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ABSTRACT
Much effort has been devoted to computer vision methods for navigation and
tracking of flights, cars, robots, and autonomous vehicles. Less work has
addressed the problems of visual navigation under water, which is the topic of
this paper. We present a method for incorporating the uncertainty of the
matching between a model of the sea floor and measurements, obtained with a
multibeam sonar, in a Kalman filter. The technique is based on using second
order centralised moments in a region of interest to estimate the measurement
uncertainty/error. This error is then used to calculate the measurement
covariance matrix in the Kalman filter. We provide experimental results on real
data to show that this method is superior to the standard Kalman filter in
which the measurement error covariance matrix typically is set constant or
varies deterministically.

1.   Introduction
Navigation has always been an interesting area for researchers. Recently, there has been
considerable interest in using computer vision for navigation of flights [4,7], cars [12], and
autonomous land vehicles and robots [3,6,10]. For navigation in an underwater
environment, less work has been reported. Even if the demand for such systems is high,
the low visibility in water leads to very specialised systems restricted to operate close to an
object or near the sea floor [9]. An example of such a system is described in [1], which

computes the relative movement of the AUV
(Autonomous Underwater Vehicle) by extracting and
matching features in successive pictures. Another
example is described in [5], where an AUV follows
pipelines based on visual information. To overcome
the problems of low visibility, we are working on a
system based on a multibeam sonar which is directed
toward the sea floor. A multibeam sonar may be
thought of as N sonars connected in a one-dimensional
array with a fixed angle between the beams. Instead of
returning one depth measurement, the multibeam sonar
returns a vector containing N depth measurements. A
picture of an AUV using a multibeam sonar is showed
in figure 1.1. For details of the underlying mathematics
and beam forming techniques the reader is referred to
[11] .Figure 1.1 Multibeam sonar



In navigation two approaches may be used: Relative navigation or absolute navigation,
where the latter approach uses landmarks to remove incremental errors. When using
multibeam sonars, candidates for landmarks are profiles of the sea floor. Obviously this
will not give a unique global position for every measurement independent of the
underlying sea floor structure, but if the sea floor has a minimum of variation, we show in
section 5 that the information of the sea floor profile combined with a predict-match-
update schema implemented with a Kalman filter, give sufficient information for navigation
purposes.

A crucial concern in the design of the system is how to incorporate  information in the
prediction filter. In vision based navigation systems, the measurements are normally
deduced from a match between the sensor data and the underlying model data. However,
additional information exists from the matching process which can be used to estimate the
measurement noise. Based on this idea, we show in section 4 how the error between the
data and the model in a region of interest easily can be used to update the measurement
covariance matrix to dynamically represent the actual uncertainty of the measurement. We
show in section 5 examples with real data where this information is essential for the filter
to return to the correct track.

2.   Probabilistic estimation - The Kalman filter
The Kalman filter is a least square estimation technique using a Bayesian approach. The
filter is used to track the state of stochastic dynamic systems being observed with noisy
sensors. Essentially, the filter is based on three separate probabilistic models. The first
model describes the evolution over (discrete) time by the equation

x(k+1)=F(k)x(k) + G(k)u(k) + v(k) (2.1.)

where x(k) is the state at time k, u(k) is the controlled input signal entering the system
with gain matrix  G, and v(k) is a sequence of  zero-mean white Gaussian process noise
with covariance matrix Q(k). F is the transition matrix of the system.

The second model describes the measurement, and relates the measurement vector z
to the current state through a measurement matrix H:

z(k) = H(k)x(k) + w(k) (2.2.)

Here w(k) is assumed to be a sequence of  zero-mean white Gaussian noise with
covariance

E w w R( ) ( ) ( )k j kT
kj= δ (2.3.)

where δkj  is the Kronecker delta. The third model describes the knowledge about the
system state and its covariance before the first measurement is taken. Usually the initial
system state is assumed to be a normally distributed random variable with a known mean
and a given covariance matrix:
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x N x P( ) ~ $ ( | ), ( | )0 0 0 0 0 (2.4.)

where P is the associated conditional state error covariance matrix and the vector $ ( | )x a b
is the conditional state estimate.

So far we have only set up the equations for the models of a system. The one step
prediction stage can be calculated using the formula

$ ( | ) ( ) $ ( | ) ( ) ( )x F x G uk k k k k k k+ = +1 (2.5.)

where the prediction is calculated by applying the transition matrix F(k) to the previous
state estimate and adding the control input. The system state estimate may be calculated
by the formula

$ ( | ) ( ) $ ( | ) ( ) ( ) ( ) $ ( | )x F x W z H xk k k k k k k k k k+ + = + + + − + +1 1 1 1 1 1 (2.6.)

This shows that the new estimate, using the measurement z(k+1), is formed by
extrapolating the estimated vector, and then adding a correction term. This correction
term, called the innovation (or measurement residual), is formed by subtracting the
predicted measurement vector from the new observation vector z(k+1). The gain matrix
W contains information of how much the innovation should affect the new state estimate.
In a Kalman filter, the gain is related recursively to the covariance matrix P(k+1|k) by the
formula

W P H S( ) ( | ) ( ) ( )k k k k kT+ = + + +−1 1 1 11 (2.7.)

where S− +1 1( )k  is given by

S H P H R( ) ( ) ( | ) ( ) ( )k k k k k kT+ = + + + + +1 1 1 1 1 (2.8.)

The state prediction covariance matrix is

P F P F Q( | ) ( ) ( | ) ( ) ( )k k k k k k kT+ = +1 (2.9.)

and the updated state covariance matrix is

P P W S W( | ) ( | ) ( ) ( ) ( )k k k k k k kT+ + = + − + + +1 1 1 1 1 1 (2.10.)

The area where the matching algorithm search for a match between the model and the data
is called the validation gate [2]. The validation gate V is related to the inverse of the
prediction covariance matrix S and the innovation. It describes an ellipse in the
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measurement space and is the minimum volume that contains a given probability mass
under the Gaussian assumption. The validation gate is defined as:

Vk
T

l k k k k k l+
−≡ − + + − + ≤1
11 1 1( ) : $( )| ) ( ) $( )| )z z z S z zo t (2.11.)

          = + + + ≤−z S: ( ) ( ) ( )ν νT k k k l1 1 11m r (2.12.)

The innovation νν that defines the validation gate is chi-square distributed with number of
degrees of freedom equal to the dimension of the measurement vector z [2]. With dim(z) =
2 setting l = 4 results in 86% of the probability mass inside the validation gate.

For a deeper description of the Kalman filter refer to [2].

3.   System description
Our system may be described by the discrete time, linear system equation

x Fx v( ) ( ) ( )k k k+ = +1 (3.1.)

with the measurement equation

z Hx w( ) ( ) ( )k k k= + (3.2.)

as the matrices F and H are time invariant, and there is no known input to the system (see
equation 2.1 and 2.2). The system state vector contains the position in Cartesian
coordinates together with the velocities:

x( ) ( ) &( ) ( ) &( )k x k x k y k y k
T= (3.3.)

From the multibeam sonar and the matching process we calculate  the measured position:

z( ) ( ) ( )k x k y km m
T= (3.4.)

The state transition matrix  F for our constant velocity system is

F =

L
N
MMMM

O
Q
PPPP

1 0 0

0 1 0 0

0 0 1

0 0 0 1

T

T
(3.5.)

where T is the sampling period. The measurement matrix H is
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H = LNM OQP1 0 0 0

0 0 1 0
(3.6.)

Because we operate with a global coordinate system, it is reasonable to assume that the
axis directions are symmetric. This is also true for the velocity. The system covariance
matrix is then

Q =

L
N
MMMM

O
Q
PPPP

σ
σ

σ
σ

m

v

m

v

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

(3.7.)

4.   Estimation of the measurement covariance matrix
The term w(k) represents measurement noise related to the sensor, including any matching
uncertainty and lack of confidence in a specific measurement. The covariance matrix for
the measurement noise thus contains contributions both from sensory noise and from the
matching process. If the terrain has much structure, it is likely that a unique and confident
match can be determined, but in flat terrain the uncertainty in the matching process
increases caused by many possible matches. In a hillside, one typically will have
considerable uncertainty in the position in one direction and low uncertainty  in the other
direction. As a consequence, it is necessary to account for such uncertainties in the
covariance matrix for the measurement error. To accomplish this the matching strength
matrix for the validation gate is analysed.

Define the area W to be the smallest rectangular area which contains the validation

gate V. For each location in W, a measurement strength f x yV( , ) akin to the idea of a

correlation type of matching is computed. There are three restrictions on f x yV( , ):

f x y if x y VV( , ) ( , )= ∉0 (4.1.)

f x y x y VV( , ) ( , )≥ ∀ ∈0 (4.2.)

f x yV

x y

( , )
,

=∑ 1 (4.3.)

From equation 4.2 and 4.3 we see that  f x yV( , ) has the properties of a distribution.

If the position corresponding to the best match x yc c,a f is used as the reference
position, it is possible to calculate centralised statistical moments for the area W. If first
and second order moments are calculated, information that specifies the confidence in  the
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match is available. These moments provide an estimate of the covariance matrix µµ(k)
associated with the match:

µµ(k)  =  



 µ20(k)  µ11(k) 

 µ11(k)  µ02(k) 
(4.4.)

The second order statistic is calculated using the general formula for central statistical
moments:

µpq = f x y x x y yV c
p

c
q

yx

( , )( ) ( )− −∑∑ (4.5.)

From equation 4.5 we see that small values on the moments will indicate a very certain
match, while high values on the moments correspond to the situation where multiple
strong matches are present in the validation gate.

We now combine the matrix µµ(k) with the sensor noise covariance matrix to generate the
new measurement covariance matrix R(k):

R(k) = µµ(k) + N = 



 µ20(k)  µ11(k) 

 µ11(k)  µ02(k) 
 + 



 nx  0 

 0  ny 
(4.6.)

where µpq are the second order centralised moments, and nx and ny are the variances due
to noise in the sensors. Note that this matrix is time varying, and not constant or
deterministic as in the Standard Kalman filter, as it at every time step will depend on the
results from the actual matching process.

From the above equations it is evident that the measurement covariance matrix R will

depend on the matching function f x yV( , ). This is a desirable property, because the

matching function f x yV( , ) defines the matching strength between the different matches in
the validation region, and therefore contains information about the measurement
uncertainty.

In Kalman filtering, the measurement noise is assumed to be modelled as a zero-mean
white noise Gaussian sequence. Analyses have been carried out that address the
consequences of wrong assumptions in the process and measurement noise, and we refer
to [8] for details. We are currently working on a post analysis of the behaviour of the
measurement covariance  matrix R in equation 4.6, and preliminary results are in a
reasonable accordance with the assumptions.

5.   Experimental results
The experiments use data recorded in a 1200m2 area from the cost outside Ålesund
(western part of Norway). A 3D plot of the area  is shown in figure 5.1. Figure 5.2 shows
the two test tracks superimposed on a contour map of the area.
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Figure 5.1 3D terrain map Figure 5.2 Contour map

The depth varies between 55 and 75 meters, and the area contains both flat and undulating
parts. The terrain model was generated from west-east scan lines recorded with
approximately 25% overlap. For measuring the correct positions a differential GPS was
used, which under the recording conditions had an accuracy of approximately 4.0 meter.
The multibeam sonar was an EM 100 from Simrad with 27 beams and 3.75° between each
beam. For a depth of 60 meter this gives a viewing area of 105 meter between the outer
beams. Both the model and the measurement data are  recorded from a surface ship.

Figure 5.3 shows the error in x and y position for the lower track in figure 5.2. This
track consists of  250 measurement done in 149 seconds, with a total distance of
approximately 400 meters.

Figure 5.3. Error in x-solid and y. Figure 5.4. R (0,0)-solid and R(1,1)

At time step 110, the algorithm enters the flat area in front of the hillside, and gets an error
in x and y position. When reaching the hillside at time step 135, the algorithm enters a
wrong valley (seen at the 3D map in figure 5.1 at position (340,140)), resulting in an error
of 52 and 38 meter in the x and y position respectively. Locally this valley is now the best
possible choice, but looking at the measurement covariance matrix in figure 5.4, we see
that the matching results in high measurement uncertainty, and the algorithm is able to
return to the correct track.

To show the improvement over the standard Kalman filter with fixed measurement
covariance matrix R, we run both filters on the higher track (marked with a triangle in
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figure 5.2). This track consists of 160 measurements with many "traps" where the
matching algorithm easily heads in a wrong direction. The filters where equal except for
the measurement covariance matrices R. Figure 5.5 and 5.6 show the error in x and y for
both filters. As seen in the figures, the standard Kalman filter is not able to return from the
error, and  looses the track. We have tried the standard filter with many different R
matrices, but we have not been able to find values for R where the filter is able to follow

Fig. 5.6 Error in x-solid and y. R constant.Fig. 5.5 Error in x-solid and y. R varying.

the tracks.
One explanation is immediate: If  R is too large, the validation gate is forced large.

Besides increasing the computational load, this causes the matching algorithm to search
for a match in a large area, which easily results in a temporary better solution. Especially
in "sine shaped" areas this has a fatal consequence. A large R will also decrease the system
gain W, which in turn will suppress the measurements. If R is chosen too small, the
standard Kalman filter fails because the filter then lacks the ability to return from local
errors. Using the R matrix in equation 4.6 the validation gate will vary according to the
uncertainty between the sensor measurement and the underlying terrain as seen in figure
5.7, and the filter is able to handle more difficult situations without loosing the track. An
example of  the gate error function used to compute R is shown in figure 5.8.

Fig. 5.7 R (0,0)-solid and R(1,1) Fig 5.8 Example of gate error function.
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6.   Conclusion
We have developed a technique that easily incorporates uncertainty in the matching
process when using a Kalman filter for navigation or tracking purposes. The technique
uses second order moments in the validation gate to estimate the measurement error,
resulting in a measurement covariance matrix varying dynamically according to the
underlying model and data. Experiments from data recorded at the west cost of Norway
indicate important improvements compared to a Kalman filter which uses a deterministic
measurement covariance matrix. The improvements are mainly a consequence of using all
accessible information about the match between model and data to give a correct
assessment of the measurement error.
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