
Topological Modelling for Human Augmented
Mapping

Elin A. Topp and Henrik I. Christensen
Centre for Autonomous Systems (CAS)

School of Computer Science and Communication (CSC)
Royal Institute of Technology (KTH)

10044 Stockholm, Sweden
Email: {topp,hic}@csc.kth.se

Abstract— Service robots designed for domestic settings need
to navigate in an environment that they have to share with their
users. Thus, they have to be able to report their current state
and whereabouts in a way that is comprehensible for the user.
Pure metric maps do not usually correspond to the understanding
of the environment a user would provide. Thus, the robotic map
needs to be integrated with the human representation. This paper
describes our framework of Human Augmented Mapping that
allows us to achieve this integration. We propose further a method
to specify and represent regions that relate to a user’s view on the
environment. We assume an interactive setup for the specification
of regions and show the applicability of our method in terms of
distinctiveness for space segmentation and in terms of localisation
purposes.

I. INTRODUCTION

Service robots are designed to support people in their
everyday life. This implies operating in close proximity to
human users and sharing the environment with them. Even
more, a mobile service robot needs to move within this
environment from one location to another to provide its
services. This requires navigation as well as localisation and
mapping abilities. Robotic localisation and mapping is most
often performed using geometric features being derived from
sensory measurements. Simultaneous localisation and mapping
(SLAM) methods allow a robot to navigate in an environment
and acquire a map concurrently [21, for an overview]. This
map can later be used for the navigation tasks enabling the
robot to assist the user.
However, such feature based representations are typically

different from the spatial models that humans use to define
and reason about the same environment. This poses a challenge
in particular if the system is to be operated by novice users
without any robotics background.
Humans have a topological and mostly hierarchical repre-

sentation of their environment [14]. In most domestic settings
for service robots it can be assumed that users are familiar
with the robot’s operating area. Individual preferences and
usage of this environment contribute to a personalised view
on the surroundings, and in many cases the user’s model of the
environment is partial without a representation for all objects
and places within the domain of operation. There is thus a
need to reconcile the user’s models of the environment with the
robot’s representation of the same space – a shared model that

can be personalised is needed. We consider our framework of
Human Augmented Mapping a possible way to approach this
issue.
A central question is here how to partition the map derived

from sensory data into regions that correspond to areas consid-
ered relevant by users. In other words, how can the underlying
geometry be tied to a graphical model of the environment that
represents the users understanding of the space.
The scenario considered here is one where a user as part of

an initial installation of the system gives the robot a tour of
the environment and provides guidance to rooms and locations
within the environment – the relevant entities are labelled by
the user, e.g., “this is the kitchen”.
The objective of this article is the presentation of a strategy

to partition space into regions that is the basis for user labelling
and for tying such places to areas in the geometric map used
by the robot for navigation.
We propose a statistics based definition of separate regions

in the context of our system for Human Augmented Mapping.
The method is evaluated in terms of the distinctiveness for the
segmentation of a given environment and in terms of region
classification or categorisation for localisation purposes.

A. Overview

The rest of this paper is organised as follows. In sections
II and III we describe our framework for Human Augmented
Mapping and refer to related work. Section IV explains our
approach to the definition and representation of regions in an
environment that is evaluated in section V. A conclusion and
ideas for future work are presented in section VI.

II. SYSTEM CONTEXT

We propose a solution to the problem of representing re-
gions in a topological map for a service robot. Since this is part
of a conceptual approach to building a human comprehensible
environment representation, the overall concept of Human
Augmented Mapping is outlined to provide a context for the
method described in this paper.

A. Human Augmented Mapping - concept

We assume a service robot designed to work in a domestic
environment populated by humans - potential users. We also



suppose that for appropriate communication about the robot’s
workspace a graph representation is needed, that can incor-
porate concepts into its nodes. On the other hand we assume
that even an underlying metric representation is needed for
the robot for exact localisation and navigation to perform its
services. By taking the human knowledge and abilities into
account and controlling the mapping process interactively,
it is possible to integrate the human concepts and under-
standing of the environment into the resulting environment
representation. This helps the human to communicate with
the robot about its tasks and whereabouts according to the
semantic and conceptual understanding the user has. For the
robotic mapping process it is helpful to consider the user’s
information also for building a topological representation that
forms the link between the conceptual graph representation
and the metric map. It becomes possible to resolve ambiguities
and answer questions related to different levels of the overall
representation, e.g., “you mentioned one bedroom already, is
this the same or a second one?” (conceptual/semantic level) or
“was this a door we passed?” (topological level). This implies
that a two way communication has to be made possible.
Different types of events, i.e., external conceptual input from
the user and internal detection of topologically significant
structures, have to be considered. Figure 1 shows a possible
system in a schematic way. The interaction part is crucial
for the overall system to function but not relevant for the
work presented here. Therefore the interaction functionalities
(HRI) are not presented in detail. A form of topological
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Fig. 1. Human Augmented Mapping (HAM) overview. The dashed arrows
illustrate as a shortcut the information that is send from and to the user regard-
ing the segmentation of the environment. Solid arrows represent information
passed on internally between the respective system parts.

node distinction is needed, which is accomplished by the
region segmentation module. This module can also be used
for classification/categorisation to facilitate localisation on the
basis of a previously acquired map and is described in detail
in this article.

B. Representation

To classify spatial entities (e.g., rooms) it is necessary to
separate them as spatial unit from the rest of the environment

representation. We will term such spatial unit a region. Topo-
logically speaking, a region can contain several distinct places
(e.g., different in terms of the perceivable appearance of the
environment at the respective location) that form the nodes
of a topological graph representation. Another concept used
in the place graph is formed by locations. Those represent
specified poses (with respect to the current region) related to
distinctive places or (mostly) static objects that can later be
related to actions the service robot can perform to fulfil tasks.

C. Events

We consider two types of events that can trigger the system
to segment the environment in the internal representation. One
is to receive external input that annotates a certain spatial entity
with a label (e.g, “... this is Elin’s office...”). The other type
of event is the data driven detection of a “new area”. One
possible solution is a gateway detection, but in this work we
concentrate on investigating a feature descriptor based method
for the segmentation of the environment and its possible use
for the classification of specific regions.

III. TOPOLOGICAL AND HYBRID MAPPING

Since our presented work concentrates on obtaining a topo-
logical partitioning of a given environment but is embedded
in a context of hybrid (metric/topological) mapping we give
an overview of related work in both areas.

A. Topological mapping

Approaches to topological environment representation, or
map building, have been reported in the context of different
presentation strategies or learning. One strategy is to predefine
the topological structure of an environment and use this map
for localisation and navigation purposes. Nourbakhsh et al.
used this strategy for their implementation of a path planning
system for “Dervish” [16]. The limitations of such an approach
in the context of our Human Augmented Mapping framework
and the arbitrary environment we assume are obvious: the
complete possible working environment for the robot needs to
be known in advance, including all possible transitions along
the edges and measurements to describe doors and hallway
intersections.
Other, more adaptive methods that assume the robot to

acquire a topological representation of its environment are
based on (sensory) data obtained while travelling. Those can
be subdivided in unsupervised and supervised approaches.
An unsupervised/autonomous method for the detection of

places is suggested by Beeson et al. [2]. The authors propose
to use the extended Voronoi graph for the segmentation of
the environment which was initially investigated by Choset et
al. [4] and under a paradigm for an exploration strategy by
Kuipers and Byun [10]. Their definition of a place suits the
requirements and abilities of an autonomous system, but does
not necessarily correspond to a personalised representation of
a human user. This limitation can be observed also for other
completely unsupervised methods of topology learning, as for
instance proposed by Tapus et al. [19]. Here a method based



on a combination of images and laser range data is used. The
appearance of a certain area is captured as a “fingerprint”,
a string that represents different types of observed features
(colour occurrences, vertical lines, corners, etc.) in the angular
order they were perceived in. Such fingerprints are actually a
rather concise description of a certain area that can be ob-
tained on-line and can probably be triggered by both external
or internal events. A disadvantage of the purely sequential
representation though is that not the area (region) itself is
captured as a spatial entity.
Another approach to segment different regions into a topo-

logical graph by autonomously detecting door passages is used
to show the use of clarification dialogues in the context of
Human Augmented Mapping by Kruijff et al. [9]. The graph
obtained separates clearly only those regions from each other
that have been labelled by the user, but so far the method does
not incorporate the area information. The topological nodes are
defined by associating travelled paths to the label.
The capturing of a complete area as one unit is suggested

by Diosi et al. [5], who use a watershed implementation
after interactively labelling positions that are then related to
the areas that include them respectively. Compared to our
approach, a clear difference lies in the assumption implicitly
understood from Diosi et al. that all rooms and and other areas
have to be specified in one complete tour to avoid merging of
too many unlabelled regions into one “room”. We consider
this a strong limitation. In a pilot study [23] it was observed
that potential users do not necessarily describe every room or
area to a robot, but pick those that they personally consider
important.
Mozos et al. show, how the category of a certain area (room,

doorway, or corridor) can be determined with the help of
supervised learning [15]. They generate a number of features
from raw laser range data sets that were obtained at different
locations corresponding to the named categories and use these
features to form a training data base for the learning method.
We adopt the idea of using a set of features to represent a
laser range data set, that we obtain in regions, but use an even
more concise set of features (see section IV for details).
For the representation of convex areas Kröse showed that

it is possible to represent such regions reliably by obtaining
only one sample range data set and transform it to its centre
point and bearing with the help of a principal component
analysis to anticipate future scans [8]. This method alone has
the limitation of working robustly only in convex spaces but
we believe that it is usable also for other areas as one method
in a more complex framework. Our representation for regions
is thus related to this proposed approach.
An approach to supervised learning of topology was re-

ported by Althaus and Christensen [1]. They had a user guiding
a robot through an office environment and assumed an explicit
external trigger given by the user, when a new node in the
topological graph had to be created. They assumed nodes as
rooms that allowed for activities and doorways / gateways as
edges. The triggering event had to occur exactly (metrically)
where the link between nodes should be placed. The approach

presented here offers a more lax strategy to supervised map
annotation.

B. Hybrid mapping

A significant number of publications report on work in
hybrid and hierarchical mapping. The motivation to build
hierarchies of maps, e.g., to link metric or feature based local
maps in global topological graph structures lies in two issues
in robotic mapping. One is the computational complexity of
metric maps, that can be reduced significantly by separating
the environment representation into smaller maps that are
linked by a topological graph [3], [13], [18]. The other issue
is the incorporation of semantics that requires a topological
or even conceptual level for the integration of the semantic
information, but on the other hand needs in some cases to
rely on a metric low-level representation for exact navigation
purposes [7], [12]. One difference of these so far existing
hybrid methods compared to ours is that the acquisition of
the local maps is done either autonomously based on the
particular specification on how the local map (e.g., a place)
is defined [3], [12], [13], [18] or a priori as grid maps that
are then linked into the hierarchy of maps and/or concepts by
an anchoring technique [7]. Our concept requires a simple,
concise description for the regions to be incorporated in our
framework in an on-line fashion.

IV. STATISTICS BASED DEFINITION OF REGIONS

In this section we explain our approach to represent regions
with data obtained from a laser range finder. We assume that
the characteristics of an arbitrary region can be captured from
a rather small data set (in our case a 360◦ range scan) obtained
at one position. We assume also that for continuous updates
(consistency checks) a data set covering 180◦ can be used in
a similar way but leave that as subject to future investigations.
For convex areas the validity of the initial assumption could
be shown by Kröse [8], but we believe that characteristic
properties of arbitrary areas can be captured with a similar
approach. Mozos et al. [15] proposed the use of a feature
set obtained from raw laser range for the supervised learning
of “region categories”. Our concept requires the acquisition of
the environment representation without prior knowledge of the
particular surroundings, i.e., it is not obvious that a respective
system can previously be trained on some generic data set
that suits the majority of possible working spaces. Thus, the
description for regions we use to define the segmentation of
the environment has to be even more concise so that it can be
used in an on-line fashion. We are in fact able to show that
even with a reduced set of statistic features a fairly precise
categorisation of different regions can be obtained from only
a very small set of interactively specified data samples.
We assume the axes of the largest ellipse fitting the range

data as two characterising features and the mass (area) of the
complete space covered by the scan as a third. The ellipse itself
allows to decide which geometrically defined area belongs to
the region. We are aware that this is only a rough estimate,
since not all parts of a rectangular room can be covered by just



one ellipse and in some cases areas outside the actual region
might be assigned to it. We leave the solution to those issues
to other methods like a gateway detection and clarification
dialogues that can be invoked in ambiguous situations. We also
assume that, although we present our approach as a “one-shot”
method for the initial specification of a region in this paper, the
representation can be continuously updated by the integration
of features obtained from current poses in the overall context
of our framework.
We investigate thus the three following features that char-

acterise a laser range data set {Xi : 0 ≤ i < N}, where N is
the number of data points Xi = (xi, yi). Those features are:
a) the area (or mass) m of the “visible” part of the repre-
sented region, and

b) the maximum range l1 and l2 along the two principle
components of the data set (the axes of the “main”
ellipse).

Locations according to section II can be integrated into the
region with their relative position to the centroid X̄ = (x̄, ȳ)
of the data set.
Due to the angular sampling in laser range finders the spatial

representation is non-uniform 1. To compensate for this effect
the centroid is computed as a range weighted average

X̄ = (x̄, ȳ),

with

x̄ =
1∑N−1

i=0 ri

N−1∑
i=0

rixi

and

ȳ =
1∑N−1

i=0 ri

N−1∑
i=0

riyi

where ri =
√

x2
i + y2

i is the distance of the data point from
the origin of the data set, i.e., the position of the laser range
finder. The data set is then transformed to the set {X ′

i = (xi−
x̄, yi − ȳ) : 0 ≤ i < N} relative to the centroid. To compute
the mass of the region an ordered data set is assumed, i.e.,
each data point X ′

i is required to represent a smaller bearing
angle α′

i as its neighbour X ′
i+1. This allows estimation of the

area m bordered by the data set to

m =

(
N−2∑
i=0

mi

)
+ mN−1,

with
mi =

1
2
tan(α′

i+1 − α′
i)r

′
i
2

and
mN−1 =

1
2
tan(α′

N−1 − α′
0)(r

′
N−1)

2

where r′i is the distance of the transformed point from the
centroid. Since this estimated covered area is depending on

1as a result of the equidistant angular resolution with which a laser range
finder scans the environment objects in the direct vicinity of the laser range
finder are represented with considerably more data points than objects that
are further away

objects that are placed in the region it represents an index of
clutter, which is helpful to differentiate between regions of the
same basic layout, but with different furnishing.
In order to obtain l1 and l2 a principal component analysis

(PCA) has to be performed. The principal components corre-
spond to the two eigenvectorsE1 and E2 (to the corresponding
eigenvalues λ1 and λ2) of the covariance matrix Q with

QEi = λiEi, i = 1, 2

where

Q =
[

CXX CXY

CY X CY Y

]
and

CXX =
N

(N − 1)
∑N−1

i=0 ri

N−1∑
i=0

rix
′
i
2
,

CY Y =
N

(N − 1)
∑N−1

i=0 ri

N−1∑
i=0

riy
′
i
2

and

CXY = CY X =
N

(N − 1)
∑N−1

i=0 ri

N−1∑
i=0

rix
′
iy

′
i.

The covariances also have to be weighted due to the non-
uniform sampling of the laser range data set2. We use the linear
weights ri, interpreting the original distances as the factor
responsible for the distribution of the data samples around the
laser range finder, which we have to compensate for. The two
features l1 and l2 are now estimated as the maximum distances
represented in the data set along the bearing angles of E1

and E2. To make sure that such a point is found, a tolerance
threshold around the bearing angle is employed. The data set
is now represented by the quadruple reg = (name, m, l1, l2)
and stored as a basis for comparisons. Also the obtained
description is used to decide if already specified locations
happen to be inside the covered area and thus can be assigned
to the specified region in the place graph at the higher level
of our framework.
To compare two region representations a simple nearest

neighbour search over the Euclidean distances between ob-
tained features m, l1 and l2 is performed. The distances are
normalised with their average value to compensate for the
significantly different orders of magnitude. In a number of
tests with different distance measures and with different weight
settings we found, that the overall results for the categorisation
of rooms did not vary significantly which allowed us to choose
this rather simple method.

V. EVALUATION

The method we present to represent regions in a map can be
evaluated in two different contexts. Firstly, we want to know
about the distinctiveness or the segmentation power of our
features. I.e., we need to know, how well the environment

2we use the formula for weighted variances according to
www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weighvar.pdf.



Fig. 2. The ten rooms of our office environment, that were used for the tests
(R1-R10).

is described with regions that have been specified using the
method described above. Secondly, we can use our feature
sets for a classification/categorisation approach to facilitate
localisation. Here different issues have to be considered. One
is that we have a metric SLAM method integrated in the
system that allows constant and exact localisation (in case that
we are not dealing with “woken up” or “kidnapped” robot).
What we thus are interested in is the ability for the system to
report its current position in the context of the place graph or
topological map it acquired, which means that also positions
that are initially not included in the description of one region
can be recognised as consistent with it. A second issue is in
fact to facilitate localisation in a “waking up” or “kidnapped
robot” scenario by reducing the search space for localisation
on the basis of the metric map(s) or a topological exploration
strategy. Assumed that the system knows to be either in room
A or room B, but definitely not in any other room, can reduce
the effort in exact localisation for large environments. We
evaluate our proposed method in the two different contexts
of distinctiveness and categorisation.

A. Categorisation

We tested our method in the context of classification and
recognition of specific areas (rooms) for a number of rooms in
our office environment. Figure 2 shows a schematic drawing.
Looking at the picture it becomes obvious that certain groups
of rooms can be identified considering the size. Within the
groups the rooms are quite similar to each other as far as their
size and shape are concerned. Since additionally the larger
rooms correspond to robotic or vision laboratories and the
kitchen, where the smaller rooms are offices and a workshop,
they are also quite similarly furnished. Thus, it is not surprising
that the results for the classification and recognition of partic-
ular rooms are not convincing. In a test setup we used stored
region representations (feature sets) that were compared to all
other feature sets available. The nearest neighbour according
to the description in the previous section was picked as the
recognised region. The overall recognition rate for this test
was 40% which is clearly not sufficient for classification. For

other test setups (using the average of the feature descriptions
for each region or a one-shot presentation) we had similar
low rates. We refrained thus from using the method for the
classification of particular regions. Still, we were interested to
see if it would be applicable for a categorisation that could
be used to facilitate localisation.
Looking at the rooms in three groups or categories (i.e.,

“large open spaces” = R1, R2, R5, R7, “medium size clut-
tered/odd offices” = R8, R9, R10, and “small cluttered offices”
= R3, R4, R6), we observe a recognition rate of 88%. Here
it has to be noted that the categories were chosen only from
the roughly estimated size of the complete room. We noticed
that the errors mostly occurred for one of the medium size
ones. Now, this office (R10) has a considerably different
shape (L-shape) and is heavily cluttered with office furniture.
This office can easily be perceived as several small, cluttered
offices which were in fact the ones it got confused with. Since
our framework assumes no prior knowledge of categories, a
grouping of defined regions would have to be done according
to a similarity measure. Such a measure could be the likelihood
of confusing a particular feature set with another that belongs
to a differently labelled region.
Grouping according to this measure (i.e., “large open

spaces” = R1, R2, R5, R7, “medium size offices” = R8, R9,
and “small/odd, very cluttered offices” = R3, R4, R6, R10)
would result in a recognition rate of 94%. The remaining errors
are mainly due to the fact that a previously correct “in group”
recognition for R10 becomes an error by regrouping. These
rates suggest, that it is in fact possible to give a rather strong
estimate for the validity of a hypothesis for global localisation
in terms of categories of rooms. We believe that this holds
for most indoor environments in which at least two types of
rooms can be found. The uncertainty for a global localisation
in a “waking up” scenario could thus be reduced significantly
before invoking either a metric localisation method or an ex-
ploration strategy to disambiguate the situation. Such strategies
have been proposed already by Kuipers and Byun [10] and
have been investigated later also by Seiz et al. [17].

B. Distinctiveness

The other issue to be evaluated is the distinctiveness of the
method. Given that a particular region is presented to the
system the question is, how dependent the acquired repre-
sentation is on the current position of the robot. Intuitively
and along the argumentation of Kröse [8] one would assume,
that the data obtained in a simply structured (but not empty)
convex room with only one door will be rather similar for
different positions. Figure 3 shows such a room (R7) with the
positions from where the 360◦ range data sets were taken (P1–
P6). Additionally the positions where the system calculated
the corresponding centre of the obtained laser range data are
marked with grey dots and numbers 1–6. Not surprisingly they
all fall into an area of about 35cm radius, but one (no.6). This
particular data set was obtained very close to and in the line of
the doorway, where a significant portion of the corridor could
be perceived already. Table I shows the changes of different



Fig. 3. One of the rooms (the kitchen – R7) with the positions (P1-P6) from
where the data sets were obtained. The numbers 1-6 mark the corresponding
centroids calculated for those sets. The thinner (blue) lines represent the line
features extracted for the metric SLAM (partly caused by a sofa placed along
one wall and thus not corresponding to the walls themselves.

features or measures from one position to another. From those
measures it becomes obvious that for the major part of nearly
convex regions the position to acquire the features for this
region is arbitrary. In the immediate proximity of doorways
though the representation becomes slightly unstable. This is
still acceptable when interpreted in the sense of a human
environment representation, where a door passage might be
a transition not only in the spatial sense and thus is difficult
to describe in a binary way as strictly “inside” or “outside”.
More interesting than the convex and nearly convex regions

are actually those that are of particular shape or have a very
distinct type of furnishing. This is in our set of rooms the
case for R8 and R9 (furniture) and R10 (shape and furniture).
Figure 4 shows similar to figure 3 the positions (P1–P5) from
where data sets were taken together with the corresponding
centroids (1–5) and the laser range data features. Additionally
an illustration of the furnishing that makes R8 look like two
cubicles connected by a corridor is shown. Still, since the room
is only of medium size and thus the “cubicles” are not too
deep, a large portion of the room can be perceived from at
least positions P2, P3, and P4. Accordingly the feature sets are
altered gradually along the path from P1 to P5. Table II shows
the variation over a number of measures for rooms R8, R9,
and R10. For those cluttered or heavily structured rooms the

TABLE I

STATISTICAL VALUES FOR R7

Feature Mean Variance

“Mass” / area (M) [m2] 21.23 2.73
Length 1 ( major axis) (L1) [m] 8.45 4.37
Length 2 ( minor axis) (L2) [m] 5.10 0.13
Excentricity (E) 0.71 0.04
Distance between centroids (D) [m] 0.34 0.05
Angular difference between major axes (A) [rad] 1.11 1.04

Fig. 4. Positions from where data sets were taken in R8 together with the
laser range data features (thinner (blue) lines) (left) and a schematic drawing
of the furnishing in R8 (right).

TABLE II

STATISTICAL VALUES FOR R8, R9, R10

R8 R9 R10

Feature Mean Var Mean Var Mean Var

m 18.04 10.71 13.63 9.93 23.45 364.62
l1 7.67 9.17 7.03 5.68 8.56 3.22
l2 2.76 0.53 3.42 0.44 2.39 0.38
E 0.82 0.05 0.84 0.01 0.95 0.00
D 1.15 0.33 1.02 0.26 1.47 0.47
A 1.33 1.57 1.02 0.63 1.14 0.73

higher variances (compared to table I) for our initial features
(m, l1, l2) indicate an unstable geometric representation of the
perceived area along the paths the robot took. Apart from those
the distance of the centroids from each other can give quite
good an indication for the change of the area perceived when
used while travelling. The most significant change for R10
though can be observed in the area. The other features do not
change as significantly as each part of the room represents an
area quite similar to the others as far as the shape is concerned,
but different in direction and size.
The angular distances can be interpreted as follows: In case

of a generally low excentricity of the main ellipse an angular
distance close to any multiple of π/2 does not represent a
significant change since the ellipse is almost circular. In the
case of a high excentricity an angular distance close to any odd
multiple of π would indicate a significant change of the shape
of the perceived environment. This means for our method, that
measurements for “similarity” can be based on those features.
The features displayed in the tables above can all be derived
from the originally calculated features m, l1 and l2 together
with the global position of the region represented.

C. Summary

From these results we conclude that our method to represent
distinct regions works well as a categorisation approach for
global localisation. More important, the distinctiveness for
the segmentation of an environment is very good for sim-
ply structured regions as almost convex rooms. In strongly



structured areas the representation is altered depending on
the position the data set was obtained from. Still, since the
observed changes occur gradually a similarity measure can
be used here to identify ambiguities that can be resolved by
the interaction with the user. The investigation, in how far
our concise feature based representation can be used with
continuously obtained data samples to identify transitions from
one topologically consistent region into the next one, is subject
to current work.

VI. CONCLUSION

With this paper we explained a method for a concise
statistical feature based representation and segmentation of
space in the context of Human Augmented Mapping. We
presented the system context in which we see the applicability
of this method and evaluated our approach in terms of region
categorisation for localisation purposes and distinctiveness for
segmentation.
Since we see the approach as part of a system context

that can incorporate other, complementing methods, we can
conclude that the method described in this paper is clearly
applicable for our purposes. Given a respective measurement
for similarity the method performed with a correct recog-
nition rate of 94% for different categories of rooms. This
is promising for the reduction of uncertainty in a global
localisation approach. In terms of distinctiveness our method
is a very concise approach to model geometrically stable
regions as one area but also to detect transitions from one
geometrically stable area into another one. This might result
in an ambiguous situation as far as the direct relation to the
human user’s environment representation is concerned. Given
the opportunity of interaction with a user that is provided by
our framework, such possibly ambiguous situations can be
resolved.
For our future work we consider the application of our

statistical features in a continuously updated fashion to in
fact define a topological map based on regions of geometrical
stability with transitions into new regions. Such a map can
then be compared and integrated with one derived from a pure
gateway detection.
Another issue for future work is the application of an

exploration strategy for global localisation. This can be based
on an initial hypothesis calculated with the categorisation
provided by our presented method.
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