
Fall 2011 
Prof. Hyesoon Kim  



•  Nvidia/AMD GPUà many core architecture  
•  GPGPUà high performance computing  

  



•  CUDA Programming 101  
•  GPGPU Architecture basic  
•  GPGPU Performance  



•  Fixed pipelines à programmable cores à 
unified programmable cores à more cores 
à GPGPU support 

[the slide is from Hong&Kim ISCA’10] 



•  Become popular with CUDA (Compute 
Unified Device Architecture) 

•  CUDA (Based on Nvidia architectures)  
– Portland Group Compiler supports CUDA à 

x86  
•  OpenCL  



•  SIMD or SIMT  
– Single instruction multiple data or single 

instruction multiple thread 
•  Unified Memory space (global memory 

space) 
•  Program hierarchy 

– Thread, block, kernel 
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•  Thread & Block 
Inst 1 
Inst 2 
Inst 3 

T T T T T T T T T T T T T T T T T T T T T T T T 

SM SM 

Shared Memory Shared Memory 

Block 

Kernel 

Block 

warp warp warp 

Sing instruction multiple thread 
Block = a group of thread which share “the shared memory space” 
Warp   

warp warp warp 

[the slide is from Hong&Kim ISCA’09] 



Space ~= CPU 
Local Memory Within Threads Stack 
Shared Memory Within Blocks  Distributed memory space 
Global Memory All  Centralized storage 
Constant 
Memory 

All Centralized read-only storage (very 
small) 

Texture Memory All Centralized read-only storage 
(medium size, 2D- cache) 

•  Thread, block, and kernel have different memory 
spaces 

  



•  SIMT-execution model 
•  Use thread id and block id to index data  

Let’s assume N=16, blockDim=4 à 4 blocks  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

blockIdx.x = 0 
blockDim.x = 4 
threadIdx.x = 0,1,2,3 
Idx= 0,1,2,3  

blockIdx.x = 1 
blockDim.x = 4 
threadIdx.x = 0,1,2,3 
Idx= 4,5,6,7  

+ 

blockIdx.x = 2 
blockDim.x = 4 
threadIdx.x = 0,1,2,3 
Idx= 8,9,10,11  

blockIdx.x = 3 
blockDim.x = 4 
threadIdx.x = 0,1,2,3 
Idx= 12,13,14,15  

+ + + + 



•  A kernel is executed as a grid 
of thread blocks 

•  Threads and blocks have IDs 
–  So each thread can decide 

what data to work on 
–  Block ID: 1D or 2D 
–  Thread ID: 1D, 2D, or 3D 

•  Loop index in sequential loop  
–  Use thread ids, block ids  
–  1D array index= c1*threadId.x 

+ c2*block Id.x  
–  2D array index = c1*threadId.x

+c2*blockId.x+c3*threadId.y
+c4*blockId.y 

for (ii = 0; ii < 100; ++ii) { 
C[ii] = A[ii] + B[ii]; 
} 

// there are 100 threads 
__global__ void KernelFunction(…) { 
  int tid = blockDim.x * blockIdx.x + threadIdx.x; 
  int varA = aa[tid]; 
  int varB = bb[tid]; 
  C[tid] = varA + varB; 
} 

CPU code 

CUDA code 



•  Bulk-Synchronous Parallel (BSP) program 
(Valiant [90])  

•  Synchronization within blocks using explicit 
barrier 

•  Implicit barrier across kernels 
–  Kernel 1 à Kernel 2 
–  C.f.) Cuda 3.x  

barrier 

Block 

barrier 

Block 

barrier 

barrier 

Block 

barrier 

Block 

barrier 

Block 

Kernel1  

Kernel2  
Barrier 



•  Use thread id to write serial programs or 
reduce the number of running threads  

 
•  Use block id to generate MIMD effects  

–  If (blockId.x == 1) do work 1  
–  If (blockid.x == 2) do work 2  

0 1 2 3 4 5 6 7 

0 2 4 6 

0 4 
0 

If (threadId.x%==2)  

If (threadId.x%==4)  

If (threadId.x%==8)  

(reduction example) 



•  Use multiple kernels  
•  Write to same memory addresses 

– Behavior is not guaranteed 
– Data race  

•  Atomic operation  
– No other threads can write to the same location  
– Memory Write order is still arbitrary  
–  Keep being updated: atomic{Add, Sub, Exch, Min, 
Max, Inc, Dec, CAS, And, Or, Xor} 

•  Performance degradation 
– Fermi increases atomic performance by 5x to 20x 

(M. Shebanow) 



•  Supporting pointers  
– Limited stacks  

•  Recursive programming  
•  Concurrent Kernel executions from the 

same application  
– Efficient pipelining parallel program paradigm  

•  More…  



OpenCL  CUDA  

Execution Model Work-groups/work-items  Block/Thread  

Memory model  Global/constant/local/private  Global/constant/shared/local  
+ Texture  

Memory 
consistency  

Weak consistency  Weak consistency  
 

Synchronization  Synchronization using a 
work-group barrier (between 
work-items)  
 

Using synch_threads  
Between threads  
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 T  T  T  T  T  T  T  T 

SIMD Execution Unit 

 T  T  T  T 

q  Warp is the basic unit of execution 
q  A group of threads (e.g. 32 threads for the Tesla GPU architecture) 

Warp Execution 

One warp 

Sources ready	

19 

One warp One warp 

Inst 1 
Inst 2 
Inst 3 

Sources ready	 Sources ready	
 T  T  T  T  T  T  T  T 

Finite number of streaming processors	



•  Fetch 
–  One instruction for each warp (could be further 

optimizations)  
–  Round Robin, Greedy-fetch (switch when stall events 

such as branch, I-cache misses, buffer full) 
•  Thread scheduling polices  

–  Execute when all sources are ready  
–  In-order execution within warps 
–  Scheduling polices: Greedy-execution, round-robin  

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4 Kirk & Hwu 



•  Register read is fully pipelined.  
•  Back-to-back operation is in the critical path 
•  ILP across warps (~= TLP) can hide the 

latency of back-to-back 

R1= R2+R3 
R4= R1+R4 

R1= R2+R3 
R4= R1+R4 

R1= R2+R3 
R4= R1+R4 

R1= R2+R3 
R4= R1+R4 

R1= R2+R3 
R4= R1+R4 

R1= R2+R3 
R4= R1+R4 

R1= R2+R3 
R4= R1+R4 

1 warp  
24 cycles delay between 2 insts  1 warp  

24 cycle delay is hidden by TLP 

w0 

wN 

w1 



•  Recall the reduction example 

•  What about other threads?  
•  What about different paths?  

0 1 2 3 4 5 6 7 

0 2 4 6 

0 4 
0 

If (threadId.x%==2)  

If (threadId.x%==4)  

If (threadId.x%==8)  

A 

B 

C 

D 

If (threadid.x>2) { 
 do work B} 

else {  
 do work C 

}  

From Fung et al. MICRO ‘07 

Divergent branch!  



•  All branch conditions are serialized and will be executed 
–  Parallel code à sequential code 

•  Divergence occurs within a warp granularity.  
•  It’s a performance issue 

–  Degree of nested branches  
•  Depending on memory instructions, (cache hits or 

misses), divergent warps can occur  
–  Dynamic warp subdivision [Meng’10] 

•  Hardware solutions to reduce divergent branches  
–  Dynamic warp formation [Fung’07] 

•  On-the-fly elimination  
–  Pure software solution [Zhang’11] 

•  Block compaction: [Fung and Aamodt’11] 



•  Divergent branches serialize execution of 
warps  

  



•  Many levels of queues 
•  Large size of queues  
•  High number of DRAM banks  
•  Sensitive to memory scheduling algorithms  

–  FRFCFS >> FCFS  
•  Interconnection network algorithm to get FRFCFS Effects  

–  Yan’09,  

MSHR MSHR MSHR 



•  Even coalesced memory accesses generate multiple transactions. 
4B*32 = 128 B req size  

Coalesced memory access type 
One memory transaction 

Thread 1	 Thread 2	 Thread 3	 Thread 4	 Thread 5	 Thread 6	 Thread N	

Addr 1	 Addr 2	 Addr 3	 Addr 4	 Addr 5	 Addr 6	 Addr N	

Thread 2	 Thread 3	 Thread 4	 Thread N	Thread 1	

Multiple memory transactions 

Addr 1	 Addr 10	 Addr 2	 Addr 20	 Addr N	

One warp generates a memory request 

Uncoalesced memory access type 

- More processing cycles for the uncoalesced case 

One warp 



•  Compute capability > 1.2  

•  Reduce the number of memory 
transactions as few as possible 

Thread 2	 Thread 3	 Thread 4	 Thread N	Thread 1	

Addr 1	 Addr 10	 Addr 2	 Addr 20	 Addr N	

Addr 1	 Addr 2	 Addr 10	 Addr 11	 Addr 20	 Addr 21	 Addr 22	 Addr 23	 Addr 24	



•  In-order execution but  
•  Warp cannot execute an instruction when sources are 

dependent on memory instructions, not when it generate 
memory requests  

•  High MLP  

C C D M M C 

C C D M M C 
Context Switch W0 

W1 

Memory Request 
Memory Request 

Memory Request 

Memory Request 



•  High Merging Effects  
–  Inter-core merging  

–  Intra-core merging  

•  Techniques to take advantages of this SDMT  
–  Compiler optimization[Yang’10]: increase memory reuse  
–  Cache coherence [Tarjan’10] 
–  Cache increase reuses  

MSHR MSHR MSHR 
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