
A Comparison of Generalized Linear Discriminant

Analysis Algorithms

Cheong Hee Park 1

Dept. of Computer Science and Engineering

Chungnam National University

220 Gung-dong, Yuseong-gu

Daejeon, 305-763, Korea

Haesun Park 2

College of Computing

Georgia Institute of Technology

801 Atlantic Drive, Atlanta, GA, 30332, USA

Abstract

Linear Discriminant Analysis (LDA) is a dimension reduction method which finds an opti-

mal linear transformation that maximizes the class separability. However, in undersampled

problems where the number of data samples is smaller than the dimension of data space,

it is difficult to apply the LDA due to the singularity of scatter matrices caused by high

dimensionality. In order to make the LDA applicable, several generalizations of the LDA

have been proposed recently. In this paper, we present theoretical and algorithmic relation-

ships among several generalized LDA algorithms and compare their computational com-

plexities and performances in text classification and face recognition. Towards a practical

dimension reduction method for high dimensional data, an efficient algorithm is proposed,
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which reduces the computational complexity greatly while achieving competitive predic-

tion accuracies. We also present nonlinear extensions of these LDA algorithms based on

kernel methods. It is shown that a generalized eigenvalue problem can be formulated in the

kernel-based feature space, and generalized LDA algorithms are applied to solve the gen-

eralized eigenvalue problem, resulting in nonlinear discriminant analysis. Performances of

these linear and nonlinear discriminant analysis algorithms are compared extensively.

Key words: Dimension reduction, Feature extraction, Generalized Linear Discriminant

Analysis, Kernel methods, Nonlinear Discriminant Analysis, Undersampled problems

1 Introduction

Linear Discriminant Analysis (LDA) seeks an optimal linear transformation by

which the original data is transformed to a much lower dimensional space. The

goal of LDA is to find a linear transformation that maximizes class separability in

the reduced dimensional space. Hence the criteria for dimension reduction in LDA

are formulated to maximize the between-class scatter and minimize the within-class

scatter. The scatters are measured by using scatter matrices such as the between-

class scatter matrix (Sb), within-class scatter matrix (Sw) and total scatter matrix
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(St). Let us denote a data set A as

A = [a1, · · · , an] = [A1, A2, · · · , Ar] ∈ Rm×n, (1)

where a collection of data items in the class i (1 ≤ i ≤ r) is represented as a

block matrix Ai ∈ Rm×ni and Ni is the index set of data items in the class i. Each

class i has ni elements and the total number of data is n =
∑r

i=1 ni. The between-

class scatter matrix Sb, within-class scatter matrix Sw and total scatter matrix St are

defined as

Sb =
r∑

i=1

ni(ci − c)(ci − c)T , Sw =
r∑

i=1

∑

j∈Ni

(aj − ci)(aj − ci)
T ,

St =
n∑

j=1

(aj − c)(aj − c)T

where ci = 1
ni

∑
j∈Ni

aj and c = 1
n

∑n
j=1 aj are class centroids and the global

centroid, respectively.

The optimal dimension reducing transformation GT ∈ Rl×m (l < m) for LDA is

the one that maximizes the between-class scatter and minimizes the within-class

scatter in a reduced dimensional space. Common optimization criteria for LDA are

formulated as the maximization problem of objective functions

J1(G) =
trace(GT SbG)

trace(GT SwG)
, J2(G) = trace((GT SwG)−1(GT SbG)),

J3(G) =
|GT SbG|
|GT SwG| (2)

where S̃i = GT SiG for i = b, w are scatter matrices in the space transformed by

GT . It is well known [1,2] that when Sw is nonsingular, the transformation matrix

G is obtained by the eigenvectors corresponding to the r− 1 largest eigenvalues of

S−1
w Sbg = λg. (3)
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However, for undersampled problems such as text classification and face recog-

nition where the number of data items is smaller than the data dimension, scatter

matrices become singular and their inverses are not defined. In order to overcome

the problems caused by the singularity of the scatter matrices, several methods

have been proposed [3–8]. In this paper, we present theoretical relationships among

several generalized LDA algorithms and compare computational complexities and

performances of them.

While linear dimension reduction has been used in many application areas due

to its simple concept and easiness in computation, it is difficult to capture a non-

linear relationship in the data by a linear function. Recently kernel methods have

been widely used for nonlinear extension of linear algorithms [9]. The original data

space is transformed to a feature space by an implicit nonlinear mapping through

kernel methods. As long as an algorithm can be formulated with inner product com-

putations, without knowing the explicit representation of a nonlinear mapping we

can apply the algorithm in the transformed feature space, obtaining nonlinear ex-

tension of the original algorithm. We present nonlinear extensions of generalized

LDA algorithms through the formulation of a generalized eigenvalue problem in

the kernel-based feature space.

The rest of the paper is organized as follows. In Section 2, a theoretical comparison

of generalized LDA algorithms is presented. We study theoretical and algorithmic

relationships among several generalized LDA algorithms and compare their com-

putational complexities and performances. Computationally efficient algorithm is

also proposed which computes the exactly same solution as that in [4,10] but saves

computational complexities greatly. In Section 3, nonlinear extensions of these gen-

eralized LDA algorithms are presented. A generalized eigenvalue problem is for-

mulated in the nonlinearly transformed feature space for which all the generalized
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LDA algorithms can be applied resulting in nonlinear dimension reduction meth-

ods. Extensive comparisons of these linear and nonlinear discriminant analysis al-

gorithms are conducted. Conclusion follows in Section 4.

For convenience, important notations used throughout the rest of the paper are listed

in Table 1.

2 A Comparison of Generalized LDA Algorithms for Undersampled Prob-

lems

2.1 Regularized LDA

In the regularized LDA (RLDA) [3], when Sw is singular or ill-conditioned, a di-

agonal matrix αI with α > 0 is added to Sw. Since Sw is symmetric positive

semidefinite, Sw + αI is nonsingular with any α > 0. Therefore we can apply the

algorithm for the classical LDA to solve the eigenvalue problem

Sbg = λ(Sw + αI)g. (4)

Two-Class Problem

We now consider a simple case when the data set has two classes, since in that

case a comparison of generalized LDA algorithms is easy to illustrate. The two-

class problem in LDA is known as Fisher Discriminant Analysis (FDA) [2]. In a

two-class case, Sb can be expressed as

Sb =
n1n2

n
(c1 − c2)(c1 − c2)

T , (5)
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and the eigenvalue problem (3) is simplified to

S−1
w (c1 − c2)(c1 − c2)

T g = λg (6)

when Sw is nonsingular. The solution for (6) is a nonzero multiple of g = S−1
w (c1−

c2), and the 1-dimensional representation of any data item z ∈ Rm×1 by LDA is

obtained as

gT z = (c1 − c2)
T S−1

w z = (c1 − c2)
T UwΣ−1

w UT
w z

where Sw = UwΣwUT
w is the Eigenvalue Decomposition (EVD) of Sw. Since Sw +

αI = Uw(Σw + αI)UT
w , the regularized LDA gives the solution

gT z = (c1 − c2)
T Uw(Σw + αI)−1UT

w z,

and the regularization parameter α affects the scales of the principal components

of Sw.

In the regularized LDA, the parameter α is to be optimized experimentally since

no theoretical procedure for choosing an optimal parameter is easily available. Re-

cently, a generalization of LDA through simultaneous diagonalization of Sb and

Sw using the generalized singular value decomposition (GSVD) has been devel-

oped [4]. This LDA/GSVD, summarized in the next section, does not require any

parameter optimization.

2.2 LDA based on the Generalized Singular Value Decomposition

Howland et al. [4,10] applied the Generalized Singular Value Decomposition (GSVD)

due to Paige and Saunders [11] to overcome the limitation of the classical LDA.

When the GSVD is applied to two matrices Z1 and Z2 with the same number of
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columns, p , we obtain

UT
1 Z1X = [ Γ1︸︷︷︸

γ

0︸︷︷︸
p−γ

] and UT
2 Z2X = [ Γ2︸︷︷︸

γ

0︸︷︷︸
p−γ

] for γ = rank







Z1

Z2







where U1 and U2 are orthogonal and X is nonsingular, ΓT
1 Γ1+ΓT

2 Γ2 = Iγ and ΓT
1 Γ1

and ΓT
2 Γ2 are diagonal matrices with nonincreasing and nondecreasing diagonal

components respectively.

The method in [4] utilized the representations of the scatter matrices

Sb = HbH
T
b , Sw = HwHT

w , and St = HtH
T
t , where (7)

Hb = [
√

n1(c1 − c), · · · ,
√

nr(cr − c)] ∈ Rm×r, (8)
Hw = [A1 − c1e1, · · · , Ar − crer] ∈ Rm×n, (9)
Ht = [a1 − c, · · · , an − c] ∈ Rm×n, (10)

and ei = [1, · · · , 1] ∈ R1×ni . Suppose the GSVD is applied to the matrix pair

(HT
b , HT

w ) and we obtain

UT
b HT

b X = [Γb 0] and UT
w HT

wX = [Γw 0], (11)

where Ub ∈ Rr×r and Uw ∈ Rn×n are orthogonal, X ∈ Rm×m is nonsingular, and

ΓT
b Γb + ΓT

wΓw = Is for s = rank







HT
b

HT
w







. Then Eqs. in (11) give

XT SbX = XT (HbH
T
b )X = (XT HbUb)(U

T
b HT

b X) = [Γb 0]T [Γb 0], (12)
XT SwX = XT (HwHT

w )X = (XT HwUw)(UT
w HT

wX) = [Γw 0]T [Γw 0].

From (12) and ΓT
b Γb + ΓT

wΓw = Is, we have
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XT SbX =




ΓT
b Γb

0m−s



≡




Iµ

Dτ

0s−µ−τ

0m−s




and (13)

XT SwX =




ΓT
wΓw

0m−s



≡




0µ

Eτ

Is−µ−τ

0m−s




, (14)

where Dτ +Eτ = Iτ and the subscripts in I and 0 denote the size of square identity

and zero matrices. Denoting the diagonal elements in ΓT
b Γb as ηi’s and the diagonal

elements in ΓT
wΓw as ζi’s, we have

ζiSbxi = ηiSwxi i = 1, · · · ,m, (15)

where xi is the column vectors of X . Note that xi, i = s + 1, · · · ,m, belong to

null(Sb)∩ null(Sw). Hence ηi and ζi for i = s + 1, · · · ,m in Eq. (15) can be any

arbitrary numbers.

By partitioning X in (13 - 14) as

X = [X1︸︷︷︸
µ

X2︸︷︷︸
τ

X3︸︷︷︸
s−µ−τ

X4︸︷︷︸
m−s

] ∈ Rm×m, (16)

the generalized eigenvalues and eigenvectors obtained by the GSVD can be clas-

sified as shown in Table 2. For the last m − s vectors x belonging to null(Sw) ∩
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null(Sb),

0 = xT Sbx = (xT Hb)(H
T
b x) = ‖xT Hb‖2 =

r∑

i=1

ni|xT ci − xT c|2 and

0 = xT Swx =
n∑

j=1

|xT aj − xT ci|2 where aj belongs to a class i.

Hence 



xT ci = xT c for i = 1, · · · , r

xT aj = xT ci for all aj in a class i,

(17)

therefore

XT
4 z = XT

4 c (18)

for any given data item z = ai. This implies that the vectors xi, i = s + 1, · · · ,m,

belonging to null(Sb) ∩ null(Sw) do not convey discriminative information among

the classes, even though the corresponding eigenvalues are not necessarily zeros.

Since rank(Sb) ≤ r − 1, from Eqs. (13-14) we have

xT
i Sbxi = 0 and xT

i Swxi = 1 for r ≤ i ≤ s,

and the between-class scatter becomes zero by the projection onto the vector xi.

Hence r − 1 leftmost columns of X gives an optimal transformation GT
h for LDA.

This method is called LDA/GSVD.

An Efficient Algorithm for LDA/GSVD

The algorithm to compute the GSVD for the pair (HT
b , HT

w ) was presented in [4] as

follows.

(1) Compute the Singular Value Decomposition (SVD) of Z =




HT
b

HT
w



∈ R(r+n)×m:
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Z = P




Λ 0

0 0




UT where s = rank(Z) and P ∈ R(r+n)×(r+n) and U ∈ Rm×m

are orthogonal and the diagonal components of Λ ∈ Rs×s is nonincreasing.

(2) Compute V from the SVD of P (1 : r, 1 : s) 3 , which is P (1 : r, 1 : s) =

WΓV T .

(3) Compute the first r − 1 columns of X = U




Λ−1V 0

0 I




, and assign them to

the transformation matrix Gh.

Now we show that this algorithm can be computed rather simply, producing an

efficient and intuitive approach for LDA/GSVD. Since ΓT
b Γb + ΓT

wΓw = Is, from

(13-14), we have

XT StX = XT SbX + XT SwX =




Is 0

0 0




(19)

where s = rank(Z). Eq. (19) implies s = rank(St) and from the step 3 in the

LDA/GSVD algorithm

St = X−T




Is 0

0 0




X−1 = U




Σ1 0

0 0




UT , Σ1 = ΛT Λ (20)

3 The notation P (1 : r, 1 : s) which may appear as a MATLAB shorthand denotes a

submatrix of P composed of the components from the first to the r-th row and from the

first to s-th column.
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Algorithm 1 An efficient algorithm for LDA/GSVD

(1) Compute the EVD of St : St =




U1 U2







Σ1 0

0 0







UT
1

UT
2




.

(2) Compute V from the EVD of S̃b ≡ Σ
−1/2
1 UT

1 SbU1Σ
−1/2
1 : S̃b = V ΓT

b ΓbV
T .

(3) Assign the first r − 1 columns of U1Σ
−1/2
1 V to Gh.

which results in the EVD of St. Partitioning U as U = [ U1︸︷︷︸
s

U2︸︷︷︸
m−s

], we have

X = U




Λ−1V 0

0 I




=




U1Σ
−1/2
1 V U2


 . (21)

By substituting X in (13) with Eq. (21),

Σ
−1/2
1 UT

1 SbU1Σ
−1/2
1 = V ΓT

b ΓbV
T . (22)

Note that the optimal transformation matrix Gh by LDA/GSVD is obtained by the

leftmost r − 1 columns of X , which are the leftmost r − 1 columns of U1Σ
−1/2
1 V .

Eqs. (20) and (22) show that U1 and Σ1 can be computed from the EVD of St and

V from the EVD of Σ
−1/2
1 UT

1 SbU1Σ
−1/2
1 . This new approach for LDA/GSVD is

summarized in Algorithm 1.

In Algorithm 1, the matrices U1 and Σ1 in the EVD of St ∈ Rm×m can be obtained

by the EVD of HT
t Ht ∈ Rn×n instead of HtH

T
t ∈ Rm×m [1] by which compu-

tational complexity can be reduced from O(m3) to O(n3). Especially when m is

much bigger than n, computational savings become great. Let the EVD of HT
t Ht

be

HT
t Ht = [ J1︸︷︷︸

s

J2︸︷︷︸
n−s

]




D1 0

0 0







JT
1

JT
2




, (23)
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where s = rank(Ht) = rank(St). From (23)

St(HtJ1) = Ht(H
T
t Ht)J1 = (HtJ1)D1,

and therefore the columns in HtJ1 are eigenvectors of St corresponding to nonzero

eigenvalues in the diagonal of D1. Since (HtJ1)
T (HtJ1) = D1, we obtain the ortho-

normal eigenvectors and corresponding nonzero eigenvalues of St by HtJ1D
−1/2
1

and D1, which are U1 and Σ1 respectively. In this new approach, we just need to

compute the EVD of a much smaller n× n matrix HT
t Ht instead of m×m matrix

St = HtH
T
t when m >> n. However, in the regularized LDA or the method by

Chen et al. which is presented next, we can not resort to this approach. The regu-

larized LDA needs the entire m eigenvectors of Sw and the method based on the

projection to null(Sw) needs to compute a basis of null(Sw) which are eigenvectors

corresponding to zero eigenvalues.

Two-Class Problem

Now we consider the two-class problem in LDA/GSVD. By Eq. (5), we have

Σ
−1/2
1 UT

1 SbU1Σ
−1/2
1 = Σ

−1/2
1 UT

1 ρ(c1 − c2)(c1 − c2)
T U1Σ

−1/2
1

=

(
w

‖w‖2

)
ρ‖w‖2

2

(
w

‖w‖2

)T

,

where ρ = n1n2/n and w = Σ
−1/2
1 UT

1 (c1 − c2). Hence the transformation matrix

g ∈ Rm×1 is given by

g = νU1Σ
−1/2
1 w = νU1Σ

−1
1 UT

1 (c1 − c2)

for some scalar ν, and the dimension reduced representation of any data item z is

given by

gT z = ν(c1 − c2)
T U1Σ

−1
1 UT

1 z = ν(c1 − c2)
T S+

t z,
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where S+
t denotes the pseudoinverse of St. When Sw is nonsingular, by applying

the Sherman-Morrison formula [12] to St = Sw + Sb, we have

S−1
t = (Sw + ρ(c1 − c2)(c1 − c2)

T )−1 = S−1
w − S−1

w ρ(c1 − c2)(c1 − c2)
T S−1

w

1 + ρ(c1 − c2)T S−1
w (c1 − c2)

and

gT z = ν(c1 − c2)
T S−1

t z = ν1(c1 − c2)
T S−1

w z (24)

for a scalar ν1 = ν/(1+ρ(c1−c2)
T S−1

w (c1−c2)). Eq. (24) shows that LDA/GSVD

is equal to the classical LDA when Sw is nonsingular.

2.3 A Method based on the Projection onto null(Sw)

In face recognition, in the efforts to overcome the singularity of scatter matrices

caused by high dimensionality, some methods have been proposed [5,6]. The ba-

sic principle of the algorithms proposed in [5,6] is that the transformation using

a basis of either range(Sb) or null(Sw) is performed in the first stage and then in

the transformed space the second projective directions are searched. These meth-

ods are summarized in this and next section where we also present their algebraic

relationships.

Chen et al. [5] proposed a generalized method of LDA which solves undersam-

pled problems and applied it for face recognition. The method projects the original

space onto the null space of Sw using an orthonormal basis of null(Sw), and then

in the projected space, a transformation that maximizes the between-class scatter is

computed.

Consider the SVD of Sw ∈ Rm×m,

Sw = UwΣwUT
w .

13



Partitioning Uw as Uw = [Uw1︸︷︷︸
s1

Uw2︸︷︷︸
m−s1

] where s1 = rank(Sw),

null(Sw) = span(Uw2). (25)

First, the transformation by Uw2U
T
w2 projects the original data to null(Sw). Then, the

eigenvectors corresponding to the largest eigenvalues of the between-class scatter

matrix S̃b in the projected space are found. Let the EVD of S̃b ≡ Uw2U
T
w2SbUw2U

T
w2

be

S̃b = ŨbΣ̃bŨ
T
b = [Ũb1︸︷︷︸

s2

Ũb2︸︷︷︸
m−s2

]




Σ̃b1 0

0 0







ŨT
b1

ŨT
b2




, (26)

where ŨT
b Ũb = I , s2 = rank(S̃b) and Σ̃b1 ∈ Rs2×s2 . Then, the transformation

matrix Ge is obtained by

Ge = Uw2U
T
w2Ũb1. (27)

Let us call this method To-N(Sw) as an abbreviation.

Two-Class Problem

In the two-class problem, Sb is expressed as in (5) and

S̃b = Uw2U
T
w2ρ(c1 − c2)(c1 − c2)

T Uw2U
T
w2 =

(
w

‖w‖2

)
ρ‖w‖2

2

(
w

‖w‖2

)T

where ρ = n1n2/n and w = Uw2U
T
w2(c1 − c2) ∈ Rm×1. Hence the transformation

matrix g ∈ Rm×1 is obtained by

g = Uw2U
T
w2

w

‖w‖2

= νUw2U
T
w2(c1 − c2)

with ν = 1/‖w‖2. For any data item z ∈ Rm×1, the dimension reduced representa-

tion is given by

gT z = ν(c1 − c2)
T Uw2U

T
w2 z.
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Relationship with LDA/GSVD

From (26), we have




ŨT
b1

ŨT
b2




Uw2 UT
w2 Sb Uw2 UT

w2 [Ũb1 Ũb2] =




Σ̃b1 0

0 0




, (28)




ŨT
b1

ŨT
b2




Uw2 UT
w2 Sw Uw2 UT

w2 [Ũb1 Ũb2] = 0. (29)

The second equation holds due to (25). Eqs. in (28-29) imply that the column vec-

tors of Ge given in (27) belong to null(Sw) ∩ null(Sb)
c and they are discriminative

vectors, since the transformation by these vectors minimizes the within-class scatter

to zero and increases the between-class scatter. The top row of Table 2 shows that

the LDA/GSVD solution also includes the vectors from null(Sw)∩null(Sb)
c. Based

on this observation, this method To-N(Sw) can be compared with LDA/GSVD. By

denoting X in LDA/GSVD as

X = [X1︸︷︷︸
µ

X2︸︷︷︸
τ

X3︸︷︷︸
s−µ−τ

X4︸︷︷︸
m−s

], (30)

we find a relationship between X1 and Ge = Uw2U
T
w2Ũb1.

Eq. (14) implies that [X1 X4] is a basis of null(Sw). Hence any vector in null(Sw)

can be represented as a linear combination of column vectors in [X1 X4]. The

following Theorem shows the condition for any vector in null(Sw) to belong to

null(Sw) ∩ null(Sb)
c.

THEOREM 1 Any vector x belongs to null(Sw) ∩ null(Sb)
c if and only if x is rep-

resented as X1h + X4k where h 6= 0 ∈ Rµ×1 and k ∈ R(m−s)×1.
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Proof. Let x ∈ null(Sw) ∩ null(Sb)
c. Since [X1 X4] is a basis of null(Sw), x =

X1h + X4k for some h ∈ Rµ×1 and k ∈ R(m−s)×1. Suppose h = 0. Then x =

X4k ∈ null(Sw) ∩ null(Sb), which contradicts to x ∈ null(Sw) ∩ null(Sb)
c. Hence

h 6= 0.

Now let us prove that if h 6= 0 then x = X1h+X4k belongs to null(Sw)∩null(Sb)
c.

Since x = X1h + X4k ∈ null(Sw), it is enough to show x /∈ null(Sb). From (13),

xT Sbx = (X1h)T Sb(X1h) = hT (XT
1 SbX1)h = hT Iµh = ‖h‖2

2 6= 0. 2

By Theorem 1,

Uw2U
T
w2Ũb1 = X1H + X4K

for some matrices H ∈ Rµ×s2 and K ∈ R(m−s)×s2 with s2 = rank(S̃b), where

each column of H is nonzero. Hence for any data item z ∈ Rm×1, the reduced

dimensional representation by Ge = Uw2U
T
w2Ũb1 is given as

GT
e z = HT XT

1 z + KT XT
4 z. (31)

As explained in (17) of Section 2.2, since all data items are transformed to one point

by xT for x ∈ null(Sw) ∩ null(Sb), the second part KT XT
4 z in (31) corresponds to

the translation which does not affect the classification performance.

While the transformation matrix Ge = Uw2U
T
w2Ũb1 by the method To-N(Sw) is

related to X1 of LDA/GSVD as in (31), the main difference between the two meth-

ods is due to the eigenvectors in null(Sw)c ∩ null(Sb)
c, which correspond to the

second row in Table 2. The projection to null(Sw) by Uw2U
T
w2 excludes vectors in

null(Sw)c, and therefore null(Sw)c ∩ null(Sb)
c. When

rank(S̃b) < rank(Sb) ≤ r − 1

where r is the number of classes, the reduced dimension by Ge = Uw2U
T
w2Ũb1 is

16



rank(S̃b), therefore less than r − 1, while LDA/GSVD includes r − 1 vectors from

both null(Sw) ∩ null(Sb)
c and null(Sw)c ∩ null(Sb)

c. In order to demonstrate this

case, we conducted an experiment using data in text classification, of which charac-

teristics will be discussed in detail in the section for experiments. The data was col-

lected from Reuters-21578 database and contains 4 classes. Each class has 80 sam-

ples and the data dimension is 2412. After splitting the dataset randomly to training

data and test data with a ratio of 4:1, the linear transformations by LDA/GSVD

and the method To-N(Sw) were computed by using training data. While the rank

of Sb was 3, the rank of S̃b was 2 in this dataset. Hence the reduced dimension by

the method To-N(Sw) due to Chen et al. was 2. On the other hand, LDA/GSVD

produced two eigenvectors from null(Sw) ∩ null(Sb)
c and one eigenvector from

null(Sw)c ∩ null(Sb)
c, resulting in the reduced dimension 3. Figure 1 illustrates the

reduced dimensional spaces by both methods. The top three figures were generated

by LDA/GSVD. For the visualization, the data reduced to 3-dimensional space by

LDA/GSVD was projected to 2-dimensional spaces, x-y, x-z and y-z spaces, re-

spectively. In x-y space, two classes (4 and *) are well separated, while two other

classes (O and +) are mixed together. However, as shown in the second and third

figures, two classes mixed in x-y space are separated in x-z and y-z spaces along z

axis. This shows the third eigenvector from null(Sw)c∩null(Sb)
c improves the sep-

aration of classes. The bottom three figures were generated by the method based on

the projection to null(Sw). Since rank(S̃b)=2, the reduced dimension by that method

was 2 and the first figure illustrates the reduced dimensional space. The second and

third figures show that adding one more column vector from Uw2U
T
w2Ũb2 and in-

creasing the reduced dimension to 3 does not improve the separation of classes

mixed in x-y space, since the one extra dimension comes from null(Sw)∩null(Sb).

17



On the other hand, when

rank(S̃b) = rank(Sb) = r − 1,

both LDA/GSVD and the method To-N(Sw) obtain transformation matrices Gh and

Ge from null(Sw) ∩ null(Sb)
c. Then the difference between two methods comes

from the diagonal components of Ir−1 and Σ̃b1 in

GT
h SbGh = Ir−1 and GT

e SbGe = Σ̃b1

where Σ̃b1 has nonincreasing diagonal components. As shown in the experimental

results of Section 2.7, the effects of different scaling in the diagonal components

may depend on the characteristics of data.

2.4 A Method based on the Transformation by a Basis of range(Sb)

In this section, we review another two-step approach by Yu and Yang [6] proposed

to handle undersampled problems, and illustrate its relationship to other methods.

Contrary to the method discussed in Section 2.3, the method presented in this sec-

tion first transforms the original space by using a basis of range(Sb), and then in

the transformed space the minimization of within-class scatter is pursued.

Consider the EVD of Sb,

Sb = UbΣbU
T
b = [Ub1︸︷︷︸

s1

Ub2︸︷︷︸
m−s1

]




Σb1 0

0 0







UT
b1

UT
b2




,

where Ub is orthogonal, rank(Sb) = s1 and Σb1 is a diagonal matrix with non-

increasing positive diagonal components. Then range(Sb) = span(Ub1). In the

method by Yu and Yang, the original data is first transformed to an s1-dimensional
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space by Vy = Ub1 Σ
−1/2
b1 . Then the between-class scatter matrix S̃b in the trans-

formed space becomes

S̃b ≡ V T
y SbVy = Is1 .

Now consider the EVD of S̃w ≡ V T
y SwVy,

S̃w = ŨwΣ̃wŨT
w , (32)

where Ũw ∈ Rs1×s1 is orthogonal and Σ̃w ∈ Rs1×s1 is a diagonal matrix. Then

ŨT
w V T

y SbVyŨw = Is1 and ŨT
w V T

y SwVyŨw = Σ̃w. (33)

In most applications, rank(Sw) is greater than rank(Sb), and Σ̃w is nonsingular since

rank(ŨT
w V T

y SwVyŨw) = rank(Sw) ≥ rank(Sb) = rank(ŨT
w V T

y SbVyŨw) = s1.

Scaling (33) by Σ̃−1/2
w , we have

(Σ̃−1/2
w ŨT

w V T
y )Sb(VyŨwΣ̃−1/2

w ) = Σ̃−1
w , (Σ̃−1/2

w ŨT
w V T

y )Sw(VyŨwΣ̃−1/2
w ) = Is1 .

(34)

The authors in [6] proposed the transformation matrix

Gy = VyŨwΣ̃−1/2
w .

Eqs. in (34) imply that each column of Gy belongs to null(Sw)c∩null(Sb)
c. We call

this method To-R(Sb) for short.

Two-Class Problem

In a two-class problem, since

Sb = ρ(c1 − c2)(c1 − c2)
T =

(
c1 − c2

‖c1 − c2‖2

)
ρ‖c1 − c2‖2

2

(
c1 − c2

‖c1 − c2‖2

)T
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where ρ = n1n2/n, a data item is transformed to the 1-dimensional space by g =

c1−c2√
ρ‖c1−c2‖22

. The dimension reduced representation of any data item z is given by

gT z = ν(c1 − c2)
T z for some scalar ν. Note that no minimization of within-class

scatter in the transformed space is possible.

The optimization criteria by J2 and J3 in (2) are invariant under any nonsingular

linear transformation, i.e. for any nonsingular matrix F whose order is the same as

that of the column dimension of G,

Ji(G) = Ji(GF ), i = 2, 3, (35)

while the objective function J1 is not. Hence in the transformation matrix Gy =

VyŨwΣ̃−1/2
w obtained by the method To-R(Sb), none of the components Σ̃−1/2

w and

ŨwΣ̃−1/2
w involved in the second step (those in (32-34)) improves the optimiza-

tion criteria by J2 and J3. However, the following experimental results show that

the scaling by Σ̃−1/2
w can make dramatic effects on the classification performances.

Postponing the detailed explanation on the data sets and experimental setting un-

til Section 2.7, experimental results on the face recognition data sets are shown in

Table 3. After dimension reduction, 1-NN classifier was used in the reduced dimen-

sional space.

2.5 A Method of PCA plus Transformations to range(Sw) and null(Sw)

As shown in the analysis of the compared methods, they search for discriminative

vectors in null(Sw)∩ null(Sb)
c and null(Sw)c∩ null(Sb)

c. The method To-N(Sw)

by Chen et al. finds solution vectors in null(Sw)∩ null(Sb)
c and To-R(Sb) by Yu et

al. restricts the search space to null(Sw)c∩ null(Sb)
c. LDA/GSVD by Howland et

al. finds solution from both spaces, however the number of possible discriminative
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vectors can not be greater than rank(Sb), possibly resulting in solution vectors only

from null(Sw)∩ null(Sb)
c in the case of high dimensional data. Recently Yang et

al. [7] have proposed a method to obtain solution vectors in both spaces, which we

will call To-NR(Sw) .

In the method by Yang et al., first, the transformation by the orthonormal basis of

range(St), as in PCA, is performed. Let the SVD of St be

St = UtΣtU
T
t = [Ut1︸︷︷︸

s

Ut2︸︷︷︸
m−s

]




Σt1 0

0 0







UT
t1

UT
t2




where s = rank(St). In the transformed space by Ut1, let the within-scatter matrix

be S̃w = UT
t1SwUt1. Then the basis of null(S̃w) and range(S̃w) can be found by the

EVD of S̃w as

S̃w = ŨwΣ̃wŨT
w = [Ũw1 Ũw2]




Σ̃w1 0

0 0







ŨT
w1

ŨT
w2




. (36)

In the transformed space by the basis Ũw2 of null(S̃w), let Y be the matrix whose

columns are the eigenvectors corresponding to nonzero eigenvalues of

S̄b ≡ ŨT
w2U

T
t1SbUt1Ũw2. (37)

On the other hand, in the transformed space by the basis Ũw1 of range(S̃w), let

Z be the matrix whose columns are the eigenvectors 4 with the k largest nonzero

eigenvalues of Ŝ−1
t Ŝb where Ŝb ≡ ŨT

w1U
T
t1SbUt1Ũw1 and Ŝt ≡ ŨT

w1U
T
t1StUt1Ũw1.

4 In [7], it was claimed that the orthonormal eigenvectors of Ŝ−1
t Ŝb should be used. How-

ever, Ŝ−1
t Ŝb may not be symmetric therefore it is not guaranteed that there exist orthonor-

mal eigenvectors of Ŝ−1
t Ŝb.
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Then the transformation matrix by the method To-NR(Sw)is constructed as

Gd = [Ut1Ũw2Y Ut1Ũw1Z]. (38)

When two parts Ut1Ũw2Y and Ut1Ũw1Z are used for transformation matrix Gd, it

will be better to normalize the columns in Ut1Ũw1Z so that effects of both parts can

be balanced.

Relationship with the method To-N(Sw)

Recall from Section 2.3 that the method To-N(Sw) projects the original space onto

the null space of Sw using an orthonormal basis of null(Sw), and then in the pro-

jected space, a transformation that maximizes the between-class scatter is com-

puted.

Since Ut2 is a basis of null(St) and null(St) ⊂ null(Sw), from (36)




UT
t1

UT
t2




Sw




Ut1 Ut2


 =




ŨwΣ̃wŨT
w 0

0 0




. (39)

By Eq. (39), we can obtain the EVD of Sw as

Sw =




Ut1Ũw Ut2







Σ̃w 0

0 0







ŨT
w UT

t1

UT
t2



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=




Ut1Ũw1 Ut1Ũw2 Ut2







Σ̃w1 0

0 0







ŨT
w1U

T
t1

ŨT
w2U

T
t1

UT
t2




. (40)

Eq. (40) shows that the columns of V ≡



Ut1Ũw2 Ut2


 is an orthonormal basis

of null(Sw). Hence the transformation by V V T gives the projection onto the null

space of Sw.

Now by the notation (37) and span(Ut2) = null(St) ⊂ null(Sb),




Ut1Ũw2 Ut2







(Ut1Ũw2)
T

UT
t2




Sb




Ut1Ũw2 Ut2







(Ut1Ũw2)
T

UT
t2




= Ut1Ũw2S̄bŨ
T
w2U

T
t1

which is the between-class scatter matrix in the projected space by V V T . Let the

EVD of S̄b be

S̄b = [Ūb1 Ūb2]




Σ̄b1 0

0 0







ŪT
b1

ŪT
b2




.

Then we have the transformation matrix Ge by the method To-N(Sw) as

Ge =




Ut1Ũw2 Ut2







(Ut1Ũw2)
T

UT
t2




Ut1Ũw2Ūb1 = Ut1Ũw2Ūb1 (41)

which is exactly same as Ut1Ũw2Y in Gd of (38).
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2.6 Other Approaches for generalized LDA

2.6.1 PCA plus LDA

Using PCA as a preprocessing step before applying LDA has been a traditional

technique for undersampled problems and successfully applied for face recognition

[13]. In this approach, data dimension is reduced by PCA so that in the reduced di-

mensional space the within-class scatter matrix becomes nonsingular and classical

LDA can be performed. However, choosing optimal dimensions reduced by PCA

is not easy and experimental process for it can be expensive. In Section 2.7 where

we present experimental comparison of the discussed algorithms, we demonstrate

the difficulty with choosing the optimal dimension reduced by PCA.

2.6.2 GSLDA

Zheng et al. claimed that the most discriminant vectors for LDA can be chosen

from

null(St)
⊥ ∩ null(Sw) (42)

where null(St)
⊥ denotes the orthogonal complement of null(St) [8]. They also pro-

posed a computationally efficient method called GSLDA [14] which uses the modi-

fied Gram-Schmidt Orthogonalization (MGS) in order to obtain an orthogonal basis

of null(St)
⊥ ∩ null(Sw). In [14], under the assumption that the given data items are

independent, MGS is applied to

[H∗
w, H∗

b ] (43)

obtaining an orthogonal basis Q of (43), where H∗
w is constructed by deleting one

column from each subblock Ai − cie1, 1 ≤ i ≤ r, in Hw and H∗
b = [c1 −

c, · · · , cr−1 − c]. Then the last r − 1 columns of Q give an orthogonal basis of

24



(42). When applying L2-norm as a similarity measure, using any orthogonal basis

of null(St)
⊥ ∩ null(Sw) as a transformation matrix gives the same classification

performances [14].

In Section 2.5, it was shown that a transformation matrix Ge by the method To-

N(Sw) is same as the first part Ut1Ũw2Y in the transformation matrix Gd by the

method To-NR(Sw). In fact, it is not difficult to prove that under the assumption

of the independence of data items, Ut1Ũw2Y is an orthogonal basis of (42), and

therefore prediction accuracies by the method To-N(Sw) and GSLDA should be

same.

2.6.3 Uncorrelated Linear discriminant analysis

Instead of the orthogonality of the columns {gi} in the transformation matrix G,

i.e., gT
i gj = 0 for i 6= j, uncorrelated LDA (ULDA) imposes the St-orthogonal

constraint, gT
i Stgj = 0 for i 6= j [15]. In [16], it was shown that discriminant

vectors obtained by the LDA/GSVD solve the St-orthogonal constraint. Hence the

proposed algorithm 1 can also give solutions for ULDA more efficiently.

2.7 Experimental Comparisons of Generalized LDA Algorithms

In order to compare the discussed methods, we conducted extensive experiments

using two types of data sets in text classification and face recognition.

Text classification is a task to assign a class label to a new document based on the

information from pre-classified documents. A collection of documents are assumed

to be represented as a term-document matrix, where each document is represented

as a column vector and the components of the column vector denote frequencies of
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words appeared in the document. The term-document matrix is obtained after pre-

processing with common words and rare term removal, stemming, term frequency

and inverse term frequency weighting and normalization [17]. The term-document

matrix representation often makes the high dimensionality inevitable.

For all text data sets 5 , they were randomly split to the training set and the test set

with the ratio of 4 : 1. Experiments are repeated 10 times to obtain mean prediction

accuracies and standard deviation as a performance measure. Detailed description

of text data sets is given in Table 4. After computing a transformation matrix us-

ing training data, both training data and test data were represented in the reduced

dimensional space. In the transformed space, the nearest neighbor classifier was

applied to compute the prediction accuracies for classification. For each data item

in test set, it finds the nearest neighbor from the training data set and predicts a class

label for the test data according to the class label of the nearest neighbor. Table 5

reports the mean prediction accuracies from 10 times random splitting to training

and test sets.

The second experiment, face recognition, is a task to identify a person based on

given face images with different facial expressions, illumination and poses. Since

the number of pictures for each subject is limited and the data dimension is the

number of pixels of a face image, face recognition data sets are typically severely

undersampled.

Our experiments used two data sets, AT&T (formerly ORL) face database and Yale

5 The text data sets were downloaded from http://www-

users.cs.umn.edu/∼karypis/cluto/download.html which were collected from Reuter-21578

and TREC-5, TREC-6, TREC-7 database and preprocessed to reduce to manageable data

size.
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face database. The AT&T database has 400 images, which consists of 10 images of

40 subjects. All the images were taken against a dark homogeneous background,

with slightly varying lighting, facial expressions (open/closed eyes, smiling/non-

smiling), and facial details (glasses/no-glasses). The subjects are in up-right, frontal

positions with tolerance for some side movement [18]. For the manageable data

sizes, the images have been downsampled from the size 92 × 112 to 46 × 56 by

averaging the grey level values on 2 × 2 blocks. Yale face database contains 165

images, 11 images of 15 subjects. The 11 images per subject were taken under

various facial expressions or configurations: center-light, with glasses, happy, left-

light, without glasses, normal, right-light, sad, sleepy, surprised, and wink [19]. In

our experiment, each image has been downsampled from 320 × 243 to 106 × 81

by averaging the grey values on 3 × 3 blocks. Detailed description of face data

sets is also given in Table 4. Since the number of images for each subject is small,

leave-one-out method was performed where it takes one image for test set and the

remaining images are used as a training set. Each image serves as a test datum by

turns and the ratio of the number of correctly classified cases and the total number

of data is considered as a prediction accuracy.

Table 5 summarizes the prediction accuracies from both experiments. For the reg-

ularized LDA, we report the best among the accuracies obtained with the regu-

larization parameter α = 0.5, 1, 1.5. The method based on the transformation to

range(Sb), To-R(Sb), gives relatively low prediction accuracies compared with the

methods utilizing the null space of the within-class scatter matrix Sw. While no

single methods works the best in all situations, computational complexities can be

dramatically different among the compared methods as we will discuss in the next

section.

When PCA is performed as a preprocessing step for LDA, it is not easy to determine
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the dimension obtained by PCA. In the next experiment we compare PCA plus

LDA with the generalized LDA methods discussed. Varying the dimensions reduced

by PCA, LDA was applied to reduce the data dimension further to r − 1 where

r is the number of classes. Three figures in Figure 2 show prediction accuracies

for three data sets Tr12, Tr31 and Yale face data respectively. The values on the

horizontal axis denote the intermediate data dimensions obtained by PCA. They

demonstrate the difficulty in choosing the optimal dimension in applying PCA as

a preprocessing step for LDA, although the best prediction accuracies indicated by

the peak points on the graphs are comparable with those in Table 5.

2.8 Analysis of Computational Complexities

In this section we analyze computational complexities for the discussed methods.

The computational complexity for the SVD decomposition depends on what parts

need to be explicitly computed. We use flop counts for the analysis of computa-

tional complexities where one flop (floating point operation) represents roughly

what is required to do one addition/subtraction or one multiplication/division [12].

For the SVD of a matrix H ∈ Rp×q when p >> q,

H = UΣV T = [ U1︸︷︷︸
q

U2︸︷︷︸
p−q

]ΣV T ,

where U ∈ Rp×p, Σ ∈ Rp×q and V ∈ Rq×q, the complexities (flops) can be roughly

estimated as follows [12, pp.254].
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Need to be computed explicitly Complexities

U1, Σ 6pq2 + 11q3

U , Σ 4p2q + 13q3

U , Σ, V 4p2q + 22q3

For the multiplication of the p1 × p2 matrix and the p2 × p3 matrix, 2p1p2p3 flops

can be counted.

For simplicity, cost for constructing Hb ∈ Rm×r, Hw ∈ Rm×n and Ht ∈ Rm×n in

(8-10) was not included for the comparison, since the construction of scatter matri-

ces is required in all the methods. For H ∈ Rp×q and p >> q, when only eigen-

vectors corresponding to the nonzero eigenvalues of HHT ∈ Rp×p are needed, the

approach of computing the EVD of HT H instead of HHT as explained in Section

2.2 was utilized.

Figure 3 compares computational complexities of the discussed methods by us-

ing specific sizes of training data sets used in the experiments. As shown in Fig-

ure 3, regularized LDA, LDA/GSVD [4] and the method To-N(Sw) [5] have high

computational complexities overall. The method To-R(Sb) [6] obtained the lowest

computational costs compared with other methods while its performance can not

be ranked highly. The proposed algorithm for LDA/GSVD reduced the complex-

ity of the original algorithm dramatically while it achieves competitive prediction

accuracies as shown in Section 2.7. This new algorithm can save computational

complexities even more when the number of terms is much greater than the num-

ber of documents.
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3 Nonlinear Discriminant Analysis based on Kernel Methods

Linear dimension reduction is conceptually simple and has been used in many ap-

plication areas. However, it has a limitation for the data which is not linearly sepa-

rable since it is difficult to capture a nonlinear relationship with a linear mapping.

In order to overcome such a limitation, nonlinear extensions of linear dimension

reduction methods using kernel methods have been proposed [20–25]. The main

idea of kernel methods is that without knowing the nonlinear feature mapping or

the mapped feature space explicitly, we can work on the nonlinearly transformed

feature space through kernel functions. It is based on the fact that for any kernel

function κ satisfying Mercer’s condition, there exists a reproducing kernel Hilbert

space H and a feature map Φ such that

κ(x, y) =< Φ(x), Φ(y) > (44)

where < , > is an inner product in H [26,9,27].

Suppose that given a kernel function κ original data space is mapped to a feature

space (possibly an infinite dimensional space) through a nonlinear feature mapping

Φ : A ⊂ Rm → F ⊂ RN satisfying (44). As long as the problem formulation

depends only on the inner products between data points in F and not on the data

points themselves, without explicit representation of the feature mapping Φ or the

feature space F , we can work on the feature space F through the relation (44). As

positive definite kernel functions satisfying Mercer’s condition, polynomial kernel

and Gaussian kernel

κ(x, y) = (γ1(x · y) + γ2)
d, d > 0 and γ1, γ2 ∈ R,

κ(x, y) = exp(−‖x− y‖2/2σ2), σ ∈ R

are in wide use.
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In this section, we present the formulation of a generalized eigenvalue problem in

the kernel-based feature space and apply the generalized LDA algorithms, obtain-

ing nonlinear discriminant analysis. Given a kernel function κ, let Sb and Sw be the

between-class and within-class scatter matrices in the feature space F ⊂ RN which

has been transformed by a mapping Φ satisfying (44). Then the LDA in F finds a

linear transformation G = [ϕ1, · · · , ϕl] ∈ RN×l, where the columns of G are the

generalized eigenvectors corresponding to the l largest eigenvalues of

Sbϕ = λSwϕ. (45)

As in (7), Sb and Sw can be expressed as

Sb = HbHT
b and Sw = HwHT

w where
Hb = [

√
n1(c̃1 − c̃), · · · ,

√
nr(c̃r − c̃)] ∈ RN×r, (46)

Hw = [Φ(A1)− c̃1e1, · · · , Φ(Ar)− c̃rer] ∈ RN×n, (47)

c̃i =
1

ni

∑

j∈Ni

Φ(aj), c̃ =
1

n

n∑

i=1

Φ(ai) and ei = [1, · · · , 1] ∈ R1×ni .

The notation Φ(Ai) is used to denote Φ(Ai) = Φ([aj, · · · , ak]) = [Φ(aj), · · · , Φ(ak)].

Let ϕ be represented as a linear combination of Φ(ai)’s such as ϕ =
∑n

i=1 uiΦ(ai),

and define

u = [u1, · · · , un]T ,

Kb = [ bij ](1≤i≤n,1≤j≤r) , bij =
√

nj


 1

nj

∑

p∈Nj

κ(ai, ap)− 1

n

n∑

p=1

κ(ai, ap)


 .(48)

Then we have

HT
b ϕ = KT

b u, (49)

since
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HT
b ϕ=




√
n1(c̃1 − c̃)T

...

√
nr(c̃r − c̃)T




(
n∑

i=1

uiΦ(ai)

)

=




√
n1(

1
n1

∑
p∈N1

Φ(ap)− 1
n

∑n
p=1 Φ(ap))

T

...

√
nr(

1
nr

∑
p∈Nr

Φ(ap)− 1
n

∑n
p=1 Φ(ap))

T







Φ(a1), · · · , Φ(an)







α1

...

αn




= KT
b u.

Similarly, we can obtain

HT
wϕ = KT

wu where (50)
Kw = [ wij ](1≤i≤n,1≤j≤n) , (51)

wij = κ(ai, aj)− 1

nδ

∑

p∈Nδ

κ(ai, ap) when aj belongs to the class δ.

From (49) and (50), for any ϕ =
∑n

i=1 uiΦ(ai) and ψ =
∑n

i=1 viΦ(ai) we have

Sbϕ = λSwϕ ⇔ ψTHbHT
b ϕ = λψTHwHT

wϕ (52)
⇔ vTKbKT

b u = λvTKwKT
wu

for u = [u1, · · · , un]T , v = [v1, · · · , vn]T

⇔ KbKT
b u = λKwKT

wu.

Therefore, the generalized eigenvalue problem Sbϕ = λSwϕ becomes

KbKT
b u = λKwKT

wu. (53)

Note that KbKT
b and KwKT

w can be viewed as the between-class scatter matrix and
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Algorithm 2 Nonlinear Discriminant Analysis
Given a data matrix A = [a1, · · · , an] ∈ Rm×n with r classes and a kernel function

κ, it computes the l dimensional representation of any input vector z ∈ Rm×1 by ap-

plying the generalized LDA algorithm in the kernel-based feature space composed

of the columns of K = [ κ(ai, aj) ](1≤i≤n,1≤j≤n).

(1) Compute Kb ∈ Rn×r, Kw ∈ Rn×n and Kt ∈ Rn×n according to Eqs. (48),

(51) and (55).

(2) Compute transformation matrix G by applying the generalized LDA algo-

rithms discussed in Section 2.

(3) For any input vector z ∈ Rm×1, a dimension reduced representation is com-

puted by Eq. (57).

within-class scatter matrix of the kernel matrix

K = [ κ(ai, aj) ](1≤i≤n,1≤j≤n) (54)

when each column [κ(a1, aj), · · · , κ(an, aj)]
T in K is considered as a data point in

the n-dimensional space. It can be observed by comparing the structures of Kb and

Kw with those of Hb and Hw in (46-47). As in Kb and Kw of (48) and (51), Kt can

be computed as

Kt = [ tij ](1≤i≤n,1≤j≤n) , tij = κ(ai, aj)− 1

n

n∑

p=1

κ(ai, ap). (55)

Since KbKT
b and KwKT

w are both singular in the feature space, the classical LDA

can not be applied for the generalized eigenvalue problem (53). Now we apply

the generalized LDA algorithms discussed in Section 2 to solve (53), obtaining

nonlinear discriminant analysis. Let

G = [u(1), · · · , u(l)] ∈ Rn×l (56)

be the transformation matrix obtained by applying any generalized LDA algorithm
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in the feature space. Then the dimension reduced representation of any data item

z ∈ Rm×1 is given by

GT




κ(a1, z)

...

κ(an, z)




∈ Rl×1. (57)

Algorithm 2 summarizes nonlinear extension of generalized LDA algorithms by

kernel methods.

3.1 Experimental Comparisons of Nonlinear Discriminant Analysis Algorithms

For this experiment, six data sets from UCI Machine Learning Repository were

used. By randomly splitting the data to the training and test set of equal size and

repeating it 10 times, ten pairs of training and test sets were constructed for each

data. For the Bcancer and Bscale data sets, the ratio of training and test set was set as

4:1. Using the training set of the first pair among ten pairs and the nearest-neighbor

classifier, 5 cross-validation was used in order to determine the optimal value for σ

in the Gaussian kernel function κ(x, y) = exp
(
−‖x−y‖2

2σ2

)
. After finding the optimal

σ values, mean prediction accuracies from ten pairs of training and test sets were

calculated and they are reported in Table 6. In the regularization method, while

the regularization parameter was set as 1, the optimal σ value was searched by the

cross-validation. Table 6 also reports the prediction accuracies by the classical LDA

in the original data space and it demonstrates that nonlinear discriminant analysis

can improve prediction accuracies compared with linear discriminant analysis.

Figure 4 illustrates the computational complexities using the specific sizes of the

training data used in Table 6. As in the comparison of the generalized LDA al-
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gorithms, the method To-R(Sb) [5] gives the lowest computational complexities

among the compared methods. However, combining To-R(Sb) with kernel meth-

ods does not make effective nonlinear dimension reduction method as shown in

Table 6. In the generalized eigenvalue problem,

KbKT
b u = λKwKT

wu where KbKT
b ,KwKT

w ∈ Rn×n,

the data dimension is equal to the number of data and the rank of KwKT
w is not

severely smaller than the data dimension. However, poor performances by To-

R(Sb) demonstrate that the null space of KwKT
w contains discriminative infor-

mation. Figures 3 and 4 show that the proposed LDA/GSVD method can reduce

greatly the computational cost of the original LDA/GSVD in both the original space

and the feature space.

4 Conclusions/Discussions

We presented the relationships among several generalized Linear Discriminant Analy-

sis algorithms developed for handling undersampled problems and compared their

computational complexities and performances. As discussed in the theoretical com-

parison, many algorithms are closely related, and experimental results indicate that

computational complexities are important issues in addition to classification per-

formances. The LDA/GSVD showed competitive performances throughout the ex-

periments, but the computational complexities can be expensive especially for high

dimensional data. An efficient algorithm has been proposed, which produces the

same solution as LDA/GSVD. The computational savings are remarkable espe-

cially for high dimensional data.

Nonlinear extensions of the generalized LDA algorithms by the formulation of gen-
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eralized eigenvalue problem in the kernel-based feature space were presented. Ex-

perimental results using data sets from UCI database demonstrate that nonlinear

discriminant analysis can improve prediction accuracies compared with linear dis-

criminant analysis.
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Notations Description

m data dimension

n number of data items

r number of classes

ni number of data items in class i

c, ci the global and class centroids

A data matrix of size m× n

Sb, Sw, St scatter matrices of size m×m

Hb the matrix of size m× r such that Sb = HbH
T
b

Hw the matrix of size m× n such that Sw = HwHT
w

Ht the matrix of size m× n such that St = HtH
T
t

s rank of the matrix [Hb Hw]

Iτ , 0τ identity and zero matrices of size τ × τ

Table 1

Summary of the notations used.
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ηi ζi λi = ηi

ζi
xi belongs to

1 ≤ i ≤ µ 1 0 ∞ null(Sw) ∩ null(Sb)c

µ + 1 ≤ i ≤ µ + τ 1 > ηi > 0 0 < ζi < 1 ∞ > λi > 0 null(Sw)c ∩ null(Sb)c

µ + τ + 1 ≤ i ≤ s 0 1 0 null(Sw)c ∩ null(Sb)

s + 1 ≤ i ≤ m any value any value any value null(Sw) ∩ null(Sb)

Table 2

Generalized eigenvalues λi’s and eigenvectors xi’s from the GSVD. The superscript c de-

notes the complement.
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Fig. 1. The visualization of the data in the reduced dimensional spaces by LDA/GSVD

(figures in the first row) and the method To-N(Sw) (figures in the second row).
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Transformation matrix

Face data Gy = Vy Gy = VyŨw Gy = VyŨwΣ̃−1/2
w

AT&T 94.3 94.3 99.0

Yale 80.6 80.6 89.7

Table 3

The prediction accuracies(%).

Data Re1 Tr12 Tr23 Tr31 Tr41 Tr45 AT&T Yale

Dim. 3094 5896 5825 8104 7362 8175 2576 8586

no. data 490 210 187 841 757 575 400 165

classes 5 7 4 4 5 6 40 15

Table 4

The description of data sets
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Fig. 2. The effects of the dimensions reduced by PCA on the prediction accuracies. The

values on the horizontal axis denote data dimensions reduced by PCA before LDA is ap-

plied.
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Data RLDA LDA/GSVD To-N(Sw) To-R(Sb) To-NR(Sw)

Text Classification

Re1 95.8 95.1 94.5 94.2 94.7

Tr12 95.7 98.3 98.1 96.7 97.6

Tr23 87.9 90.3 91.5 88.2 91.8

Tr31 98.6 98.4 98.6 97.7 98.7

Tr41 98.0 97.3 97.0 96.3 97.1

Tr45 93.6 93.3 94.2 94.1 94.4

Face Recognition

AT&T 98.0 93.5 98.0 99.0 98.8

Yale 97.6 98.8 97.6 89.7 98.2

Table 5

Prediction accuracies (%). For RLDA, the best accuracy among α = 0.5, 1, 1.5 is reported.

For each dataset, the best prediction accuracy is shown in boldface.
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Fig. 3. Comparison of computational complexities of the generalized LDA methods using

the sizes of training data used in experiments. From the left on x-axis, the data sets, Tr12,

Re1, Tr23, Tr31, Tr41, Tr45, AT&T and Yale, are corresponded.

Linear Nonlinear methods

Data dim. no.data classes LDA RLDA LDA/GSVD To-N(Sw) To-R(Sb) To-NR(Sw)

Musk 166 6599 2 91.2 97.6 99.4 99.4 89.2 99.3

Isolet 617 7797 26 93.9 95.8 96.8 97.0 89.7 97.1

Car 6 1728 4 88.2 94.7 94.1 94.9 84.5 95.2

Mfeature 649 2000 10 – 94.4 98.1 98.3 94.0 98.3

Bcancer 9 699 2 95.3 95.2 96.4 93.5 92.8 94.3

Bscale 4 625 3 87.0 94.1 86.5 86.5 86.5 86.1

Table 6

Prediction accuracies(%) by the classical LDA in the original space and the generalized

LDA algorithms in the nonlinearly transformed feature space. In the Mfeature dataset, the

classical LDA was not applicable in the original space due to the singularity of the within-

class scatter matrix.
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Fig. 4. The figures compare complexities required for the generalized LDA algorithms in

the feature space for specific problem sizes of training data used in Table 6. From the left

on x-axis, the data sets, Musk, Isolet, Car, Mfeature, Bcancer and Bscale are corresponded.
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