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Abstract— Standard reinforcement learning methods are
inefficient and often inadequate for learning cooperative
multi-agent tasks. For these kinds of tasks the behavior of
one agent strongly depends on dynamic interaction with other
agents, not only with the interaction with a static environment
as in standard reinforcement learning. The success of the
learning is therefore coupled to the agents’ ability to predict
the other agents’ behaviors. In this study we try to overcome
this problem by adding a few simple macro actions, actions
that are extended in time for more than one time step. The
macro actions improve the learning by making search of the
state space more effective and thereby making the behavior
more predictable for the other agent. In this study we have
considered a cooperative mating task, which is the first step
towards our aim to perform embodied evolution, where the
evolutionary selection process is an integrated part of the
task. We show, in simulation and hardware, that in the case
of learning without macro actions, the agents fail to learn a
meaningful behavior. In contrast, for the learning with macro
action the agents learn a good mating behavior in reasonable
time, in both simulation and hardware.

I. I NTRODUCTION

The goal of our research is to realize embodied evolution
of multiple adaptive agents [11]. In conventional genetic
algorithms, the process of selection and reproduction was
centralized. On the other hand, in embodied evolution, as
in the case of real animals, each individual must select
a partner to mate and perform physical intercourse of
exchanging genes. The agents should therefore learn how to
find a suitable mating partner and exchange gene material
with that partner. This means that the selection process
will be an integrated part of the task, and the fitness of
an individual will be calculated as the survival potential
of the robot, i.e. a combination of how well the agent
performs both foraging and mating. Our aim is to use
reinforcement learning (RL) [8] to solve the tasks and to
use the evolutionary process to tune the meta-aspects of the
learning, such as meta-parameters and action primitives.

The first step towards this goal is to study the learning
of mating behavior between two agents. Mating behavior
is a relatively difficult task, requiring cooperation between
two agents. Although mating is generally regarded as
an innate behavior, it actually requires adaptive sensory-
motor coordination by taking into account inter-individual

differences in the sensorimotor system and the variability
in the environment. The successful learning of mating
behavior strongly depends on the interaction with the other
agent, not only on the interaction with a static environment
as in standard RL.

Among the theoretical studies performed in the field
of multi-agent RL Littman’s [6] early study is especially
prominent. He introduced a framework, using game theory,
for 2-player zero-sum stochastic games for multi-agent RL.
This work was then extended by Huet al. [4] to general-
sum stochastic games.

The ability to predict the behavior of other agents is an
very important issue in multi-agent RL. Nagayukiet al. [7]
proposed an method for cooperative behaviors, where one
agent estimates the other agent’s actions based on an
internal model of the other agent, given by observations.

There are several interesting studies using the RoboCup
simulation environment as a testbed for multi-agent RL
methods. Asadaet al. [1] proposed a vision-based RL
method that acquires cooperative behaviors in a dynamic
environment, where the learning schedule makes the learn-
ing processes stable. Kuhlmannet al. [5] used SMDP
Sarsa(λ) with tile-coding function approximation to suc-
cessfully learn the soccer agents to play 3 vs. 2 keepaway
in a realistic environmental setting.

The main reason for the difficulty to learn cooperative
multi-agent tasks relates to fact that it is hard for an
autonomous agent to predict the actions of another au-
tonomous agent, which makes the outcome of the actions,
new states and reward signals, very uncertain. This is
especially a problem in the beginning of the learning
process when the agents have not yet learned a firm policy.
During this phase the agents perform a lot of exploration
to acquire knowledge about the task and the environment,
making their action selection very unpredictable for the
mating partner.

In this paper we present a method to overcome this
problem by adding simple macro actions according to
Sutton’s option framework [9]. The macro actions force
the agent to execute the same primitive action for more
than one time step, making the learning more stable and
the action selection more predictable for the mating partner.
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II. CYBER RODENT ROBOT

Fig. 1. The Cyber Rodent robot

This study has been performed within the Cyber Rodent
(CR) project [2] [3] [10]. The main goal of the CR
project is to study the adaptive mechanisms of artificial
agents under the same fundamental constraints as biologi-
cal agents, namely self-preservation and self-reproduction.
The Cyber Rodent, shown in Figure 1, has two main
features: the ability to exchange data and programs via
IR-communications, for self-reproduction, and to capture
and recharge from battery packs in the environment, for
self-preservation.

The CR is a two-wheel mobile robot equipped with
an omni-directional vision system, eight distance sensors,
color LEDs for visual signaling, an audio speaker and
microphones.

III. M ATING TASK, STATE SPACE, ACTIONS AND

REWARD FUNCTION

In this work, we considered the simple case where
one CR is predefined as sender (hereafter sender CR) in
the communication and one CR is predefined as receiver
(hereafter receiver CR) in the communication. The IR-port
is located in front of the CR, approximately 25 mm to
right of the center of the robot, as shown in figure 1. As
the IR-port is directed forward, the two CRs have to face
each other in a relatively small angle range for successful
mating.

The input to the learning consists of the angle and the
blob size to two kinds of color features extracted from the
vision system. The first color feature represents the LED,
green color, and is used for detection of the other agent.
The second color feature represents the red area located in
the front of the other CR (hereafter face) and is used for
positioning the agent for mating.

If the face of the other agent is visible the state is
the angle and blob size of the color feature for the face.
Otherwise if the LED of the other agent is visible the
state is the angle and blob size of the color feature for the
LED. If the agent loses all visual information no learning
is applied, instead a simple hand coded search behavior is
executed.

The state space is two-dimensional and the continuous
state values are normalized to the interval[0, 1]. The visual
angle range of the CR is approximately[−π/2, π/2] and
the angle values are linearly mapped to the normalized

interval. The relation between the blob size and the distance
to the color feature is non-linear and is mapped to the
normalized interval using an exponential function approx-
imator tuned for each robot.

The agent has 9 basic actions, pairs of left and right
wheel velocities, according to Table I. For the sender CR
action 1 is the sending action. If this action is selected,
the agent has got visual information from the face of the
mating partner and the angle is within a reasonable range,
[−π/4, π/4], the sender CR performs an attempt to mate.

TABLE I

WHEEL VELOCITIES FOR THE ACTIONS

Action Wheel velocities (mm/s) Movement

1 (0,0) stop/sending

2 (75,-75) rotate left

3 (100,200) curve right

4 (150,150) straight ahead

5 (200,100) curve left

6 (-75,75) rotate right

7 (-100,-200) back left

8 (-150,-150) straight back

9 (-200,-100) back right

IV. M ETHOD

A. Gradient Decent Sarsa(λ)-learning

The states values in our experiments are continuous
and we therefore need to approximate the value function.
We have used a normalized radial basis function (RBF)
network to approximate the action value function, which is
a linear function approximator. The action value function,
Q(s, a), for states and actiona is calculated as

Q(s, a) =
n∑

i=1

φ(i, s)θ(i, a), (1)

whereφ(i, s) is the value of theith basis function for state
s andθ(i, a) is the weight for basis functioni and action
a. The normalized RBFs are defined as

φ(i, s) =
e
− ‖s−ci‖2

2σ2
i

∑n
j=1 e

− ‖s−cj‖2
2σ2

j

, (2)

wheren is the total number of basis functions.
During the learning the weight matrix,~θ is updated

according togradient decent Sarsa(λ)-learning algorithm
[8] as

~θt+1 = ~θt + αδt~et, (3)

whereα is the learning rate.δt is the temporal difference
error defined as

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at), (4)

whereγ is the discount factor for future rewards andA is
the set of all actions.~et is the eligible traces matrix, which
is updated as

~et = γλ~et−1 + ∆~θt
Qt(st, at), (5)



whereλ is the decrease factor of the traces.
The action selection is controlled by a softmax function,

using a Boltzmann distribution. The probability to select
actiona in states is defined as

P (a|s) =
eβQt(a,s)

∑k
i=1 eβQt(ai,s)

, (6)

whereβ is the inverse temperature controlling the extent
of exploration of the environment. Ifβ is close to zero,
limβ→0, the action selection becomes random. Asβ gets
larger the actions are selected proportional to theirQ-
values. In the limit,limβ→∞, becomes greedy and the
action with the largestQ-value is selected. It is preferable
that the agent performs a lot of exploration in the beginning
of the learning and explores less when the learned policy
becomes better. Therefore, we use the following scheme
for increasingβ over time:

βt = (1 + Cβ · ntrial(s)), (7)

whereCβ is a constant controlling the speed of the increase
and ntrial(s) is the number of times the agent has visit
a certain type of state. Because we are using continuous
state values, each state space dimension is divided into
kβ,s equidistant intervals. To ensure that there always is a
small probability for exploration, we set an upper bound
to β, βmax.

B. Options

The option framework by Suttonet al. [9] allows the
agent to takemacro actions, which are extended in time,
i.e. executed for more than one time step. An option
consists of three components: a pre-designed policyπ, a
termination condition and a initiation setI, which is a
subset of the state space.

A macro action can be selected if and only ifst ∈ I.
If a macro action is chosen, primitive actions are selected
according to the pre-designed policy until the termination
condition is fulfilled. During the time a macro action is
executed, the action value functions of the primitive actions
are updated, in the usual way, each time step according
to equation 3. The weight matrix for the macro action
is updated when the macro action terminates. If a macro
action is selected at time stept and is active forT time
steps, the temporal difference errorδ, used in equation 3,
is calculated as

δ = R + γT max
i∈A

Qt(st+k, ai)−Qt(st, at), (8)

whereR is discounted cumulative reward received during
the execution of the macro action:R =

∑T
i=1 γi−1rt+i.

In the mating experiment we have used three simple
options. For all of three the initiation setI is equal to the
state space, and therefore all options can be selected in all
states. For all options a timeout, maximum number of time
steps a macro action is allowed to be executed, are applied,
which is set to 5 time steps.
• Rotate-to-target rotates the CR towards a target, LED

of face, using the action rotate left or rotate right,

depending on if the angle to the target are negative or
positive. The termination condition is that the angle
to the target is within the range[−π/10, π/10].

• Move-back moves the CR backwards, using the ac-
tion straight back. The termination condition is that
state value corresponding to blob size is greater than
0.35.

• Move-forward moves the CR forward, using the
action straight ahead. The termination condition is that
state value corresponding to blob size is less than 0.6.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experimental procedure for the reported experiments
is as follows. The CRs perform one mating trial, which
ends when the two CRs successfully mate and both receives
a +1 reward. A mating is considered successful if:

1) the sender CR executes the sending action and
thereby performs an attempt to communicate with
the receiver CR.

2) the sender CR successfully communicates with the
receiver CR.

3) the receiver CR verifies that the communication
works in both directions, by successfully communi-
cate with the sender CR.

Before a new mating trial begins the CRs perform random
movements to place the robots in different positions. If a
CR, during learning, loses all visual state information, it
receives a−1 reward and a simple pre-designed search
behavior is executed. The search behavior rotates the CR
in random direction until the robot receives visual state
information again. For the reported results the elapsed time,
for each robot, is only calculated during learning.

We have used the same parameters for all reported
experiments, shown in table II. The specific values have
been selected during a trial and error process in simulation
and hardware.

TABLE II

REINFORCEMENTLEARNING PARAMETERS

α 0.125

γ 0.95

λ 0.4

Cβ 0.05

βmax 100

kβ,s 5

no. of RBFs 18

time step 200 ms

trials 150

computational delay 240 ms

One problem of using function approximation in real
hardware experiments is that the updating of the weight
matrix takes considerable time. This gives a computational
delay, i.e. the time between when the agent receives a new
state and when the agent uses the new state information to



execute a new action. This limitation is the reason for the
relatively small number of RBFs, shown in table II.

B. Simulation Learning

2π/9 

Fig. 2. The Cyber Rodent simulation environment. The figure also shows
the angle range,[−π/9, π/9] of the IR-communication for successful
mating in the simulator.

The simulation experiments have been performed in a
MATLAB simulator developed for CR project. A snapshot
of the simulation environment is shown in figure 2. The
figure also shows the angle range of IR-communication
in the simulator,[−π/9, π/9], which is approximately the
same as for the hardware. The maximum distance of the
IR-communication is approximately 900 mm.
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Fig. 3. Learning with and without macro actions in simulation for the
sender CR. The figure shows the average reward received per trial plotted
over the learning time for 300 trials. Note that the graph for the learning
without macro actions is cut. During the first 1000 s the average reward
per trial is constantly less than -1.

Figure 3 shows the large difference in performance for
learning with and without macro actions. The figure shows
the average reward per trial for 50 simulation experiments
plotted as function of learning time for 300 trials. In
the figure only the result for the sender CR is shown,
because in simulation there was no significant difference
between the sender CR and the receiver CR, neither for
the characteristics of the reward curve nor the amount of
reward received over the learning time. For the learning
with macro actions the mating task is relatively easy and
the CRs learn a good mating behavior in approximately
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Fig. 4. The figure shows the normalized distribution of the types of
states the sender CR visited when it had visual state information of the
face of the receiver CR, in simulation. The state space is discretisized into
five equidistant intervals along the two state dimensions, i.e. for the angle
dimension:[−π/2,−3π/10,−π/10, π/10, 3π/10, π/2]. Note that the
angle range of the IR-communication is[−π/9 π/9], and therefore the
sender CR can almost only perform a successful mating attempt if it is
visiting a state type corresponding to the angle interval[−π/10 π/10].

75 trails, 700 s. The learning converges to an average
received reward per trial of approximately 0.9 and for the
learned behavior the agents need in average approximately
20 actions to successfully complete a mating attempt.

Figure 4 shows the distribution of visited types of states
in the beginning of learning, i.e. after 20 trials, and at the
end of learning, for the sender CR when the face of the
receiver CR is visible. In the early stages of the learning
process it is natural that the distribution is relatively flat,
see figures 4(c) and 4(a), as the agent is mostly relying
on random actions. Although, it is evident that early in
learning process for the learning with macro actions, see
figure 4(c), the search of the state space is guided towards
the most interesting area in the angle dimension, i.e.
[−π/10 π/10]. At end of learning, see figure 4(d), the
distribution has a single large peak, which means that the
sender CR has learned a good mating behavior, which
can quickly move the agent to a good mating position,
with respect to the position and movements of the receiver
CR. It is important to notice that the performance of the
sender CR is coupled to the behavior of the receiver CR
i.e. the ability to predict the behavior of the receiver CR.
For the learning with macro actions the search of state
space becomes more directed over time. This increases the
agents’ ability to predict the behavior of the other agent,



which increases the learning performance.
The learning without macro actions never converges to

a stable reward level, i.e. the average reward per trial
is still slowly increasing after 300 learning trials. The
matter of fact is that the agents never learn a good mating
behavior, instead the agents are trapped in a sub-optimal
behavior, where they increase the reward over time by
slowly learning not lose visual information, i.e. avoiding
receiving negative rewards. Even in late stages of the
learning process the agents are relying a lot on random
actions to successfully perform a mating attempt. This
conclusion comes from

• the fact that the average number of actions that is
needed to perform a mating in the second half of the
learning process is remaining on relatively constant
level of approximately 50 actions, even though the
average reward is increasing.

• that the distribution of visited states remains relatively
flat over learning process, see figures 4(a) and 4(b).
This means that the sender CR has not learned a policy
for moving the sender CR to a good mating position,
which corresponds to a peak in the distribution for
angles in the interval[−π/10 π/10].

• that there is two small peaks in final distribution,
see figure 4(b), corresponding to the angle intervals
[−3π/10 −π/10] and [π/10 3π/10]. Since the prob-
ability to successfully mate from these type of states
are very small, the peaks are not related to the learning
of the mating behavior.

C. Real Robot Learning

The main differences between the the hardware environ-
ment and the simulation environment is that

• the CRs lose visual state information much easier in
the hardware setting, depending on that the simulated
vision system is greatly simplified compared with the
real hardware.

• in the simulator the learning for the two agents is
synchronous, e.g. the agents execute their new actions
simultaneously. In the real hardware the learning for
the agents is of course asynchronous, as the learning
algorithm is running on two different physical robots.

• the simulated IR-communication is greatly simplified
compared with real hardware. In the simulation en-
vironment the success of the IR-communication is
deterministic, i.e. if the CRs’ IR-ports are inside the
angle and distance ranges the IR-communication al-
ways works. In the hardware the IR-communication is
somewhat stochastic, i.e. in certain situations the IR-
communication works after repeated communication
attempts.

For the learning with macro action, see figure 5(a), it took
approximately 1000 s, corresponding to 100 trials, to learn
a good mating behavior for both sender CR and receiver
CR. The reward, shown as a moving average over five
trials, reaches a relatively stable level of approximately 0.6.
The lower received reward compared with the simulated
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Fig. 5. Learning with and without macro actions in hardware for for
the sender CR and the receiver CR. The figures show the reward received
per trial as a moving average over 5 trials, plotted over the learning time.
Note the difference in scale between the figures, for both received reward
and elapsed time.

experiments is explained by the fact that the agents lose
visual information much easier in the hardware. Notable is
that the agents complete the 300 trials considerable faster
in the hardware environment and for the learned behavior
the agents need only approximately 10 actions to perform
a successful mating. The distribution of visited states show
that early in the learning process, see figure 6(c), the search
of the state space is already directed towards angles in the
interval [−π/10 π/10]. This tendency is strengthened over
the learning time, as shown in figure 6(d).

For the learning without macro actions the learning
process was stopped after 83 trials, approximately 2600
s, as it became evident that the agents were not learning
to mate. The only observable behavioral improvement was
that the agents lost visual information less often, which is
illustrated by the increased reward per trial over time in
figure 5(b). The inability to learn to mate is illustrated by
the that flat distribution of visited states, which remains al-
most identical over the whole learning time, see figures 6(a)
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Fig. 6. The figure shows the normalized distribution of the types of
states the sender CR visited when it had visual state information of the
face of the receiver CR, in hardware.

and 6(b). In accordance with the simulation experiments
the number of actions the agents need to perform a mating
reaches relatively stable level of approximately 50 actions.

The results for the hardware experiments, as seen in
figure 5 and figure 6 confirm the conclusions from the
simulation experiments. The main differences in the results
are related to differences between the hardware condition
and the simulation condition. The agents more often receive
negative rewards in the hardware, which is related to the
differences between the vision system in the simulator
and the real hardware. It is easier for the agents to
perform the mating procedure in hardware, because the
IR-communication can work successfully in both direction
for a wider angle range in the hardware. This conclusion
comes from that

• the learned behavior with macro actions in hardware
needs half the number of actions to successfully
perform a mating, compared with the behavior learned
in simulation.

• in the beginning of learning in hardware both the
learning with and without macro actions receives
relatively high rewards, see figure 5. At this stage of
learning the behavior is almost completely random
and that a nearly random behavior can achieve a
comparatively high performance indicates that it is
relatively easy to successfully perform the mating
procedure.

VI. D ISCUSSION

In this paper we have shown, in simulation and hardware,
that standard RL fails to learn a cooperative mating task.
Our proposed method is to add a few macro actions
according Sutton’s option framework, which stabilizes the
learning process. We shown that for learning with macro
actions the agents ability to learn the mating task increases
drastically. The agents obtained a good mating behavior in
reasonable time, in both simulation and hardware.

This study is the first step towards our goal to perform
embodied evolution experiments on the CR robots. The
successful learning of mating behavior, especially in the
hardware setting, is very encouraging for our future work.
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