i

Fall 2011
Prof. Hyesoon Kim

Georgia Cadllege of
Tech | Computting

ﬁ iy
.
5 [
» ¢)

.
GPU Architecture

* Nvidia/AMD GPU-> many core architecture
« GPGPU=- high performance computing

Georgia College of
Tegch ConppPUitine

Outline of Part #1.0

 CUDA Programming 101
« GPGPU Architecture basic
« GPGPU Performance

Georgia College of
Tegch ConppPUitine

GPU Architecture Trend

* Fixed pipelines - programmable cores -
unified programmable cores > more cores
- GPGPU support

560 1750
480 Y 1500
b 0
© 400 = 1250
(o] 0
o o /
% 320 % 1000
b] » < &
2240 _g 750
§160 5 500
2 ——+—— 2
%0 --NVidia 250 --AT|
0 0
8800GT 8800GTX 9800GTX GTX260 GTX280 GTX470 GTX480 HD4670 HD4870 HD4850 HD4870 HD5770 HD5850 HD5870

Georgia off
[the slide is from Hong&Kim ISCA'10] Tech | Computiing

GPGPU Programming

« Become popular with CUDA (Compute
Unified Device Architecture)
 CUDA (Based on Nvidia architectures)

— Portland Group Compiler supports CUDA -
x86

* OpenCL

Georgia Cdllege of
Tech | Compuitfing

Quick Summary of CUDA Progrﬁm“ L
Model

« SIMD or SIMT

— Single instruction multiple data or single
iInstruction multiple thread

* Unified Memory space (global memory
space)

* Program hierarchy
— Thread, block, kernel

Georgia Cdllege of
Tech | Compuitfing

Parallel Programming Models
Memory Spaces CUDA
Shared memo
Y CORE Memory| | Memory | Memory
CORE CORE CORE
CORE Memory CORE
CORE Memory
Distributed memory
PCI-E
CORE Memory CORE Memory
Memory
network
CORE | Memory CORE | Memory CORE

Georgia College of
Tegch Compuitfing

. ExXecution Model

 Thread & Block

< Block

| Inst1 |

TIT{T|T|T|T|T|T T[T
Inst 2 | | | |
Inst 3 | | | | |
— warp warp warp warp warp war
Kernel SM SM

Shared Memory

S § § S
P P P P

Sing instruction multiple thread
Block = a group of thread which share “the shared memory space”

Warp

[the slide is from Hong&Kim ISCA'09]

Shared Memory

S § § S
P P P P

Georgia College of
Tegch ConppPUitine

Memory Space

« Thread, block, and kernel have different memory

spaces

Local Memory
Shared Memory
Global Memory

Constant
Memory

Texture Memory

Within Threads Stack
Within Blocks Distributed memory space

All Centralized storage

All Centralized read-only storage (very
small)

All Centralized read-only storage

(medium size, 2D- cache)

Georgia College of
Tegch Compuitfing

Memory Data Indexing

 SIMT-execution model
 Use thread id and block id to index data

Let’'s assume N=16, blockDim=4 - 4 blocks
(of[1]2(3]4|5][6]7[8]0o[10]11]12]13]14[15]
Bl o | 1 [2[5 45 67|65 0] 11]12]13]1415)

)
&

blockldx.x =0
blockDim.x = 4
threadldx.x =0,1,2,3
ldx=0,1,2,3

blockldx.x = 1
blockDim.x = 4
threadldx.x =0,1,2,3
Idx=4,5,6,7

blockldx.x = 2
blockDim.x = 4
threadldx.x =0,1,2,3
ldx=8,9,10,11

se% 2207 pore £oe

blockldx.x = 3
blockDim.x = 4
threadldx.x =0,1,2,3
ldx=12,13,14,15

Georgia GCadllege of
Tegch | Conmpurdng

= IBE O
1D, 2D, 3D data structures

A Kkernel is executed as a grid
of thread blocks

CPU code
o - « Threads and blocks have IDs
or (ii = 0; ii < 100; ++ii) {
C[ii] = Alii] + BIii]; — So each thread can decide
¥ what data to work on

— Block ID: 1D or 2D
— Thread ID: 1D, 2D, or 3D

CUDA code , _ ,
* Loop index in sequential loop

// there are 100 threads

__global__ void KernelFunction(...) { — Use thread ids, block ids
int tid = blockDim.x * blockIdx.x + threadIdx.x; - o4
ntvar = aaltdls THreadioes 1D array index= c1*threadld.x
int varB = bbltid]; + c2*block Id.x
}C[t'd] = varA + varB; — 2D array index = c1*threadld.x
+c2*blockld.x+c3*threadld.y

+c4*blockld.y

Georgia College of
Tech | Compuitfing

Synchronization Model

* Bulk-Synchronous Parallel (BSP) program
(Valiant [90])

« Synchronization within blocks using explicit

barrler Kernel1 216
* Implicit barrier across kernels

— Kernel 1 2 Kernel 2 Block

— C.f.) Cuda 3.x

Georgia College of
Tegch ConppPUitine

MIMD with CUDA

» Use thread id to write serial programs or

reduce the number of running threads
Q000000 O (reduction example)

if threadldx%==2) @ @ @ @

If (threadld.x%==4) O O
If (threadld.x%==8) O

» Use block id to generate MIMD effects
— If (blockld.x == 1) do work 1
— If (blockid.x == 2) do work 2

Georgia of
Tech Compuiing

Global Communications

« Use multiple kernels

* Write to same memory addresses
— Behavior is not guaranteed
— Data race

« Atomic operation
— No other threads can write to the same location

— Memory Write order is still arbitrary

— Keep being updated: atomic{Add, Sub, Exch, Min,
Max, Inc, Dec, CAS, And, Or, Xor}

* Performance degradation

— Fermi increases atomic performance by 5x to 20x
(M. Shebanow)

Georgia College of
Tegch Compuitfing

s
New Programming Features in Fermi

»

g
4

* Supporting pointers
— Limited stacks

* Recursive programming

 Concurrent Kernel executions from the
same application

— Efficient pipelining parallel program paradigm
* More...

Georgia Cdllege of
Tech | Compuitfing

OpenCL vs. CUDA

OpenCL CUDA

Execution Model Work-groups/work-items Block/Thread

Memory model Global/constant/local/private Global/constant/shared/local

+ Texture

Memory Weak consistency Weak consistency

consistency

Synchronization Synchronization using a Using synch_threads
work-group barrier (between Between threads
work-items)

Georgia College of
Tech | Compuitfing

= HE

GPU ARCHITECTURE 101

Georgia @@Ulogo of
Tgh Conpudng

- = R
« Overview of GPU (Tesla) Architecture

"o |

Streaming Streaming Streaming
Multiprocessor Multiprocessor | o o o | Multiprocessor I-Cache
Decoder
$ $ $ Shared Memory

Interconnection Network

{

Global Memory (Device memory)

10SS920.1d Weals
10SS920.1d Weal}s
10SS920.d Weals
[]
10SS920.4d Wealu}s

Caches

Georgia GCadllege of
Tegch ConppPUitine

= EE .
Execution Unit: Warp

d Warp is the basic unit of execution
o A group of threads (e.g. 32 threads for the Tesla GPU architecture)

Warp Execution

| Inst1 | Sources ready Sources ready Sources ready

Inst 2 T [7) (7] [08 O8] O8] 05 (7] [7] [7] [T

Inst 3 ‘ I) !
One warp One warp One warp

Finite number of streaming processors
SIMD Execution Unit

s|(s|s|s
P|P|P|P

Georgia GCadllege of
Tegch | Compudng

Pipeline

p———TB1, W1 stall———
—T1B2, W1 stal—————TB3, W2 stall———]

LB TB2 | TB3 | TB3 | TB2 | TB1 | TB1 | TB1 | TB3
- L L gl Wi W2 el R Ui e w2
Instruction: | 1 i2i3i4i5i6|1i2|1i2|1i2|83i4|7i8|1i2|1i2]|3:4 Kirk & Hwu
—Time-» TB = Thread Block, W = Warp

 Fetch

— One instruction for each warp (could be further
optimizations)

— Round Robin, Greedy-fetch (switch when stall events
such as branch, |-cache misses, buffer full)

* Thread scheduling polices

— Execute when all sources are ready

— In-order execution within warps

— Scheduling polices: Greedy-execution, round-robin

Georgia College of
Tegch Compuitfing

Register Read & ILP & TLP

* Register read is fully pipelined.
» Back-to-back operation is in the critical path

« |LP across warps (~= TLP) can hide the
latency of back-to-back

wN
R1= R2+R3
R R4= R1+R4
R F Ra= k1+ra
wi R g 4= RiTra

R1=R2+R3

R4= R1+R4 g | T

Ra= K1+R4

1 warp

24 cycles delay between 2 insts 1 warp

24 cycle delay is hidden by TLP

Georgia College of
Tegch Compuitfing

=
Handling Branch Instructions

* Recall the reduction example

Q0O O
f hreadid be2) ® 20005 bbb bbb

freaaaisy 00 @@ N
rea X70==

° O O
If (threadld.x%==8) O _

« What about other threads?
« What about different paths?

.

A If (threadid.x>2) {
do work B}
else {
do work C
}

Divergent branch!

SR MICRO 07

g

i 772

i3

B '
- o 5

Divergent Branches

» All branch conditions are serialized and will be executed
— Parallel code - sequential code
* Divergence occurs within a warp granularity.
 It's a performance issue
— Degree of nested branches
« Depending on memory instructions, (cache hits or
misses), divergent warps can occur
— Dynamic warp subdivision [Meng'10]
« Hardware solutions to reduce divergent branches
— Dynamic warp formation [Fung'07]
* On-the-fly elimination
— Pure software solution [Zhang'11]
« Block compaction: [Fung and Aamodt'11]

Georgia GCadllege of
Tegch ConppPUitine

= HE .
Divergent Branches Execution Time

» Divergent branches serialize execution of

-lnt mod = threadldxx & 31 // modulus E

Bl OOOO0000 'JL[[T__IQC_’-_(___A_L _________________________________ 81
,'.\.'-T ’/\ 1)
na Memory load ne
coomoox L. FP Operations : °°
N | ~ =
- - - relse /
les]| [es B3 r B2 5 50
Q00000 X0 000K WVOODO00 ' A’k‘fnory /Oad % 400
v ~ if (mod < B) £
Srmrrmesee e ————— ~ 300
: { s
o | ' FP Operati BS 2 20
QOO0 E peranons :E
\ / I_._-_} ------------- /- e 100 I
B7 7 else ’ 0
Gemanses : { B4 Patn All Paths Mezzured
FP Operations (B1B2B4B6B7) [8152358687) (515337.
:‘.\. - -t‘ Model Predictions
O: Active Thread : FP Operations B6
X: Non-Active Thread L ;

i Memory,_store | B7

Georgia Coadllege of
Te% Compuitfing

GPU Memory System

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

MSHR MSHR MSHR
= = = Interconnection Network E = E
A A
-] —v

Global Memory (Device memory)

Many levels of queues
Large size of queues

High number of DRAM banks

Sensitive to memory scheduling algorithms
~ FRFCFS >> FCFS

Interconnection network algorithm to get FRFCFS Effects

— Yan’09,

Georgia College of
Te e Conmpudng

Multiple Memory Transactions

One warp generates a memory request

One memory transaction

Coalesced memory access type

Vs

Addr 1

Addr 2

Addr 3

Addr 4

Addr 5

Addr 6 ° o Addr N

&

/

/

(Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6

Thread N ‘

One warp

 Even coalesced memory accesses generate multiple transactions.
4B*32 = 128 B req size

Uncoalesced memory access type

Multiple memory transactions

Addr 1

Addr 2

J Addr 10

MAM,ZOJ m

/P

Thread 1

Thread 2

/'\

Thread 3

Thread 4

Thread N

- More processing cycles for the uncoalesced case

Georgia Cdllege of
Tech | Compuitfing

Memory Transactions

« Compute capability > 1.2

Addr 1 Addr 10 Addr 2 Addr20| eec e e Addr N
Thread 1 Thread 2 Thread 3 Thread 4 Thread N
N
[Addr1 | Addr 2] [Addr 10| Addr 11] [Addr 20| Addr 21| Addr 22| Addr 23 | Addr 24
7

* Reduce the number of memory
transactions as few as possible

Georgia College of
Tegch Compuitfing

= I
Multiple In-flight Memory Requests

* |n-order execution but

 Warp cannot execute an instruction when sources are
dependent on memory instructions, not when it generate
memory requests

. High MLP

wWo C(M)C. C(M)D g Context Switch

w1 c(M)yc c{MD

Georgia College of
Tegch Compuitfing

=
Same Data from Multiple Threads (SDMT)

* High Merging Effects

. Streaming Streaming Streaming
- |nter-COre merglng Multiprocessor | | Multiprocessor | o o o | Multiprocessor
. MSHR MSHR MSHR
— Intra-core merging) ? 3
Interconnection Network
A A
. _ P ==

Global Memory (Device memory)

« Techniques to take advantages of this SDMT

— Compiler optimization[Yang’10]: increase memory reuse
— Cache coherence [Tarjan’10]
— Cache increase reuses

Georgia College of
Tegch Compuitfing

Fermi Architecture

Host Interface Host Interface

Memory Controller
a13]]043U0D Asowaw
Memory Controller
13]]013U0D Alowaw

Polymorph Engine Polymorph Engine Polymorph Engine Polymorph Engine Polymorph Engine Polymorph Engine Polymorph Engine Polymorph Engine

Memory Controller
a3]]013u0D Auowaw
Memory Controller
43]]013u0D Asowaw

Polymarph Engne Polymorph Engine Polymorph Engine Polymorph Engine Polymorph Engine Polymorph Engine Polymorph Engine Polymorph Engine
I || S | S | S I | SR | S | S

Memory Controller
a3]]013u0D Asowaw
Memory Controller
13]]013u0D Asowaw

Raster Engine

Georgia GCadllege of
Tegch ConppPUitine

