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ABSTRACT

Much effort hasbeendevotedto computervision methodsfor navigationand
tracking of flights, cars, robots, and autonomousvehicles. Less work has
addressethe problemsof visual navigationunderwater,which is the topic of
this paper. We presenta method for incorporatingthe uncertainty of the
matchingbetweera modelof the seafloor andmeasurementgptainedwith a
multibeamsonar,in a Kalmanfilter. The techniqueis basedon using second
ordercentralisednomentsn aregionof interestto estimatethe measurement
uncertainty/error.This error is then used to calculate the measurement
covariance matrix in the Kalman filter. We provide experimental resaltsal
datato show that this methodis superiorto the standardKalman filter in
which the measuremeneérror covariancematrix typically is set constantor
varies deterministically.

1. Introduction

Navigationhasalwaysbeenan interestingareafor researcherskRecently,there hasbeen
considerable interest in using computer visiom@vigationof flights [4,7], cars[12], and
autonomousland vehicles and robots [3,6,10]. For navigation in an underwater
environmentJesswork hasbeenreported.Evenif the demandfor suchsystemss high,
the low visibility in water leads to very specialised systems restricted to operate @ase to
objector nearthe seafloor [9]. An exampleof sucha systemis describedn [1], which
computes the relative movement of the AUV
(AutonomousUnderwaterVehicle) by extractingand
matching features in successivepictures. Another
exampleis describedin [5], wherean AUV follows
pipelinesbasedon visual information. To overcome
the problemsof low visibility, we are working on a
systembasedon a multibeamsonarwhich is directed
toward the sea floor. A multibeam sonar may be
thought ofasN sonarsconnectedn a one-dimensional
arraywith a fixed anglebetweerthe beamslinsteadof
returning one depth measurement, rindtibeamsonar
returnsa vector containingN depthmeasurements\
pictureof an AUV usinga multibeamsonaris showed
in figure 1.1. For detailsof the underlyingmathematics

and beamforming techniqueghe readeris referredto
Figure 1.1 Multibeam sonar [11] .




In navigationtwo approachesnay be used: Relative navigationor absolutenavigation,
where the latter approachuseslandmarksto remove incrementalerrors. When using
multibeamsonars,candidatedor landmarksare profiles of the seafloor. Obviously this

will not give a unique global position for every measuremenindependentof the
underlyingseafloor structure putif the seafloor hasa minimum of variation,we showin
section5 that the information of the seafloor profile combinedwith a predict-match-
update schema implemented with a Kalman filter, give sufficient information for navigation
purposes.

A crucial concern in the design of the system is how to incorporate information in the
prediction filter. In vision basednavigation systems,the measurementsre normally
deducedrom a matchbetweenthe sensordataandthe underlyingmodeldata.However,
additionalinformationexistsfrom the matchingprocesswvhich canbe usedto estimatethe
measurementoise.Basedon this idea,we showin section4 how the error betweenthe
dataandthe modelin a regionof interesteasily can be usedto updatethe measurement
covariancematrix to dynamicallyrepresenthe actualuncertaintyof the measuremeni\Ve
showin section5 exampleswith real datawherethis informationis essentiafor the filter
to return to the correct track.

2. Probabilistic estimation - The Kalman filter

The Kalmanfilter is a leastsquareestimationtechniqueusing a Bayesianapproach.The
filter is usedto track the stateof stochasticdynamicsystemsbeing observedwith noisy
sensorsEssentially,the filter is basedon three separateprobabilistic models. The first
model describes the evolution over (discrete) time by the equation

x(k+1)=F(K)x(k) + G(K)u(k) + v(k) (2.1)

wherex(k) is the stateat time k, u(k) is the controlledinput signal enteringthe system
with gainmatrix G, andv(k) is a sequenc®f zero-mearwhite Gaussiarprocessnoise
with covariance matriQ(k). F is the transition matrix of the system.

The secondmodeldescribeghe measurementindrelatesthe measurementector z
to the current state through a measurement midtrix

2(k) = H(K)x(K) +w(k) (2.2)

Here w(k) is assumedto be a sequenceof zero-meanwhite Gaussiannoise with
covariance

E[w(ow’ ()] = R(K)3s (2:3)

where &4 is the Kroneckerdelta. The third model describesthe knowledgeabout the
systemstateand its covariancebeforethe first measuremenis taken.Usually the initial

systemstateis assumedo be a normally distributedrandomvariablewith a known mean
and a given covariance matrix:



x(0) ~N[X(0/0),P(q 0] (2.4)

whereP is the associatedonditionalstateerror covariancematrix andthe vector X(a|b)
is the conditional state estimate.

So far we have only set up the equationsfor the modelsof a system.The one step
prediction stage can be calculated using the formula

X(k +1k) = F(k)X(k|k) +G(K)u(k) (2.5)
wherethe predictionis calculatedby applyingthe transitionmatrix F(k) to the previous

stateestimateand addingthe control input. The systemstateestimatemay be calculated
by the formula

(k+1]k +1) = F(K)X(K[K) +W (k +D[z(k +3 ~H(k +I%(k +1K)] (2.6)

This shows that the new estimate, using the measurementz(k+1), is formed by
extrapolatingthe estimatedvector, and then adding a correctionterm. This correction
term, called the innovation (or measurementesidual), is formed by subtractingthe
predictedmeasurementector from the new observationvector z(k+1). The gain matrix
W containsinformationof how muchthe innovationshouldaffectthe new stateestimate.
In a Kalmanfilter, the gainis relatedrecursivelyto the covariancematrix P(k+1|k) by the
formula

W(k+1) =P(k +JK)HT (k +DS(k +9) (2.7)
whereS™(k +1) is given by

S(k+1) =H(k +DP(k +JK)HT (k +1 +R(k +2 (2.8)
The state prediction covariance matrix is

P(k+1k) = F(k)P(k|K)FT (k) +Q(K) (2.9)
and the updated state covariance matrix is

P(k+1k +1) =P(k +3k) “W (K +DS(k +IW T (k +3 (2.10)

The area where the matching algorithm search for a match between theantitieldata
is called the validation gate [2]. The validation gateV is relatedto the inverseof the
prediction covariance matrix S and the innovation. It describesan ellipse in the



measuremenspaceand is the minimum volume that containsa given probability mass
under the Gaussian assumption. The validation gate is defined as:
Viea(l) ={z[z-2(k +DIK)] S (k +D[z —2(k +D|K)] <!} (2.11)

={zvT(k+DS (k +Dv(k +1) <I} (2.12)

Theinnovationv that definesthe validationgateis chi-squaredistributedwith numberof
degrees of freedom equal to the dimension of the measurementa/j&jtdNith dim(z) =
2 setting = 4 results in 86% of the probability mass inside the validation gate.

For a deeper description of the Kalman filter refer to [2].

3. System description
Our system may be described by the discrete time, linear system equation

X(k+1) =Fx(k) +v(k) (3.1)
with the measurement equation
z(k) = Hx(k) +w(k) (3.2)

asthe matricesF andH aretime invariant,andthereis no knowninputto the system(see
equation 2.1 and 2.2). The system state vector contains the position in Cartesian
coordinates together with the velocities:

x(K)=[x(K) x(k) y(k) WK (3.3)

From the multibeam sonar and the matching process we calculate the measured position:

2(K) =[xn(k)  ym(K)]" (3.4)

The state transition matrik for our constant velocity system is

(3.5)
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whereT is the sampling period. The measurement métns
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Becausewe operatewith a global coordinatesystem,it is reasonabléo assumehat the
axis directionsare symmetric. This is also true for the velocity. The systemcovariance
matrix is then

62 0 0 O
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4. Estimation of the measurement covariance matrix
The termw(k) represents measurement namsiatedto the sensorjncludingany matching
uncertaintyand lack of confidencein a specific measuremenilhe covariancematrix for
the measurementoisethus containscontributionsboth from sensorynoiseand from the
matchingprocesslf theterrainhasmuchstructurejt is likely thata uniqueandconfident
match can be determined,but in flat terrain the uncertaintyin the matching process
increasescaused by many possible matches.In a hillside, one typically will have
considerableincertaintyin the positionin onedirectionandlow uncertainty in the other
direction. As a consequenceif is necessarnto accountfor such uncertaintiesin the
covariancematrix for the measuremengérror. To accomplishthis the matchingstrength
matrix for the validation gate is analysed.

Define the areaW to be the smallestrectangularareawhich containsthe validation

gateV. For eachlocationin W, a measuremenstrength fv(x,y) akin to the ideaof a
correlation type of matching is computed. There are three restrictiovgxqy):

fv(x,y) =0 if (x,y)0V (4.1)
fv(x,y)=20 O(x,yd V (4.2)
Z fv(x,y) =1 (4.3)

From equation 4.2 and 4.3 we see thafx,y) has the properties of a distribution.

If the position correspondingto the best match (x.,yc) is used as the reference

position, it is possibleto calculatecentralisedstatisticalmomentsfor the areaW. If first
andsecondordermomentsare calculatedjnformationthat specifiesthe confidencen the



matchis available. Thesemomentsprovide an estimateof the covariancematrix p(k)
associated with the match:

H20(k) H11(k)

(k) = ﬁIlll(k) Ho2(K)

(4.4)

The secondorder statisticis calculatedusing the generalformula for central statistical
moments:

Mpg=) Y M Y)(X=%)(y = ¥,)* (4.5)

From equation4.5 we seethat small valueson the momentswill indicatea very certain
match, while high valueson the momentscorrespondto the situation where multiple
strong matches are present in the validation gate.

We now combinethe matrix p(k) with the sensomoisecovariancematrix to generatehe
new measurement covariance maRik):

_ _ Ar20(k) paa(k) N O
RE) =g +N = ﬁIlll(k) Ho2(K) ﬁ+ %o Ny % (4.6)

whereppq arethe secondordercentralisednomentsandny andny arethe variancesdue
to noise in the sensors.Note that this matrix is time varying, and not constantor
deterministicasin the StandardKalmanfilter, asit at everytime stepwill dependon the
results from the actual matching process.

From theaboveequationst is evidentthatthe measuremertovariancenatrix R will

dependon the matching function fv(x,y). This is a desirableproperty, becausethe

matchingfunction fv(x,y) definesthe matchingstrengthbetweerthe different matchesn
the validation region, and therefore contains information about the measurement
uncertainty.

In Kalman filtering,the measurememoiseis assumedo be modelledasa zero-mean
white noise Gaussiansequence.Analyses have beencarried out that addressthe
consequencesf wrong assumptionsn the processand measuremermntoise,andwe refer
to [8] for details.We are currently working on a post analysisof the behaviourof the
measurementovariance matrix R in equation4.6, and preliminary resultsare in a
reasonable accordance with the assumptions.

5. Experimental results

The experimentsuse data recordedin a 1200n% areafrom the cost outside Alesund
(westernpartof Norway).A 3D plot of thearea is shownin figure 5.1. Figure5.2 shows
the two test tracks superimposed on a contour map of the area.
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Figure 5.1 3D terrain map Figure 5.2 Contour map

The depth varies between 55 andn7éters andthe areacontainsbothflat andundulating
parts. The terrain model was generatedfrom west-eastscan lines recorded with
approximately25% overlap.For measuringthe correctpositionsa differential GPSwas
used,which underthe recordingconditionshad an accuracyof approximately4.0 meter.
The multibeam sonar was &M 100from Simradwith 27 beamsand3.75 betweereach
beam.For a depthof 60 meterthis givesa viewing areaof 105 meterbetweenthe outer
beams. Both the model and the measurement data are recorded from a surface ship.

Figure5.3 showsthe errorin x andy positionfor the lower trackin figure 5.2. This
track consistsof 250 measurementlone in 149 seconds,with a total distance of
approximately 400 meters.
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Figure 5.3. Error in x-solid and y. Figure 5.4R (0,0)-solid andR(1,1)

At time step 110, the algorithm enters the flat area in front of the hillside, and getsman
in x andy position. Whenreachingthe hillside at time step 135, the algorithm entersa
wrong valley (seen dhe 3D mapin figure 5.1 at position(340,140)) resultingin anerror
of 52 and38 meterin the x andy positionrespectivelyLocally this valley is now the best
possiblechoice,but looking at the measurementovariancematrix in figure 5.4, we see
that the matchingresultsin high measuremenaincertainty,and the algorithmis able to
return to the correct track.

To showthe improvementover the standardKalmanfilter with fixed measurement
covariancematrix R, we run both filters on the highertrack (markedwith a triangle in



figure 5.2). This track consistsof 160 measurementsvith many "traps" where the
matchingalgorithmeasilyheadsin a wrong direction. The filters whereequalexceptfor
the measuremertovariancematricesR. Figure5.5and5.6 showthe errorin x andy for
both filters. As seen in tHegures,the standardalmanfilter is not ableto returnfrom the
error, and loosesthe track. We havetried the standardfilter with many different R
matrices, but we have not been able to find valueR fohere the filter is able to follow
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Fig. 5.5 Error in x-solid and YR varying.  Fig. 5.6 Error in x-solid and YR constant.

the tracks.

Oneexplanationis immediate:lf R is too large, the validation gateis forced large.
Besidesincreasingthe computationaload, this causeghe matchingalgorithmto search
for a matchin a largearea,which easilyresultsin a temporarybettersolution. Especially
in "sine shaped" areas this has a fatal consequence. Rangealsodecreas¢he system
gain W, which in turn will suppresghe measurementdf R is chosentoo small, the
standardKalmanfilter fails becausehe filter then lacks the ability to returnfrom local
errors. Using th&® matrix in equation 4.6 the validation gate will vary according to the
uncertainty between the sensor measurement and the underlying terrain as seen in figure
5.7, andthefilter is ableto handlemoredifficult situationswithout loosingthe track. An
example of the gate error function used to computeshown in figure 5.8.
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6. Conclusion

We have developeda techniquethat easily incorporatesuncertaintyin the matching
processwhen using a Kalmanfilter for navigationor tracking purposes.The technique
usessecondorder momentsin the validation gate to estimatethe measuremenerror,
resulting in a measurementovariancematrix varying dynamically accordingto the
underlyingmodeland data.Experimentdrom datarecordedat the westcostof Norway
indicateimportantimprovementssomparedo a Kalmanfilter which usesa deterministic
measurementovariancematrix. The improvementsare mainly a consequencef usingall

accessibleinformation about the match betweenmodel and data to give a correct
assessment of the measurement error.

REFERENCES

[1]
[2]
[3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]

[11]
[12]

F. Aguirre, J. M. Boucher,J.J.Jack,"Underwater navigation by video sequence
analysis’, Proc. 10th ICPR, Atlanitc City, USA, 1990.

Y. Bar-Shalom,T. E. Fortmann."Tracking and Data Association”, Academic
Press,1988.

[. J. Cox, "Blanche:Position Estimation for an Autonomous Robot Vehicle",

Autonomous Robot Vehicles, Springer-Verlag, 1990.

E. Hagen,E. Heyerdahl,"Navigation by optical flow", Proc.11th ICPR, Hague,
Netherlands,1992.

J. O. Hallset, A Vision System for an Autonomous Underwater Vehicle", Proc.11th
ICPR, Hague, Netherlands,1992.

A. Matthew et al, "VITSA Vison System for Autonomous Land Vehicle
Navigation”, PAMI, May 1988.

J. J.Rodriguez,J. K Aggerwal,"Matching Aerial Images to 3-D Terrain Maps’,

PAMI, December 1990.

S. Sangsuk-lamT. E. Bulloc. "Analysis of Discrete-Time Kalman Filtering Under

Incorrect Noise Covariances’, Tr. on Automatic Control, December 1990.

S. Svendson,B. Ericson, "Underwater vision", FOA Report B 30243-3.1,
Forsvarets Forskningsanstalt, S-581 Lindk@ping, Sweden,1991.

C. Thorpeetal, " Vision and Navigation for the Carnegie-Mellon Naviab", PAMI,

May 1988.

R. J. Urick, Principles of Underwater Sound"”, 3rd edition, NcGraw-Hill, 1983.

T. Zielke, M. Brauckmann\W. von Seelen,"Intensity and Edge-Based Symmetry
Detection Applied to Car-Following", Proc.ECCV, SantaMargheritalLigure, Italy,

1992.



