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Abstract— Road-following for ground vehicles has been widely
studied and the solutions normally tracks line markings or a
salient road edge. Most of the presented approaches are thus
based on geometric or spectral models and does a fit of image data
to the model to ensure robustness. For operation on unmarked
roads under highly varying weather and light conditions a
strategy is presented which is based on a probabilistic generative
model. The method is evaluated on a number of test scenes and
compared to well known methods from the literature.

I. INTRODUCTION

Since the early eighties several road-following applications
have been developed by research groups, such as [1]. Long-
term evaluation of the techniques has also been performed
and reported, e.g., across USA [2], through Germany [3], and
around northern Italy [4].

The bulk of the road-following research is focused on
following marked roads at high speed. Universität der Bun-
deswehr München (UBM) has developed an advanced system
based on the 4D approach [5] [6], which extracts line markings
or road-edge information from attentional windows in multi-
focal cameras using predictive feed-forward to estimate the
layout of the road based on reference models of the scene [7]
[8]. In most of the reported approaches it is common to exploit
the longitudinal patterns of roads: line markings, wheel tracks,
and the road edge, e.g. [9], [10], [11], and [12].

For operation on unmarked roads the availability of prior
models is limited. In such environments the road might not
follow any standard model and in addition the contrast between
road and non-road might vary considerably. In such a setting
there is a need to adaptively acquire a model of the road to
enable tracking. Such work has for example been reported by
[13], [14], and [15]. In [13] and [14] an accurate probabilistic
model is used for the image variation but the associated road
model is very simple. At the other end of the spectrum a
detailed road model is used by [15] for the mapping and
estimation, but the segmentation of the road is based on an
ad-hoc approach. Consequently it is natural to try to combine
the two strategies. Through adaptive modeling of the road-
/non-road regions and fitting these to a detailed (adaptive) road
model it can be expected that a higher degree of robustness
can be achieved. The present paper consequently presents a
solution inspired by [14] and [15]. In addition the developed
method is benchmarked against [14]

II. OVERVIEW

For the research a skid-steering all-terrain vehicle is used.
The vehicle is equipped with a standard color camera and

can operate at speeds up to 1.5 m/s. A standard visual front
end model is used. For each image a number of feature
maps is computed (see Section III). For the segmentation into
road/non-road two Gaussian Mixture Mode (GMM) are used
for each feature map. Based on the feature maps a generative
model of the road layout is maintained.

The two GMM are computed using the road shape model
and the road shape model is computed using the two GMM.
To resolve this chicken-egg problem an initialization process
computes an initial value (see section V). After initialization
the road shape model and the two GMM are maintained by
performing the following processes iteratively for each feature
map:

1) Acquire a new observation from the camera.
2) Update feature map (see section III).
3) Update Gaussian models according to road shape (see

section III).
4) Update road shape according to Gaussian models (see

section IV).
5) Compute fitness of the road model (see section IV).
6) Select the road shape model with highest fitness across

all features.
7) Steer toward the road center further up the road.

If the probability of having a correct road model is lower than
0.8 two iterations in row, the robot slows down and the model
is reinitialized.

Note that the separate feature map-processes only commu-
nicate the parametric road shape model in step 5 above. Thus,
a model that is well suited for distribution is available so as
to ensure real-time operation.

III. IMAGE FEATURES

The robot camera provides color images which are decom-
posed into a set of feature maps. For each separate feature
map two GMM are computed using the road shape.

Images from the camera are resampled to be of size 61×50,
as this is adequate for the steering of the vehicle. For each
image three feature maps are computed:

1) fUV , the UV channels from a YUV color coding re-
duces the effect of illumination variations by a linear
transformation.

2) frg , red and green channels from normalized RGB
(chromaticity) reduces the effect of illumination vari-
ations; r = R/(R + G + B) and g = G/(R + G + B)

3) fint, the intensity is useful when the color contrast is
low. Intensity is defined as (R + G + B)/3.
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The feature maps are correlated and one might expect that
the overlap in distribution would pose a problem but each
of the maps are invariant to different perturbations which
increases robustness.

Two GMMs, one of the road and one of the background,
are computed from each feature map. The GMM from feature
map fq, q ∈ {uv, rg, int}, of the road is denoted {Gi

rd,q}2
i=0

and of the background {Gi
bg,q}2

i=0. Hence, we use a mixture of
three Gaussian for each segment. The size of the mixture was
determined experimentally. The GMM of the road is computed
within the road area, according to the current road shape
model, and the GMM for the background at the surrounding
area. A safety region around the road edge is omitted in the
two computations due to the uncertainty of the exact road
shape. The two GMM are computed using the EM-algorithm,
see [16] for details.

IV. ROAD SHAPE

The road shape is used to maintain the GMM and to steer
the vehicle. The shape of a normal road is simple and can
be expressed by a parametric model, such as a clothoid or a
sequence of constant curvature segments. In the present work
we have adopted a second order image based model, as it
captures both road models adequately and the relation between
the image and the surface is assumed to be a homography.

The road shape is describe by 5 parameters: Rd =
{rw, hn, k0, k1, k2}; where rw is the road width at the bottom
of the image, hn is the horizon, k0 lateral offset of the road
center, k1 yaw at bottom of the image, and k2 curvature of
the road. Hence the centerline of the road is described by the
equation:

x = k0 + k1y + k2y
2 (1)

as depicted in figure 1 and motivated in [7] and [15].

Fig. 1. Road shape

The road model can handle positive or negative curvature
but is unable to handle both at the same time; e.g., only a
right or left curve can be modeled, not an S-shaped road. The
camera is in the present system mounted at a height of 1 m
above the ground so there is a significant perspective effect,

which implies that the limitation has a very limited effect,
compared to the robustness achieved.

For the segmentation/adaptation knowledge of the horizon
is embedded in the computations. The GMM of the road
is computed below this horizon. However, the GMM of the
background is not limited by the horizon, since the road often
occupies the larger part of the area below the horizon. It has
been empirically found that the background model benefits
from this.

A. Road probability map

The road shape parameters are updated from the classifica-
tion result using the GMM of the road and the background
at each feature map. The classification result is temporarily
represented by a road probability map, where each pixel
reflects its probability of being a road pixel. The process is
similar to [14], therefore only a short summary will be given
here.

Using feature map fq, q ∈ {UV, rg, int}, the probability
that a feature vector vq = fq(x, y) belong to the ith Gaussian
model of x ∈ {rd, bg} is denoted Gi

x,q(vq). Hence the
probability that vq belong to the class x is:

p(vq|rd, q) = maxi({Gi
rd,q(vq)}2

i=0) (2)

p(vq|bg, q) = maxi({Gi
bg,q(vq)}2

i=0) (3)

Using Bayesian statistics, the probability for vq to belong
to the road statistics is therefore:

prd =
p(vq|rd)P (rd)

P (rd)p(vq|rd) + P (bg)p(vq|bg)
(4)

The priors P (rd) and P (bg) is proportional to the road size
in [14], one could improve this by using a probability map
computed from the present road model. Such a prior could
also involve prediction based on the control of the vehicle.
There is much work done on prediction but this is outside the
scope of this study and the P (rd) is therefore set to 0.5 below
the static horizon and 0 above.

Figure 2, middle image, illustrates a typical road probability
map. We observe that there are two uncertain regions on the
road, corresponding to specularities from the sun. In the next
section we will discuss a method for compensation of this
effect.

B. Illumination compensation

One common problem in road-following is specularities and
shadows. In this study we are inspired by the work of [15].

A Gaussian model of the current road layout is computed
from the intensity feature map and pixels deviating by more
than twice its variance are considered as specularities (higher
intensity) or shadows (lower intensities). The probability maps
for UV (fUV ) and chromaticity (frg) are subsequently mod-
ified to include the outlier regions by setting all such pixels
as road. Note that this is not done for RGB and intensity
images, where illumination variation is an intrinsic property
of the feature space. Figure 2 illustrates an observed image,
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Fig. 2. Upper left to lower right: an observed image, the road probability
map, and probability map after compensation for specularities.

the road probability map, and probability map after correction
for specularities and shadows

However, it is not straight forward to extract the road shape
from the road probability map. Several methods are applicable,
here we have chosen to evaluate two: Voting [14] and a new
method denoted max-edge, which is inspired by [15]. The two
methods are presented in the next two sections.

C. Voting
[14] suggests voting to extract the road shape. A similar road

probability map is used to vote for the most likely road shape;
each pixel votes for shapes which are consistent with its value.
The votes are weighted by their strength, i.e. their probability.
Thus, a pixel (x, y) votes for each model according to its
strength prd(x, y) and each model excludes it with strength
1−prd(x, y). In this implementation the road probability map
is down sampled to 30x25 pixels before voting and only pixels
under the static horizon are used. The larger size of the road
probability map is still used for extraction of GMM.

This method has a high stability due to the integration of
large regions, but this is naturally at the cost of computational
complexity. The complexity of updating the road shape is
proportional to the image area. In order to decrease the
complexity only a four parameter model is used for the road
shape, {rw, hn, k0, k1} and k2 ≡ 0 in this implementation.
Note also that [14] proposes a straight road model where only
hn and k1 are maintained.

D. Max-edge
[15] suggests a method for extracting the road edge using

the road feature statistics. The solution is rather ad-hoc and
therefore hard to qualitatively evaluate in comparison to others.
However, it is clear that the approach to update the road shape
model using edge estimates greatly reduces the complexity
compared to the method presented in the previous section.

We propose a revised method for finding road edges,
denoted max-edge. Max-edge extracts maximal edge responses
in the road probability map. A derivative of Gaussian in x- and
y-direction is applied to the road probability map, resulting in
a Dx and a Dy image. Edges on the left side of the road
are expected to have a positive Dx-value and edges on the
right side a negative. Furthermore, the actual road edges are
expected to have the largest gradient-magnitude along each
horizontal line. This leads to the following algorithm:

Compute the horizontal gradient Dx, vertical gradient Dy ,
and the gradient-magnitude image G; where

G(x, y) = Dx(x, y)2 + Dy(x, y)2.

For each horizontal line y find the strongest left-oriented
gradient-magnitude value

xl−max(y) = max
x

{G(y, x)|Dx(x, y) > 0}

and select the set

xl(y) ∈ {x|G(x, y) > 0.99 ∗ xl−max(y) and Dx(x, y) > 0}

as left edge candidates. Similarly, for each horizontal line y
find max right-oriented gradient-magnitude value

xr−max(y) = max
x

{G(y, x)|Dx(x, y) < 0}

and select the set

xr(y) ∈ {x|G(x, y) > 0.99 ∗ xr−max(y) and Dx(x, y) < 0}

as right edge candidates.
Finally, the road edge pixels votes for road shapes which

are consistent with their positions. The similarity between the
edge pixels and the road shape is measured as:

S =
hn∑

y=0




∑

x∈xl(y)

1
1 + 0.1dl(x, y)2

+
∑

x∈xr(y)

1
1 + 0.1dr(x, y)2





where dl(x, y) is the distance between a left road edge at
(x, y), x ∈ xl(y), and the corresponding edge according to
the road shape model. dr(x, y) is the corresponding measure
for the right edge. Note that 0 ≤ S ≤ 1 and S = 1 for a
perfectly extracted road shape.

The benefits of the max-edge method is that the complexity
is proportional to the road height. Therefore a five parameter
model, including curvature, is allowed in the current imple-
mentation.

E. Fitness of model

Since the vehicle is designed to move autonomously it is
of interest that it stops and reinitializes if it is uncertain of its
current road model. We will in this section describe a measure
of the fitness of a road model.

Fig. 3. Road probability map before and after thresholding

In figure 3, left most image, an example of a road probability
map is shown. The road probabilities corresponding to the true
road is on average 0.6. However, there is a clear road shape
present. The fitness value in this implementation is based on
the shape of the classification rather than the amplitudes of
probabilities. The road probabilities prd(x, y) are remapped
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according to the following mapping function, a soft decision
function:

c(x, y) =






0 if prd(x, y) < 0.4
5 ∗ (prd(x, y)− 0.4) if 0.4 ≤ prd(x, y) ≤ 0.6
1 if prd(x, y) > 0.6

(5)
The remapped probability image is subsequently post pro-

cessed with a median filter to reduce noise. The final classified
image is matched against the extracted road shape model,
illustrated in figure 3, right most image. The fitness value is
defined as the mean square difference between the road shape
model and the classified image, below the static horizon.

F. Voting versus max-edge complexity

In figure 4 the resulting road shape models using voting and
max-edge are shown. The red-lines illustrates the road shape
model up to the horizon (horizontal red line). The white-line
illustrates the suggested steering direction; from the current
position to the middle of the road half way up to the horizon
or at the tangent point, from current position to inner curve-
edge, in sharp curves, as presented by [17].

Fig. 4. Road shape extracted by voting (left) and max-edge (right)

The complexity of extracting a road shape using max-edge
is proportional to the road height and proportional to the
image size using voting. This is the reason why the voting
only extracts straight roads using a down-sampled road fitness
map. However, the max-edge method requires processing of
derivatives before the extraction of shape parameters can
start. It has been empirically found that the max-edge and
voting method has the same execution time using the given
implementations and image sizes. It should, however, be noted
that a larger image size would make the voting algorithm
slower compared to max-edge.

V. INITIALIZATION

The GMM of the road and the background are computed
using the road shape and the road shape is computed using the
GMM. We will in this section discuss how this chicken-egg
problem is resolved by an initialization process that utilizes
random search.

During the initialization the road width and the horizon are
set to a predefined value and k0 to k2 are varied. The road
shape is initialized to a “common” state, a straight road in
front of the vehicle (k0 = k1 = k2 = 0), and the GMM are
computed according to the this road shape. If the fitness of the
model is lower than 0.8 the process continues with a different

road shape, where k0–k2 are changed using a Gaussian random
variable:

kn = kn + N(0, v); (6)

where n ∈ {0, 1, 2} and N(0, v) is a normal distribution with
zero mean and v variance.

This process will explore variations similar to the “com-
mon” road shape and fewer “unusual” shapes. However, in
theory all shapes will eventually be explored and in practice
the process normally initializes within a few iterations.

VI. REFERENCE MODEL

In order to evaluate the proposed system, we have imple-
mented SCARF [14] as a reference model.

The proposed road-following system, using the voting
method, is similar to SCARF. The major differences are that
SCARF uses the RGB feature space and does not compensate
for shadows and specularities. However, the road probability
map and voting mechanism, see section IV), are the same.
Furthermore, SCARF does not compute any fitness value.
The proposed model, without illumination-compensation and
with only the RGB color space, is similar to SCARF. The
introduction of the fitness value has only the role of verifying
if the road model is accurate.

VII. EVALUATION

The proposed road-following system is evaluated on a set of
recorded image sequences. The sequences has been recorded
by the same vehicle under different seasonal and weather
conditions, posing a number of different challenges. Samples
from the sequences are shown in figure 5.

In total six sequences are used in the evaluation, the
sequences were selected based on their different properties:
The wet1 and wet2 sequences were recorded after rainfall
and the wet asphalt creates challenging patterns. The snow
sequence was recorded during the winter, the snow can be
challenging to due to the illumination compensation which
might not be able to differentiate snow and sun specularities.
The sun1 and sun2 sequences were recorded during bright sun
light causing challenging shadow effects. The dawn sequence
was recorded when the sun was low on the horizon, behind
the trees.

Five of the sequences are between 60 and 90 seconds long,
the winter scenario is only 10 seconds long. The robot was
moving at 1 m/s and was sampling 2 images per second on
average.

VIII. COMPARING VOTING, MAX-EDGE, AND SCARF
The voting, max-edge, and SCARF method was applied to

the six sequences. If the fitness was below 0.8 two iterations
in row the system reinitialized. In table 6 and 7 the number
of initializations and the mean fitness value across the six
sequences are reported.

We observe that the SCARF method clearly has problems
with the sequences. In figure 8 typical behaviors of the three
models are shown. SCARF uses the RGB color space and is
therefore sensitive to illumination variations and false volatile
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Fig. 5. Samples from the six evaluation sequences. Upper left to lower right:
wet1, wet2, snow, sun1, sun2, dawn

init wet1 wet2 snow sun1 sun2 dawn
voting 0 0 0 0 0 0

max-edge 0 1 1 0 0 0
SCARF 4 15 2 10 6 4

Fig. 6. Number of initializations
fit wet1 wet2 snow sun1 sun2 dawn

voting 0.92 0.92 0.87 0.94 0.92 0.95
max-edge 0.93 0.93 0.86 0.94 0.93 0.95

SCARF 0.86 0.84 0.83 0.85 0.89 0.88
Fig. 7. Mean fitness

patterns in the road are easily confused for the road. The voting
and max-edge methods utilize a number of competing feature
maps and it is therefore more robust. The voting method has
its limitation in curves and when the road edge is fuzzy it
can be confused. However, these errors are normally small. In
figure 9 a scene is shown where the max-edge fails and voting
succeeds. Strong edge responses are found distant from the
road edge, if the true edge is not clearly visible such noise
can corrupt the model. The voting method succeeds since it
fuses more data, the noise is normally much smaller than the
amount of true data. In figure 10 a scene is show where both
the max-edge and voting method fails. In the chromaticity
feature space the illumination compensation occasionally adds
some of the snowy surrounding to the road model, it is likely
that the non-snow patches in the surrounding confuses the two
methods. In this example the max-edge detects the fault and
stops to reinitialize, but the voting does not. However, both
recovers from the error.

IX. COMPARING FEATURE SPACES

In this section we evaluate the voting method with only
one of its three feature maps at a time. That is, the redundant
distributed processing of visual features is omitted. Note that

Fig. 8. Typical behavior of the three methods: Voting, max-edge, and SCARF

Fig. 9. A scene where the max-edge fails and voting succeeds

this is equal to SCARF apart from the feature space and that
chromaticity and UV will compensate for illumination effects.

In table 11 and 12 the number of initializations and the
mean fitness value across the six sequences are reported.

We observe than no single feature map can cope with
the full set of sequences, although some can handle specific
challenges well. For example UV can handle the wet asphalt
and snow well but has large problems with “sun1”, which has
a strong green bias. Context recognition for adaptive feature
fusion might be a strategy to achieve, but that is clearly beyond
the present work.

X. OTHER ROAD SEGMENTATION EXAMPLES

On the DARPA Grand Challenge web site there is an
image gallery [18]. We evaluated the presented methods on
six selected images of challenging unmarked roads, see figure
13 and 14.

There is no ground-truth for these images. We can observe
that the two methods chose different, but equally likely, models

Fig. 10. A scene where both the max-edge and voting method fails

init wet1 wet2 snow sun1 sun2 dawn
rg 0 1 2 3 3 0

UV 0 0 0 2 32 0
int 7 15 26 8 2 19

Fig. 11. Number of initializations for the set of different visual features
fit wet1 wet2 snow sun1 sun2 dawn
rg 0.93 0.89 0.90 0.82 0.91 0.94

UV 0.93 0.92 0.92 0.83 0.77 0.94
int 0.86 0.86 0.82 0.70 0.91 0.85

Fig. 12. Mean fitness for the set of different visual features
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Fig. 13. Snap-shots from DARPA Grand Challenge using voting

Fig. 14. Snap-shots from DARPA Grand Challenge using max-edge

of the third image (top-right). In the fourth image (bottom-
left) both methods chose the stripe between wheel-patterns;
note that the white line, the direction indicator, points to the
right since the vehicle is near the left edge according to the
road model. However, it can be concluded that both methods
generate likely road shape models from this set of challenging
unmarked roads.

XI. SUMMARY

A road-following system for unmarked roads has been
presented. The system is focused on generating an accurate
model of the road using redundant image features; namely two
different color models and one intensity model. The system
is similar to [14] and [15], which represent two different
methods for road shape extraction, here denoted as ’voting’
and ’max-edge’. The two methods for extracting road shape
have different properties: voting fuses much data using a
simple road shape model and max-edge fuses less data using
a richer road shape model.

An evaluation on a set of image sequences demonstrated
the benefits of redundancy of image features. From the result
it is clear that no single visual feature is applicable for the
variations of visual environment. The properties of the two
road shape methods was also demonstrated. The voting was
more robust than max-edge, indicating that the amount of data
fused is more important than road shape accuracy. However,

a richer road shape model have other benefits such as better
prediction abilities and steering guidance. The evaluation did
not include such properties and the difference between the two
methods was small. It is therefore left for further investigation
what qualitative effects the enhanced prediction and steering
information has to the system.
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[8] R. Gregor, M. Lützeler, M. Pellkofer, K.-H. Siedersberger, and E. Dick-
manns, “Ems-vision: A perceptual system for autonomous vehicles,”
IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 1,
pp. 48–59, 2002.

[9] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, “Toward autonomous
driving: The cmu navlab. part i: Perception,” IEEE Expert, vol. 6, no. 4,
pp. 31 – 42, August 1991.

[10] D. Pomerleau and T. Jochem, “Rapidly adapting machine vision for
automated vehicle steering,” IEEE Expert: Special Issue on Intelligent
System and their Applications, vol. 11, no. 2, pp. 19–27, April 1996.

[11] A. Broggi, M. Bertozzi, and A. Fascioli, “Architectural issues on vision-
based automatic vehicle guidance: the experience of the argo project,”
Real-Time Imaging Journal, no. 6, pp. 313–324, 2000.

[12] A. Apostoloff and A. Zelinsky, “Vision in and out of vehicles: Integrated
driver and road scene monitoring,” The International Journal of Robotics
Research, vol. 23, no. 4-5, pp. 513–538, 2004.

[13] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, “Vision and navigation
for the carnegie-mellon navlab,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 10, no. 3, pp. 362 – 373, May 1988.

[14] J. Crisman and C. Thorpe, “Scarf: A color vision system that tracks roads
and intersections,” IEEE Trans. on Robotics and Automation, vol. 9,
no. 1, pp. 49 – 58, February 1993.

[15] M. Sotelo, F. Rodriguez, L. Magdalena, L. Bergasa, and L. Boquete,
“A color vision-based lane tracking system for autonomous driving
on unmarked roads,” Autonomous Robots, vol. 16, no. 1, pp. 95–116,
January 2004.

[16] D. Forsyth and P. Ponce, Computer Vision: A Modern Approach.
Prentice Hall Professional Technical Reference, 2002.

[17] M. Land and D. Lee, “Where we look when we steer,” Nature, no. 369,
pp. 742–744, 1994.

[18] Http://www.darpa.mil/grandchallenge04/media images.htm.

- 655 -


