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Abstract—The visual robustness of biological systems is in
part due to their ability to actively integrate (fuse) informa-
tion from a number of visual cues [2], [29]. In addition to
active integration, the perception—action nature of biological
vision demands event-driven behavioral composition. Providing
mechanical vision systems with similar capabilities therefore
requires tools and techniques for cue integration and behavioral
composition.

In this paper, we address two issues. First, we present a unified
approach for handling both active integration and behavioral
composition. The approach combines a theoretical framework
that handles uncertainty using a voting scheme with a set of
behaviors that are committed to achieving a specific goal through
common effort and a well-known process composition model.

Secondly, we address the issue of integration in the active
vision activity of smooth pursuit. We have experimented with
the fusion of four smooth pursuit techniques, such as template
matching and image differencing. We discuss each technique,
highlighting strengths and weaknesses, and then show that fusing
the techniques according to our formal framework improves
system tracking behavior.

Index Terms—Active vision, module fusion, reliability, voting.

I. INTRODUCTION

BIOLOGICAL vision systems are remarkably adept at
providing useful, high-quality visual information in rich

dynamic environments. These capabilities are, in part, a result
of the inherent ability of such systems to dynamically adjust
visual parameters to effectively integrate data from a wide
range of visual cues and to compose modules in a timely event-
driven manner. Research into the benefits and advantages of
dynamic visual sensory systems over passive systems has
been explored in the area of active vision. It has been shown
that a moving system leads to improved robustness and the
elimination of ill-posed conditions in several computer vision
problems [3], [5], [6]. In addition to adjusting parameters, the
visual robustness of biological systems is also due to their
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ability to actively integrate (fuse)1 information from a number
of visual cues [2], [29] as well as to compose behaviors in
response to dynamic events.

Providing mechanical active vision systems with similar
capabilities therefore requires tools and techniques for cue
integration and behavioral composition. In this paper, we focus
on two important features of a robust vision system: process
integration and process composition.

A. Process Integration

While much of the research in active vision has focused
on developing individual modules for implementing behaviors,
such as fixation and smooth pursuit, it is becoming increasingly
clear that a robust vision system should make use of a seamless
integration of a number of functionally equivalent (homo-
geneous) or nonequivalent (nonhomogeneous) modules [29].
Indeed, integration forms the basis of a proposed extension
of the Marr paradigm [2] in which the authors stress that
future progress in computer vision will be a result of module
integration: “Now that most of the modules have been studied
in isolation, we think that it is time that they be tested in
pairs, triples, and so on.” The advantages of integration are
evident in biological systems in which visual effectiveness
lies in exploiting information from a variety of mechanisms,
fusing the information to take advantage of strengths while
avoiding the weaknesses of individual mechanisms under
varying conditions [12].

B. Process Composition

While integration contributes to robust implementations of
individual modules, the perception–action nature of active
vision demands event-driven module composition. The compo-
sition mechanism must provide means for encoding temporal
and structural dependencies necessary for effective behavior of
reactive systems. This requires powerful yet flexible process
composition tools [37].

C. Outline of the Paper

The paper is made up of two major parts. In the first
part, we present a unified approach for handling both process
integration and process composition. The approach combines a
theoretical framework that handles uncertainty using a voting
scheme with a set of behaviors that are committed to achieving

1In this work, the terms active integration and fusion are used interchange-
ably.
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a specific goal through common effort and a well-known
process composition model. In the second part of the paper,
we show that our approach indeed works. We address the issue
of integration in the active vision activity of smooth pursuit.
While a variety of techniques exist to implement smooth
pursuit, each of these techniques has strengths and weaknesses,
making it robust under some conditions and weak under others.
The ability to fuse these techniques such that their strengths
can be exploited and their weaknesses avoided naturally leads
to more robust system behavior. We have experimented with
the fusion of four smooth pursuit techniques. We discuss
each technique, highlighting strengths and weaknesses. We
then show that fusing the techniques according to our formal
framework improves tracking.

The remainder of the paper is organized as follows. In
Section II, we review related work. In Section III, we in-
troduce the approach we have adopted for handling module
composition. In Section IV, we extend the notation presented
in Section III with the capability to handle integration. Next,
in Section V, we discuss the theoretical framework we have
adopted for the fusion of redundant multivalued behaviors. In
Section VI, we discuss the active vision activity of smooth
pursuit and focus on four motion estimation techniques for
its implementation. These will be used in Section VII, where
we present experiments in fusing the results of the motion
estimation techniques leading to more robust smooth pursuit
behavior. We conclude with Section VIII.

II. RELATED WORK

A. Active Vision

Since 1985, when active vision first began to appear in
the literature [3], [5], [6], the topic has received a dramatic
increase in interest. Initial work focused on building active
vision devices and understanding and transferring to these
devices capabilities possessed by biological vision systems,
such as focus [23], saccades [9], smooth pursuit [9], [15],
fixation [28], attention [38], and prediction [11]. While several
of these works point out that many times these capabilities are
composed of various cues (e.g., disparity and accommodation
in vergence [13], [28]), to the best of our knowledge, no
previous work exists in which benefits of the fusion of a
number of homogeneous modules are exploited to improve
individual visual capabilities.

B. Process Composition

Process composition by representing task/plans as networks
of processes was first proposed by Lyonset al. [24], [25], in
which the Robot Schemas (RS) model is discussed. Kosecka
et al. [21] adopt RS and show how we can synthesize a finite
state machine supervisor that serves as a discrete event con-
troller. Elementary behaviors appropriate in the domain of an
“intelligent delivery agent” are described, and experiments in
robot navigation are presented. Our work also makes use of the
RS model, however, we recognize the importance of module
fusion to the robust behavior of active vision systems and

extend the power of robot schemas to encompass both module
integration and module composition in a unified manner.

C. Reliability

Reliability in robotics has been studied along several main
paths: reactivity, error recovery, and uncertainty handling2.
Reactive behavior-based systems [4], [10] provide immediate
responses to unpredictable environmental changes through a
tight coupling of perception and action. Reactive architectures
have shown improved reliability when compared with classical
sense-plan-act architectures. In error recovery techniques, a
set of dedicated modules monitor the task continuously and,
upon detection of an error (cognizant failure), an appropriate
corrective action is invoked, which can handle unanticipated
situations. Error detection and recovery was first introduced
to robotics in [16]. The task control architecture (TCA) [36]
facilitates a methodology for incremental development of
reliable autonomous agents. We start with a deliberative plan
constructed to work correctly for foreseeable situations and
then incrementally add task-specific monitors and exception
handling strategies (reactive behaviors) that detect and handle
unpredicted situations. A similar approach is advocated in [20].
In [31], a fault tolerance technique using redundant sets of
behaviors was investigated. In this approach, the system is
provided with a redundant set of behaviors to perform a task
under different conditions. For each behavior, a performance
model exists and a failure is detected if the behavior performs
worse than expected. Upon detection of a failure, a new
behavior is invoked until an acceptable behavior is selected.
This approach has several points in common with the approach
presented in this paper. The major similarity is the exploitation
of redundancy of homogeneous behaviors/modules to reduce
systems sensitivity to uncertainties. The differences lie in that
our approach does not utilize explicit models, which make it
more appropriate for situations in which it is difficult to obtain
such models. Secondly, while in [31] a sequential invocation
of behaviors is utilized, we propose a simultaneous invocation
using voting (this is actually how use of models is avoided).

The basic idea behind uncertainty handling techniques is
to have explicit “models” of the robot’s sensing and action
capabilities. Using this model, the agent (robot) can predict
what actions to take to increase the expected utility or the
reliability of its task [27]. Various combinations, such as
reactivity and uncertainty handling, have been explored. The
usual approach is to combine (high-level) deliberative planners
that have uncertainty handling capabilities with (low-level)
reactive modules (behaviors) that handle run-time contingen-
cies [22], [34]. The most popular approaches for reasoning
under uncertainty are based on probability theory [32], Demp-
ster–Shafer theory [35], fuzzy set theory [39], and certainty
factor formalism. Methods that exploit redundancy are usually
based on data/sensor fusion techniques [1], [17], in which
reliability is improved by pooling evidence.

2Uncertainty handling can be further divided into the two related areas
of explicit uncertainty handling and methods exploitingredundancy(such as
sensor fusion).
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TABLE I
SUMMARY OF RS COMPOSITION OPERATORS

Sensor integration/fusion has the potential of reducing over-
all uncertainty, overcoming sensor imperfections, and pro-
ducing more reliable results. In [1], image segmentation is
performed in a framework in which fuzzy set theory is
adopted for sensor fusion, where uncertainty is modeled using
membership functions. A drawback of fuzzy set theory is that
the estimation of the fuzzy sets or membership functions can
be cumbersome if no clear guidelines can be found. However,
recent works have proposed methods for estimating member-
ship functions, in particular, from statistical data, that partially
avoid this problem. Fuzzy set theory also provides a large
set of combination operators, which allow for adaptive fusion.
Therefore, it should be mentioned that fusing behaviors with
different reliabilities using fuzzy set theory is an interesting
alternative to simple voting schemes.

In [26], a decentralized approach to data fusion is intro-
duced. This approach is based on Bayesian reasoning and
utility theory. The Bayesian methods, however, may not be
suitable in certain applications for two reasons:a priori
probabilities can be difficult if not impossible to obtain and,
in many cases, we will need to express ignorance with regard
to specific choices. Under these conditions, other techniques
are called for. Dempster–Shafer theory is suitable for handling
ignorance and does not requirea priori probabilities. However,
in the general case, Dempster’s rule of combination has an ex-
ponential computational complexity. In specific cases, this can
be circumvented and tractable implementations are possible.

III. M ODULE INTEGRATION AND COMPOSITION

We distinguish between two forms of module integra-
tion: integration of functionally equivalent (homogeneous)
modules and composition of functionally nonequivalent (non-
homogeneous) modules. The goal of integrating homogeneous
modules is to improve quality (in the sense that the set of
integrated modules are better able to handle uncertainty than
any of the individual member modules), while the goal of
process composition is to encode the temporal and structural
dependencies between processes necessary for effective be-
havior (decisions/actions/commands). We adopt the notation
of the well-known RS model that proposes an elegant notation

for temporal structuring of processes. However, RS does
not address the quality issue (integration of homogeneous
modules) in an explicit manner.

In order to get the benefits of improved quality along with
the temporal structuring necessary for effective behavior, we
extend the RS notation with a fusion operator. In this section,
we discuss the RS model. In the next section, we show how
we have extended the RS model to incorporate integration
in an explicit manner, and then in Section V, we present a
formalism for process integration.

A. Robot Schemas

Process composition in our system is based on a model
proposed in [24] and [25] called RS. RS provides notation
for specifying process concurrency that captures the temporal
and structural dependencies required to implement complex
perception–action tasks, such as those demanded by active
vision.

Table I summarizes the RS composition operators. In the RS
model, communication channels between concurrent processes
are called “ports.” Messages are written to, and read from,
ports. A port-to-portconnection relationcan be specified as
an optional third parameter in concurrent composition. This
connection relation specifies a set of couples ,
indicating that port and are connected.

1) Sequential Composition: . The process
behaves like the process until that terminates and
then behaves like the process (regardless of ’s
termination status).

2) Concurrent Composition: . The process
behaves like and running in parallel and with the
input ports of one connected to the output ports of the
other, as indicated by the port-to-port connection map.

3) Conditional Composition: . The process
behaves like the process until that terminates. If

aborts, then aborts. If terminates normally, then the
value calculated by is used to initialize the process

and behaves like .
4) Disabling Composition: . The process

behaves like the concurrent composition of and
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(a)

(b)

Fig. 1. (a) Synchronous recurrent composition; (b) asynchronous recurrent
composition.

until either terminates, and then the other is aborted
and terminates. At most, one process can stop; the
remainder are aborted.

5) Synchronous Recurrent Composition: .
This is recursively defined as .

6) Asynchronous Recurrent Composition: T = P \langle v
\rangle :: Q_v. This is recursively defined as

.

Of the six RS operators,Synchronous Recurrent Composi-
tion andAsynchronous Recurrent Compositionrequire further
explanation. Both operators express iteration.Synchronous
Recurrent Compositionspecifies the standard “loop” construct
in which process and are iteratively executed sequentially.
Execution of the loop followed by continues until process

aborts.Asynchronous Recurrent Compositionis a similar
looping mechanism; however, in this case, processis not
required to terminate before proceeding with the iteration.
This enables multiple instances of processto be generated
and executed concurrently. The behavior of these operators is
illustrated in Fig. 1.

For an interpretation of the RS operators in the context of
active vision, we express the high-level active vision activities
of fixation and pursuit in RS notation. Fixation is responsible
for centering the image of an object and is initialized with a
saccade to the fixation point followed by continuous vergence
control driven by disparity and accommodation cues

fixation saccade; ((disparityaccommodation) :;

(vergence control)).

Pursuit is employed for tracking objects during motion. The
motion may originate from egomotion or object motion. In
both cases, the objective of pursuit is to stabilize the image

of the object at image center. In pursuit, vergence, foveal
motion detection, and dynamic accommodation are used to
continuously drive motion of the vision sensor

pursuit (vergence # foveal motion

# accommodation) :; move

IV. I NCORPORATING REDUNDANCY

In this section, we extend the RS model with a fusion oper-
ator so that integration of homogeneous modules is provided
in an explicit manner. The RS notation of Table I is based
on the composition of individual processes that are defined
as a “unique locus of computation” orbasic schemas, such
as a piece of hardware or physical agent of change. It is not
possible to describe or analyze behavior below the level of a
basic schema.

We augment the RS model to include fusion capabilities
with the addition of theintegrating composition operator
fuse, which extends the definition of aschemato include the
fused output of a set of behaviors. A set of homogeneous
behaviors that in combination pursue a specific goal are called
a behavior team. Given a behavior team made up of behaviors

, we define the behavior of the schemaresulting from
integrating compositionas follows:

fuse

The formal description of the operatorfuse is left undefined
as there are various ways to integrate modules, as discussed
in Section V. For the purposes of this paper, we use plurality
approval voting. Note that we have not modified the existing
RS operators in any way, we have only extended the definition
of a basic schema in a well-defined manner. The formalism
presented in Section V shows that the reliability of schema
will be at least as good as the reliability of any of the. As a
result of this extension of the definition of a schema, we retain
all of the analytic power of the RS model and provide module
integration benefits of Section V.

To give an example of how the new operator is used, we
will rewrite the definition ofpursuit in Section III

pursuit (vergence # foveal motion

# accommodation) :; move.

to include module integration. Pursuit can now be defined as
follows:

pursuit

(vergence # fuse(blob, idiff,

edge, sob) # accommodation) :; move.

The four motion detection techniques, BLOB, IDIFF, edge,
and SOB, are integrated under thefuseoperator, yielding their
integrated behavior. Our experiments in Section VII verify that
the use of thefuse leads to dramatic improvements in tracking
ability over any individual technique.
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V. UNCERTAINTY HANDLING USING VOTING SCHEMES

In this section, we present an approach for constructing
reliable modules from less reliable ones. A team of redundant
modules vote for a set of possible actions. The votes are
then combined, and the most appropriate action, corresponding
to the action with the highest number of votes, is chosen.
Voting is a common technique for construction of reliable
hardware components and critical systems, such as certain
components used in the aviation industry. Simplicity is a
virtue of voting techniques and enables cost-effective and
efficient hardware as well as software implementations. The
basic idea behind this approach is similar to that of sensor
fusion with the hypothesis that the overall reliability will
be improved by combining pieces of evidence provided by
independent/partially independent sources. However, in the
approach presented here, no explicit model, probabilistic or
otherwise, is used in the fusion process. It is thus interesting
to investigate how simple model-free voting techniques can be
used to improve the reliability of purposive modules.

A. Homogeneous Modules

We formalize a module as a mapping from an action space
to the interval

(1)

The action space is defined to be
a finite set of possible actions or control parameters. The
mapping assigns to each action a preference, in
which the most appropriate actions are assigned one and
undesired/illegal actions are assigned zero. Consider having
a set of modules, , all providing the same objective, such as
object tracking, obstacle avoidance, or door traversal.

A set of modules with the same objective will be denoted
homogeneous modules3. The output of the modules are com-
bined using a voting technique, and the most appropriate
action chosen is , where

(2)

Fig. 2 illustrates how the outputs are combined using the
composition operator, producing a new preference over the
action space.

B. Voting Schemes

In the literature of reliability theory, numerous voting
schemes have been proposed, and in [30], a taxonomy is
given for existing classes of voting schemes. The most used
and most general voting schemes are majority voting and-
out-of- voting, respectively, which belong to the same class
of voting known asweighted consensus voting. In majority
voting, an action is chosen that has received more than half of
the total number of votes. In -out-of- voting, an action is
selected if it receives or more votes out of . In their original
formulations, however, weighted consensus voting schemes
require that each module votes for only one action—the

3Even though they have the same objective, these modules can be based on
different sensing modalities, algorithms, etc., to achieve the same objective.

Fig. 2. Schematic of the composition process in a team of homogeneous
modules. The modules generate their votes (left), which are combined using
the composition operator. The composed module is illustrated on the right.

most appropriate one from a module’s point of view. In the
case of purposive modules, more than one action can be
appropriate; thus, a variant of weighted consensus voting,
known asapproval voting, is called for.

Definition V.1 ( -out-of- Approval Voting): An approval
voting scheme , in which is the number
of homogeneous modules, is defined in the following way:

if
otherwise

(3)

where

if
otherwise

for (4)

is the voting function that determines whether a module votes
for a given action.

A module votes for an action if its preference for that
specific action is 0. If modules vote for an action,,
then their preferences are combined according to the original
approval voting scheme, which is an (possibly weighted)
addition of the preferences.

In this paper, we experimentally show that fusion of ho-
mogeneous modules using such simple voting schemes can
improve system reliability. In the following, we characterize
the reliability of a team of homogeneous modules and use
the reliability for selecting an appropriate-out-of- approval
voting scheme. More specifically, the parameterhas to be
chosen to ensure improvement in system reliability. In order
to enhance the clarity of the paper, we only present important
properties from the theoretical characterization. For a com-
plete analytical treatment of performance characterization, see
[33]. The general problem (i.e., including other classes of
voting schemes) of selecting the optimal voting scheme that
maximizes system reliability is investigated in [8].

C. Reliability of Teams of Homogeneous Modules

The reliability of a behavior is defined as its probability
of success and is denoted . The reliability of a team
of homogeneous modules using-out-of- approval voting,
denoted , is defined as a function of and
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the reliability of the modules constituting the team .
expresses the probability that the system is

successful if at least of its behaviors are successful.
Using these definitions, it can be shown that the reliability of

a -out-of- system is greater than or equal to the reliability
of a -out-of- system. Thus, by induction, it can be
concluded that a 1-out-of-system will provide the maximum
reliability. This result (as shown in [8]) applies generally, i.e.,
with no assumptions about statistical independence between
the modules. A 1-out-of- voting strategy is denoted plurality
voting and chooses the action that has received the maximum
number of votes. Based on these results, we use a plurality
approval voting in this paper.

VI. SMOOTH PURSUIT AND CUE GENERATION

The visual robustness of biological systems is due in part
to the update of visual system parameters, which ensures
continuous delivery of high-quality images of salient objects.
Smooth pursuit is a primary visual behavior used by biological
systems for this purpose and is a topic of much interest in
the active vision community. Smooth pursuit is the process
by which a moving object is tracked. The goal is to keep
the retinal position of the moving object inside the fovea.
Benefits of smooth pursuit include object stabilization in the
image as tracking emphasizes the signal of the target over the
background and the localization of image processing to the
region of the fovea [15].

In both biological and machine vision systems, motion anal-
ysis provides the basis of smooth pursuit. The smooth pursuit
behavior team used in our experiments (Section VII) consists
of the following motion analysis techniques:blob tracking,
edge tracking, image differencing, and template matching.
We chose these techniques as they are relatively simple
to implement and are sufficient for the purposes of our
experiments. We now briefly discuss the techniques focusing
on strengths and weaknesses.

A. Blob Tracking

Due to its simplicity and suitability for real-time imple-
mentation, blob tracking has been perhaps the single most
commonly used technique for motion detection in tracking
systems. Numerous works, such as [14], have reported systems
that are able to track a black or white blob. The source of many
of these systems is a moving light, such as a flashlight.

The strength of blob tracking lies in its simplicity, making
it suitable for real-time implementation. However, it is unable
to handle multiple objects and is not useful in realistic envi-
ronments, as it assumes an object with high contrast relative
to the background.

In our implementation, we assume a dark blob moving over
a light background. The algorithm thresholds the input images
to segment the blob from the background and then computes
and returns the centroid of the blob.

B. Edge Tracking

Edge tracking is similar to blob tracking. However, rather
than finding the centroid of the entire blob, the centroid of

blob edges is found; therefore, an edge operator is used on
the input image to find the edges. Strengths and weaknesses
of edge tracking are similar to those of blob tracking.

In our implementation, the Sobel edge detector [7] is used
to find the edges. The resulting edge image is then thresholded
to segment the object from the background. The centroid of
the edges is then computed and returned.

C. Image Differencing

Image differencing is the simplest of our motion analysis
techniques. Image differencing is performed by taking the
difference of two consecutive frames

(5)

where is the difference image, is the
current frame, and is the previous frame.
Differencing segments the scene into static and moving regions
as only objects that have changed position between two
consecutive images will have nonzero pixel values.

The strengths of differencing lie in its simplicity, making it
suitable for real-time implementation, and its ability to handle
multiple objects. However, the structure of the moving object
has to be simple in order for subtraction to segment one
object into one motion region. A problem with using image
differencing in smooth pursuit is that retinal motion of the
background induced by camera movement can be mistaken
as object motion unless this motion is first subtracted out
of the image.

In our implementation, the centroid of all pixels falling
above a grayscale threshold was computed over a two times
subsampled fovea of 100 100 pixels in the difference
image. Here, thresholding eliminated pixels that would have
mistakenly been used in the centroid computation when,
in fact, they were an artifact of noise introduced by the
imaging process.

D. Template Matching

The idea behind template matching is to find the location
of a particular object in an image by searching the image
for instances of a second, smaller image called a “template”
that contains the object. The template matching algorithm
compares the template with the image at different image
locations and finds the location in the image that best matches
the template.

Correlation provides the basis of template matching. For
each image location, a similarity measure is computed, indicat-
ing how well the template matches the image at that location.
The image location that provides the maximal similarity mea-
sure is selected as the location of the object in the image.

Differences in various template matching techniques are
usually found in the method used for computing the similarity
measure. Several common techniques include the sum of
squared differences (SSD) technique and normalized cross
correlation. We use the SSD for computing the similarity
measure in our implementation.
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TABLE II
MODULE TIMING ANALYSIS. EFFECTIVE SAMPLE RATE GIVES

THE SPEED AT WHICH EACH MODULE RUNS INDEPENDENTLY,WHILE

THE ACTUAL SAMPLE RATE IS THE RATE USED IN THE EXPERIMENTS

The SSD similarity between a function and a template
is given by

SSD (6)

where and are the size of the template.
Strengths of template matching include its ease of im-

plementation and efficient calculation over the entire set of
locations. However, template matching is sensitive to changes
in object shape, size, orientation, and changes in image inten-
sities.

E. Cue Implementation Details

The reliability of each of the motion analysis modules is
global in the sense that it is dependent on variables, such as
lighting, focus, etc. While it would be interesting to analyze
the effects of such variables on tracking, for the purposes of
our work, we were not interested in finding implementations
that provide the best possible results. We in fact show that it is
not critical to have the most accurate implementation, as fusion
tends to enhance overall performance. Therefore, our imple-
mentations are simple and straightforward. Understanding the
effects of these other variables and improving the behavior of
the individual techniques is an orthogonal effort and can only
help to improve the results of fusion.

In all but template matching, image thresholding is used to
segment the object from its background. For each technique,
gray-level thresholds were empirically chosen to provide the
best segmentation over the entire range of experimental sce-
narios (Section VII). Timing analysis for the modules is given
in Table II.

The effective sampling rate gives the speed at which each
module can run independently. However, in order to obtain
comparable results, we eliminate variations in sampling rate
that may influence the performance of the modules (often
higher sampling rates lead to improved performance). We
normalized the sampling rate by executing all modules se-
quentially while actuating the motors based on the results of
the particular module we were testing only.

VII. EXPERIMENTS

In this section, we present experiments in which we use
the tools and motion analysis techniques presented in previous
sections to execute smooth pursuit while exploiting the benefits
of integration. Our experiments focus on module integration.
In previous works, we have experimented with process com-
position [18], [19]. We begin with a discussion of what we

want to show and how it can be shown. We then present our
experiments followed by a discussion of the results.

A. Experimental Setup

The goal of our experiments is to investigate the hypothesis
that fusion of homogeneous behaviors can lead to improved
reliability. In particular, we want to show that active vision
can indeed benefit from module fusion. In order to show
this, we have implemented the four cue generation modules
discussed in Section VI as well as a module that fuses their
results by approval voting. With this configuration, we run
a series of tracking experiments on a robotic head. In each
experiment, a robotic manipulator effects horizontal translatory
motion consisting of two motion segments: from the starting
location to a location 200 cm to the right and return to the
starting location. The speed of the manipulator was set so
that the entire 400-cm manipulator motion was completed in
approximately 15 s.

In the experiments, we measured the ability of each module
to track various combinations of objects and backgrounds. We
call each such combination ascenario. The six scenarios used
in our experiments are shown in Fig. 3. As can be seen in
the figure, objects range from a simple blob to real objects.
Similarly, backgrounds range in complexity from a constant
beige background to a natural background with randomly
placed objects.

We tested the performance of each of the five modules [blob
tracking (BLOB)], image differencing (IDIFF), edge tracking
(SOB), template matching (TM), and fusion (FUSE)], on each
scenario. A total of 30experiment setswere conducted using
the six scenarios, in which each experiment set consisted of
testing each of the four motion tracking modules plus the
fusion module on a scenario. To account for variations in
lighting and other conditions, each scenario was used for five
experiment sets (corresponding to 150 single experiments).
The scenarios were chosen so as to push the limits of one
or more of the modules at a time so that they would fail. We
used the number of failing modules on a particular scenario
as a measure of the scenarios complexity, e.g., if a setting4

leads to the failure of three of the modules and another setting
leads to the failure of one module, and then we say that

setting is more complex than setting. This allows us to
investigate the performance of the fusion module relative to
the complexity of the scenario. The histogram in Fig. 4 shows
the distribution of the number of failed modules5 for each of
the 30 experiments; e.g., in 11 of the experiments, all but one
of the modules failed to track the object.

Two measures are used to quantify each module’s ability
to track: absolute error and relative error. Absolute error
is a yes/no answer to the question of whether a module
successfully tracks during a single experiment. A module is
said to track an object successfully if some part of the object is
located at the image center during the entire motion sequence,
otherwise it has failed to track. The ratio of the number of

4We call a scenario, lighting conditions, etc., during the experiments a
setting.

5Scenario complexity is determined based on the performance of the
primitive modules; thus, the fusion module is not considered in the histogram.
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Fig. 3. In the experimental scenarios, various combinations of objects and backgrounds provide differing complexities.

successful runs to the total number of runs provides a measure
of module reliability.

Relative error quantifies the quality of tracking, i.e., a
measure of how well tracking is performed. As an expression
for relative error, we use the distance (in pixels) from the
image center (where the tracked object should be in the ideal

case) to afixed point on the moving object. We term this
expressiondistance error. We also separate this distance into
its (horizontal) and (vertical) components to investigate
the contributions of these components to the error. Here
we present the mean and standard deviation of the distance
error, along with the mean and standard deviations of the
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Fig. 4. Distribution of the number of failing modules at each trial during
30 trials. The fusion module is not taken into consideration here. Setting
complexity increases from left to right.

TABLE III
Absolute Error . MODULE SUCCESS ANDFAILURE RATES. RELIABILITY

IS CALCULATED AS THE RATIO OF SUCCESSFULRUNS TO THE TOTAL

NUMBER OF EXPERIMENTS. THE MAIN RESULTS ARE HIGHLIGHTED

TABLE IV
Relative Error . MODULE PERFORMANCE RESULTS FOR30 RUNS. RELATIVE

ERROR IS PRESENTED BY THEMEAN DISTANCE ERROR AND STANDARD

DEVIATION. THE STATISTICS FOR THE CORRESPONDINGX AND Y

COMPONENTSARE ALSO LISTED. THE MAIN RESULTS ARE HIGHLIGHTED

corresponding and components, for the 30 experiments
(see Table IV). To obtain the distance error, we recorded
each motion sequence to videotape. Using the videotape, we
manually extracted the pixel distance between image center
and the fixed point on the moving object over the duration
of the tracking.6 This determines the “ground truth.” To make
the results of ground truth extraction as accurate as possible,
we overlayed a “ ” symbol at the image center and selected
the object point located under the “” at the start of tracking
as the fixed object point for the rest of the sequence. Further,
in order to analyze the behavior of the modules, we recorded
their outputs, denoted astracking results, which where used to
control the camera head. Since the tracking results themselves
did not contain information about how well the actual tracking
was going, we had to relate them to the ground truth. Thus, in
order to correspond the ground truth with the tracking results,
we logged, along with the tracking results, the sample/frame

6Every fifth frame of each video sequence was analyzed manually to obtain
the distance error.

Fig. 5. Comparison between the success of individual modules and the
success of fusion. The histogram represents 30 trials. The bars of the histogram
represent the number of times there weren successful modules, wheren
ranges from zero to four. The shaded portion of the bars represent the number
of times that fusion succeeded. The most interesting part of the histogram
is in the first segment (zero successful modules). What this is saying is that
in three of the 30 experiments, none of the individual modules successfully
tracked the object. However, in one of those three cases, fusion succeeded.
This is a powerful point. Even though, no individual tracking module was
able to track the object, the fusion of the modules succeeded. We call this
phenomenon “corrective reinforcement.”

(a)

(b)

Fig. 6. Plot of distance error for the modules during experiment. (a) Distance
error in theX (horizontal) direction. (b) Distance error in theY (vertical)
direction.

number at which the results were generated. We printed the
same sample number on (the upper left corner of) each frame
of the video sequence.
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Fig. 7. Sequence showing the tracking results and the fusion process. During the sequence, the camera is driven by the fusion module. The plots present
each module’s votes for each action (here motion in the horizontal direction). These votes are combined by the fusion module (FUSE), and the best action
indicated by the dot in the plots is selected. Sequence showing the tracking results and the fusion process.

B. Experimental Results

Experimental results are presented in Tables III and IV.
Absolute error results are listed in Table III along with module
reliabilities. Columns 2 and 3 in the table list the number
of successful runs and the number of failures, respectively.
Module reliabilities, listed in the last column, are calculated as
the ratio of the number of successful runs to the total number of
runs (30). Table IV summarizes the relative error results and,
in particular, the mean and standard deviations of the distance

error. The table also lists for both and the mean value of
distance error along with corresponding standard deviation.

The plot in Fig. 5 illustrates the performance of the fusion
module as a function of scenario/setting complexity. The
figure consists of two superimposed histograms, one (solid
frames) showing the distribution of the per-trial number of
successful modules and the other (filled area) showing the
corresponding portion of the successful fusion trials. In the
figure, the complexity of the experimental setting decreases
from left to right—the fewer modules that succeed in a setting
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Fig. 7. (Continued.) Sequence showing the tracking results and the fusion process. During the sequence, the camera is driven by the fusion module. The
plots present each module’s votes for each action (here motion in the horizontal direction). These votes are combined by the fusion module (FUSE), andthe
best action indicated by the dot in the plots is selected. Sequence showing the tracking results and the fusion process.

the more complex it is. As can be seen, in three of the
experiments, none of the modules succeed. Nonetheless, the
fusion module (surprisingly) succeeds in one of these three
cases. Note also that, in 11 of the cases, only one module
succeeds, but in seven out of the 11 cases, the fusion module
manages to track successfully. How the fusion can succeed,
even though all or the majority of the individual modules fail,
is interesting and will be explained intuitively in the remainder
of this section. We are planning a theoretical analysis of this
effect in future work.

In order to explain this effect and to highlight several
interesting aspects of fusion, we present data from a single
experiment. The scenario used for this particular experiment
is shown in Fig. 3 in the last row, second column. Fig. 6
is a plot of the distance errors (the sign of the error is
included in the plots) in and , respectively. Looking
at the figures, we see that in this scenario, the BLOB, ID-
IFF, and SOB modules are unable to track the object. On
the other hand, template matching (TM) and fusion (FUSE)
succeed in tracking.
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Fig. 7. (Continued.) Sequence showing the tracking results and the fusion process. During the sequence, the camera is driven by the fusion module. The
plots present each module’s votes for each action (here motion in the horizontal direction). These votes are combined by the fusion module (FUSE), andthe
best action indicated by the dot in the plots is selected. Sequence showing the tracking results and the fusion process.

Fig. 7 contains plots of the actual outputs generated during
one experiment. The plots show the outputs generated by the
five modules over 151 frames (with a step of ten frames,
i.e., 1 s). The output of each module is illustrated as a
triangular window of width equal to ten pixels.7 Only the
plots for the -axis are shown. The output of each module
should be interpreted as the vote for moving the image
center to a given pixel. The commanded output is given to
the camera head driver, which translates the pixel values to
joint angles and drives the motors. The commanded output is
chosen as the output with maximum vote. The vertical axis,
in each plot, determines the votes that range from zero to
one, with one being the most desirable and zero the least
desirable. The last plot within each subplot is the output of the
fusion module, which combines the votes received from the
individual modules and chooses the action with the maximum
vote, indicated with the dot in the figures. If the maximum is
nonunique, one is chosen at random.

What is interesting to note in the figure is the behavior of
the individual modules and their affect on the behavior of one
another and the fusion module. In particular, frames 51, 61,
71, and 81 are interesting. In frame 51, it is seen that IDIFF
and TM lose track of the object, while fusion tracks based on
information provided by BLOB and SOB. In frame 71, TM

7Changes in window size are due to scaling.

resumes tracking, and in frame 81, IDIFF resumes tracking.
Additionally, in subsequent frames, it seems that BLOB drifts
away and later resumes tracking.

As evident from Fig. 6, if run independently IDIFF fails to
track the object through the entire experiment. However, in
Fig. 7, it is seen that IDIFF can resume tracking, when run
in conjunction with the other modules. This can be explained
as follows: when run independently, if a module loses track
of the object, due to some artifact in the image that confuses
the algorithm, it may not have the chance to correct itself,
because losing the object eventually causes the object to leave
the region of interest (fovea) or even the image. However,
with fusion, this problem can be corrected do to an effect
that we termcorrective reinforcement, as other modules may
continue to drive the object into the region of interest, where
the object/motion is searched for, giving a failing module the
opportunity to regain tracking. This will only work if the cause
for failure of the modules is disjoint so that the modules never
(or at least rarely) fail simultaneously.

VIII. C ONCLUDING REMARKS

Biological vision systems are remarkably adept at provid-
ing useful, high-quality visual information in rich dynamic
environments. These capabilities are, in part, a result of the
inherent ability of such systems to effectively integrate data
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from a wide range of visual cues as well as compose modules
in a timely, event-driven manner.

In this paper, we have explored various aspects related to the
integration of homogeneous modules and their composition in
the context of active vision. In particular, we have presented
a unified approach for effectively providing both process
integration and process composition. The approach combines
a formalism for integrating homogeneous modules and a well-
known process composition model, RS.

Our experiments in smooth pursuit have confirmed that the
performance of several integrated motion analysis modules
is dramatically better than the performance of any of the
participant modules when run independently. In the course of
our experiments, we discovered an interesting and powerful
effect that we callcorrective reinforcement which can lead
to higher tracking success rates.

Future work includes experimenting with the composition
and fusion of modules for performing other active vision ac-
tivities, such as fixation and stabilization, a thorough analysis
of corrective reinforcement, and an extension of our work to
include nonhomogeneous modules.
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