (pose), without prior knowledge.
The basic idea of this work is to improve the perfor-
mance of an existing passive global localization algo-
rithm (PGL) [1]. The existing PGL uses an open space
ezplore behavior for exploration, driving the robot
around randomly in the environment. This paper pro-
poses a more intelligent solution, which actively moves
the robot platform during the localization process to
collect better information for determining the pose.
With AE, localization can be achieved in more com-
plex situations and it takes less time on average to find
the correct pose. The algorithm can be applied in any
system having a feature based PGL, delivering pose
hypotheses and their respective weight (probability).

When only using the open space explore behavior
to search the environment, doors are unlikely to be
passed. The robot stays in the initial room and is not
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Figure 1: Closed loop exploration possible through the
active exploration algorithm
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able to localize when similar rooms exist in the map.
The AE selects a region of interest for exploration.
The selection is based on how much information a cer-
tain region contains and what the cost is to get there.
Neighboring rooms are also considered and a change of
room can hence be imposed. The algorithm selects the
most promising region, decides how to get there and
where to face the sensors. Once the region is explored
a new decision is taken.

An enhanced localization performance is achieved
by the indirect feedback from the AE to the PGL
through the sequence of detected features. The AE
does not insist on observing an expected feature, since
its existence and visibility are not certain. The ap-
proach of having the AE as an independent module
allows easy integration into other systems. Figure 1
shows the structure and relationships in the localiza-
tion system with AE.

The PGL is responsible for delivering a set of pose
hypotheses to the AE. The number of hypotheses in-
ternal to the PGL strongly depends on the localization
method. During the exploration, the hypotheses are
updated based on sensor data. The PGL reports that
localization has been accomplished when a single pose
hypothesis gets dominant enough based on its weight.

A set of the strongest hypotheses is communicated
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from the PGL to the AE. To evaluate these pose hy-
potheses the algorithm also needs access to the global

map. Observed features can be compared to the map,

allowing AE to select interesting exploration targets
based on not yet detected features. The algorithm’s
output is a sequence of motion commands for explor-
ing the selected target regions and features.

2 Related Work

Variations of this problem have already been ad-
dressed by different authors. Dudek et al. {2] decom-
posed the map into visibility regions defined by poly-
gons. The concept was extended to visibility skeleton
matching in [3] and [4]. Localization is not possible in
a visibility polygon unless it is unique. A precomputed
path is followed to locations that can rule out hypothe-
ses until there is only one left. This algorithm can be
unstable because it assumes two things: i) when inside
a visibility region, we can match this region to a set
of identical regions in the map; ii) each set of regions
of identical visibility polygons can be identified based
on the map. If one of these assumptions is not ful-
filled, the robot will take exploration decisions, which
are not meaningful in reality, or it will eliminate the
correct hypothesis by accident.

Burgard et al. [5] addressed the problem using a
grid based approach, achieving good results by basing
the decision of where to explore on minimization of
the expected future entropy of the hypotheses distri-
bution. Unfortunately the required processing power
is proportional to the area and to the resolution of
the grid. Our proposition is a feature-based approach,
only considering the relevant part of the map when
taking a decision. This eliminates the problem of be-
ing dependent of the map size and is thus less costly
in processing power.

3 Algorithm: Three Stages

The AE algorithm goes through three stages during
the localization process:

1. Initialization
2. Hypotheses elimination
3. Hypothesis strengthening

During the initialization stage, the robot collects in-
formation to generate a set of pose hypotheses. False
hypotheses are ruled out in the elimination stage and

finally the belief of the best hypothesis is improved in
the strengthening stage until the robot is considered
localized.

The stage of the AE is selected based on the weights
of the current pose hypothesis delivered by the PGL.
Thus, it is not forced to follow the sequence shown
above, instead it always adapts according to the cur-
rent pose hypotheses. Two thresholds are responsible
for this selection. A first threshold on the total weight
of the best hypotheses decides if enough information
has been gathered to switch to the second stage and a
second threshold decides if there is only one (but not
strong enough) hypothesis left and the algorithm goes
into the last stage.

Initialization The robot has no initial information
regarding the pose and hence the initial hypotheses
generated by the PGL are all very weak and unreliable.
In this stage the exploration is controlled by the open
space ezplore behavior previously used with the PGL.
This behavior starts driving into the direction with
the least obstacles and maintains the direction while
avoiding obstacles until the path is blocked. At this
point it restarts the procedure.

Hypotheses elimination Based on a set of hypothe-
ses the robot can direct its exploration and eliminate
false hypotheses by guiding the robot to discriminative
locations. This leads us to the central idea of our algo-
rithm. The decision is based on overlaying the differ-
ent hypotheses and matching the features. The rooms
which the robot is in, according to the hypotheses, are
mapped into layers within the same robot centered co-
ordinate system. The features are matched between
these layers, and the most promising region is selected
by a measure of information contents. When the dif-
ferences between the rooms are small, the robot needs
to change room. This decision is taken in a consistent
manner using the same algorithm.

Hypothesis strengthening Only one dominant hy-
pothesis is left, but it has not yet accumelated enough
evidence. Overlaying hypotheses are no longer possi-
ble with only one hypothesis. Instead the decisions are
based on the discovered features. These features are
collected in a map during the entire exploration. The
decision is computed as if the map containing the fea-
tures were a second hypothesis. This approach makes
it possible to use the same algorithm as in hypotheses
elimination. Regions with unseen features and not yet
visited rooms are the most interesting.
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Figure 2: The left image shows a part of the map with
two pose hypotheses [1,2]. The right image shows the
resulting overlaid maps.

4 Algorithm: Select Explore Region

The generation of a target region based on the hy-
potheses coming from the PGL is explained below us-
ing a top down approach.

Overlaying hypotheses The map consists of rooms
which are topologically connected. The features are
compared on a room by room basis to reduce the com-
putation of the matching process. In the first place
these are the rooms where the hypotheses are located.
The overlaid maps are then recursively extended with
rooms whenever a passable door exists in all layers at
a given position (Figure 2).

Matching rooms Matching the features through
all associated rooms is not done in one step but ev-
ery room is compared with every other room. When
matching features between two rooms every feature is
matched with all features of the same type in the other
room. The best match for that feature is retained
and accumulated by multiplication over all room-to-
room-matches as the general match, m,, of that fea-
ture. The matching function is an exponential func-
tion where a perfect match results in 1 and no match
at all is weighted 0. Thus the general match of a fea-
ture will also be between 0 and 1.

The computation time for making a decision de-
pends on the location and number of the hypotheses.
For n hypotheses, n(n — 1)/2 pairs of rooms need to
be matched.

Matching features: The PGL uses different feature
types. Pairs of the same feature type are matched
to each other based on their parametric description.
Rooms with a larger number of features require a sig-
nificantly higher number of .comparisons, since f fea-
tures in both rooms require f(f — 1) comparisons.

S

Figure 3: A robot observes two line features with dif-
ferent covariance on its position (1 and 2). In case 1
the lines cannot be distinguished and thus do not con-
tain information helpful to the localization process.

The feature matches will depend on the hypothesis (or
layer) because of differing odometry covariances under
which the features would be observed (see Figure 3).

A closed form covariance model [6] was implemented,
this allows to efficiently compute the predicted robot
pose covariance for any feature. The parameter dif-
ference involved in the match computation is reduced
by the corresponding standard deviation before the
match is computed.

Feature information The explore region is mainly
selected by its information content but is also guided
by time constraints. Our heuristic evaluating the in-
formation content ¢ of a single feature is defined by
the following product:

i=(1-mg)- fa-wn-g

The smaller a feature’s general match my to other fea-
tures, the more information it provides. Furthermore,
objects closer to the robot are more interesting, we
express this with the factor f; (explained below). In-
teresting features with a high probability of existence
should be selected first, thus the associated weight of
the hypothesis wy (from PGL) is also taken into ac-
count. Finally to compare the information content of
different feature types, we use a relative quality mea-
sure ¢ (see Section 5).

In a first approximation the traveling time from the
robot’s location to a specific feature is proportional to
the traveling distance. The distance d; used in our
computation has an additional component:

d; = path length+ #door passes - door distance

An artificial door distance penalizes door passing, to
prevent the robot from changing room too early. The
distance factor f; is defined as:

dy
search range

fa=1
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where the search range parameter is a constant value.
Features with a traveling distance exceeding the search
range will have a negative information value and will
not attract any attention. In the third stage, where
the detected features are treated as the second hy-
pothesis, wy, is set to zero for that second hypothesis.
This will prevent the detected features being selected
as targets by the AE algorithm.

Selecting target region The detection of a feature
cannot be guaranteed. Thus, it is better to select an
interesting region rather than a single feature. We
obtain this effect by using a Gauss filter. The filtered
information izy; of all features is computed at each
feature location.

ipie = Z

features,layers

i em(@/2r?)

where d is the distance from current feature to other
feature and r is the filter radius (in our case: 2m).
When only the filtered information is used, features
in the center of the room and clusters of small features
would get too much attention. We obtained good re-
sults when using ¢ and normalized i¢;; in equal parts.

max (1)

ifina =i +ig———
final filt max(zfm)

5 Implementation

Before describing the implementation of the AE, a
few words about the PGL. It is a version of the MCL
algorithm {7], where the probability density function
(PDF) for the robot position is represented by a set
of particles. Initially, without any knowledge, these
particles are spread uniformly over the environment.
When updating the PDF using sensor data, hypothe-
ses are formed when particles form clusters. The robot
is supposed localized when 90% of the particles are in-
side a circle of 1 m.

Matching functions The PGL is based on three
types of features: lines, doors extracted from laser
scans and sonar triangulation points (tripoints) {8].

Lines are defined by their distance d to the robot
and their orientation a. When comparing two lines we
base the match on the difference of these parameters:
Ad and Aq.

_(ladl | Jaal
match = e~ Ut %)

detect | cost™! | value q
Lines 0.95 1 0.6 0.57
Doors 0.6 0.8 1 0.48
Tripoints 0.5 0.5 0.3 {0.075

Table 1: Feature weight criteria

where c; and ¢ are selected as ¢; = 5m and ¢; = 7/2
rad.

Doors are matched using the distance between the
center points Ad and the relative orientation Aca. Where
Aq is between 0 and 7 /2.

_(ladl | 12q]
match =e (e Tes)
where we use ¢z =2 m, ¢4 = 7/2 rad.

Tripoints are compared by their relative distance
Ad.

Ad|
match =e ¢
where we use ¢s = 5 m.

The parameters c;,...,cs must be of similar order
of magnitude, as well as being selected with respect
to the PGL. The algorithm is not sensitive to these
parameters, which has been verified through off-line
experiments using real data.

Different feature types To be able to compare dif-
ferent feature types a quality measure ¢ is introduced
for each type. The quality measure takes into account
several factors; probability of detection, inverse cost
of detection and value of detected feature. All factors
are given relative values between 0 and 1, where 1 cor-
responds to high quality. The quality measure is then
given by the product of these factors, see Table 1.

Path planning In the beginning, when the weight
of the best hypotheses is very low, we have a high
risk to command the robot through a wall. Sensing
the blocking wall will improve its set of hypotheses,
but insisting on reaching a goal point behind that
wall is pointless. To reduce the risk of issuing such
commands, two heuristic limitations have been intro-
duced: i) a new decision is taken before issuing a
motion command when obstacles block the immedi-
ate path ii) the trajectory lengths is first limited to a
maximum of 20 meters and then multiplied with the
weight of the best hypothesis. A high tolerance is al-
lowed in reaching a goal point: 20% of the trajectory
length to allow for odometry drift and errors on the
hypotheses. When the end of the trajectory is reached,
a new decision is taken.
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Details in the implementation of the motion com-
mands can change from one platform to another. Mo-
tion commands should be selected to meet the require-
ments of the PGL. For example, probabilistic localiza-
tion methods may require that the robot moves be-
tween observations of the same feature to guarantee
statistical independence.

Thresholds We have two thresholds that decide the
stage of the algorithm. The first is based on the sum
of the weights of the best 10 hypotheses. When this
total weight is above 40%, the algorithm enters the
second stage and decisions are based on those hypothe-
ses. The second threshold is the minimum weight of a
pose hypothesis for being accepted. In our implemen-
tation it is set to 3%. The algorithm is not sensitive
to these thresholds, but for optimal convergence they
should be selected or computed according to the en-
vironment. They depend on the degree of symmetry
and on the total area of the building. For example in
a hospital with 400 identical rooms we will probably
never reach the 40% threshold when we start inside
one of those rooms. We propose two approaches to
solve this problem, either we lower the threshold or
we add a timeout to the algorithm.

Abandon target Obstacles or decisions based on
false hypotheses can make it impossible to reach a
computed goal point. In this case two problems need
to be solved: i) we need to detect this failure and ii)
we need to avoid repeating mistakes. We detect a fail-
ure either before the motion starts based on current
sensor inputs or later by report of a motion command
fail after a timeout. An avoid past function has been
implemented to avoid the repetition of mistakes. The
target point p;, which lead to the motion failure is
added to the set of avoid points P. Regions around
these points are made less interesting in future deci-
sions.. The information of every feature is multiplied
with the filter factor fy.

=11 (1 - e—(z%)>
peEP

where d is the distance from the feature to the center
of avoid region and r is the filter radius (in our case:
1m).

6 Experiments

In this section we will experimentally show how the
overall localization performance is improved when us-
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ing AE. We begin by illustrating the decision process
of AE through an example.

Shortly after starting the localization, when only a
few features have been detected, there will be many
weak hypotheses. Figure 5 shows the overlaid map
that the decision is based on. The correspondence in
one corner is good but poor in the others. At this
point the map is not extended through the doors be-
cause of the large difference between the layers. After
some time we are left with only two strong hypothe-
ses, corresponding to two almost identical rooms. This
was the situation introduced in Figure 2 and shown in
greater detail in Figure 7. ’

Localization is unlikely to take place in both room
R (see Figure 7) and in the connected hallway. The
map is automatically extended through the matching
doors and reveals the most relevant features two doors
away in the region around the door D. The decision
of going to the right and not to the left is based on
the distance factor. On its way to the target D, the



Figure 5: Overlay map Figure 6: Experimental situ-
with many hypotheses. ation

o
=

Figure 7: Overlay map with two hypotheses.

robot localizes upon receiving the first features from
the target room T. Using only open space ezplore in
this situation, would mean that it would be very un-
likely that the robot would leave the first room and
it would be difficult for the PGL to disambiguate the
two hypotheses.

To strengthen the claim for better performance we
now present a comparison over 5 real world experi-
ments. The time is measured until the robot believes
it is localized, allowing for a maximum of 10 minutes.
The initial position of the robot is the same in all
experiments, but the orientation is different. Figure
6 shows the experimental situation, where room 1 is
the true initial room. Rooms 1 and 2 are very sim-
ilar, the only difference being tripoints. For reliable
localization it is beneficial to leave the room. Table
2 summarizes the results and it is evident that AE
indeed greatly improves the performance.

Without AE the PGL did not provide a single suc-
cessful localization. Instead it localized twice in the
wrong room, which was not even room 2, the most
similar room. This can be avoided when relevant fea-
tures are observed based on the hypotheses. The same
test setup, with the AE running, localized correctly in
all five-experiments. In all but one case the AE guided
the robot through the door into the corridor. In the

Run PGL PGL + AE
1 | 4min 24s (0) - wrong | 7min 54s (1) - correct |
2 10min (0) - failure - | 3min 43s (1) - correct
3 10min (0) - failure | 4min 47s (1) - correct
-4 10min (0) - failure 58s (0) - correct
5 | 3min 34s (0) - wrong | 4min 32s (1) - correct

Table 2: Time to localize in room 1, number of door
traversals in brackets

Run | # Decisions | Total comp. [s] | % of exp. time
1 12 14.730 3.1%
2 4 0.954 0.4%
3 6 2.040 0.7%
4 3 0.175 0.3%
5 4 1.040 0.4%

Table 3: Computation times for experiment 1

exceptional case, run 4, the robot localized rapidly ob-
viating the need to go out of the room.

Table 3 shows the number of decisions made in
these five experiments. The total time spend for deci-
sion computation is also given in seconds and as frac-
tion of the total time of the experiment.

On our system, running on a Pentium 550MHz, ex-
periments have shown that the number of features per
feature type and room should not exceed 200 to keep
the decision taking computation below a worst case of
10 seconds.

A second series of five test was run in the so called
living room. This room is unique in size and thus good
localization performance is obtained without the AE.

As we can see from the times in Table 4, the open
space ezxplore performs better than AE. This is because
it does not lose time for taking decisions and stopping
and accelerating motions.

Run | PGL | PGL + AE
1 36s 1min 11s
2 28s 41s
3 16s 39s
4 18s 32s
5 31s 39s

Table 4: Time to localize in the living room
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7 Conclusion and Further Work

Overall we can say that the exploration using the
presented algorithm is very intuitive. A localization
process which previously was running without feed-
back, now runs in a closed loop, where the loop is
closed over the motion commands through the envi-
ronment to the sensors.

We have been able to increase the performance of
the localization process. Now even highly symmetrical
situations are handled correctly and the localization
process can converge rapidly.  The algorithm fulfills
the goal of being able to take decisions with low pro-
cessing power.

One limitation of this approach is that the com-
putation grows proportionally to the square of the
number of features. A second limitation is the greedy
single step search approach which cannot predict opti-
mal search sequences. The search horizon is truncated
because of the exploding computational burden and
because of the limited utility of long-range planning
based on noisy sensor data.

The quality measure ¢ for features should not be
constant per feature type. We expect better perfor-
mance when this factor is individually set per feature.
This could, for example take into account the proba-
bility, of a door being open or closed.

In some systems, including ours, we should take
into account that not all rooms are in the global map.
When the robot drives into such a room during ex-
ploration, that hypothesis is destroyed when the pas-
sive global localization receives features without cor-
respondence to the map. Thus, in situations where a
door does not lead to a mapped room in all hypothe-
ses, it, would be useful to save those hypotheses. Then
we can later regenerate these hypotheses as soon as
the robot is back in a mapped room. This requires a
bi-directional communication with the passive global
localization.
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