
Fall 2011
Prof. Hyesoon Kim

•  Nvidia/AMD GPUà many core architecture
•  GPGPUà high performance computing

•  CUDA Programming 101
•  GPGPU Architecture basic
•  GPGPU Performance

•  Fixed pipelines à programmable cores à
unified programmable cores à more cores
à GPGPU support

[the slide is from Hong&Kim ISCA’10]

•  Become popular with CUDA (Compute
Unified Device Architecture)

•  CUDA (Based on Nvidia architectures)
– Portland Group Compiler supports CUDA à

x86
•  OpenCL

•  SIMD or SIMT
– Single instruction multiple data or single

instruction multiple thread
•  Unified Memory space (global memory

space)
•  Program hierarchy

– Thread, block, kernel

Shared memory

Distributed memory

Memory

CORE

Memory

CORE

Memory

CORE

Memory

CUDA

CORE

CORE CORE

CORE

Memory

CORE Memory CORE Memory

CORE Memory CORE Memory

network
Memory

CORE

PCI-E

8

•  Thread & Block
Inst 1
Inst 2
Inst 3

T

SM SM

Shared Memory Shared Memory

Block

Kernel

Block

warp warp warp

Sing instruction multiple thread
Block = a group of thread which share “the shared memory space”
Warp

warp warp warp

[the slide is from Hong&Kim ISCA’09]

Space ~= CPU
Local Memory Within Threads Stack
Shared Memory Within Blocks Distributed memory space
Global Memory All Centralized storage
Constant
Memory

All Centralized read-only storage (very
small)

Texture Memory All Centralized read-only storage
(medium size, 2D- cache)

•  Thread, block, and kernel have different memory
spaces

•  SIMT-execution model
•  Use thread id and block id to index data

Let’s assume N=16, blockDim=4 à 4 blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

blockIdx.x = 0
blockDim.x = 4
threadIdx.x = 0,1,2,3
Idx= 0,1,2,3

blockIdx.x = 1
blockDim.x = 4
threadIdx.x = 0,1,2,3
Idx= 4,5,6,7

+

blockIdx.x = 2
blockDim.x = 4
threadIdx.x = 0,1,2,3
Idx= 8,9,10,11

blockIdx.x = 3
blockDim.x = 4
threadIdx.x = 0,1,2,3
Idx= 12,13,14,15

+ + + +

•  A kernel is executed as a grid
of thread blocks

•  Threads and blocks have IDs
–  So each thread can decide

what data to work on
–  Block ID: 1D or 2D
–  Thread ID: 1D, 2D, or 3D

•  Loop index in sequential loop
–  Use thread ids, block ids
–  1D array index= c1*threadId.x

+ c2*block Id.x
–  2D array index = c1*threadId.x

+c2*blockId.x+c3*threadId.y
+c4*blockId.y

for (ii = 0; ii < 100; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100 threads
__global__ void KernelFunction(…) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 int varA = aa[tid];
 int varB = bb[tid];
 C[tid] = varA + varB;
}

CPU code

CUDA code

•  Bulk-Synchronous Parallel (BSP) program
(Valiant [90])

•  Synchronization within blocks using explicit
barrier

•  Implicit barrier across kernels
–  Kernel 1 à Kernel 2
–  C.f.) Cuda 3.x

barrier

Block

barrier

Block

barrier

barrier

Block

barrier

Block

barrier

Block

Kernel1

Kernel2
Barrier

•  Use thread id to write serial programs or
reduce the number of running threads

•  Use block id to generate MIMD effects

–  If (blockId.x == 1) do work 1
–  If (blockid.x == 2) do work 2

0 1 2 3 4 5 6 7

0 2 4 6

0 4
0

If (threadId.x%==2)

If (threadId.x%==4)

If (threadId.x%==8)

(reduction example)

•  Use multiple kernels
•  Write to same memory addresses

– Behavior is not guaranteed
– Data race

•  Atomic operation
– No other threads can write to the same location
– Memory Write order is still arbitrary
–  Keep being updated: atomic{Add, Sub, Exch, Min,
Max, Inc, Dec, CAS, And, Or, Xor}

•  Performance degradation
– Fermi increases atomic performance by 5x to 20x

(M. Shebanow)

•  Supporting pointers
– Limited stacks

•  Recursive programming
•  Concurrent Kernel executions from the

same application
– Efficient pipelining parallel program paradigm

•  More…

OpenCL CUDA

Execution Model Work-groups/work-items Block/Thread

Memory model Global/constant/local/private Global/constant/shared/local
+ Texture

Memory
consistency

Weak consistency Weak consistency

Synchronization Synchronization using a
work-group barrier (between
work-items)

Using synch_threads
Between threads

18

 T T T T T T T T

SIMD Execution Unit

 T T T T

q  Warp is the basic unit of execution
q  A group of threads (e.g. 32 threads for the Tesla GPU architecture)

Warp Execution

One warp

Sources ready	

19

One warp One warp

Inst 1
Inst 2
Inst 3

Sources ready	 Sources ready	
 T T T T T T T T

Finite number of streaming processors	

•  Fetch
–  One instruction for each warp (could be further

optimizations)
–  Round Robin, Greedy-fetch (switch when stall events

such as branch, I-cache misses, buffer full)
•  Thread scheduling polices

–  Execute when all sources are ready
–  In-order execution within warps
–  Scheduling polices: Greedy-execution, round-robin

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4 Kirk & Hwu

•  Register read is fully pipelined.
•  Back-to-back operation is in the critical path
•  ILP across warps (~= TLP) can hide the

latency of back-to-back

R1= R2+R3
R4= R1+R4

R1= R2+R3
R4= R1+R4

R1= R2+R3
R4= R1+R4

R1= R2+R3
R4= R1+R4

R1= R2+R3
R4= R1+R4

R1= R2+R3
R4= R1+R4

R1= R2+R3
R4= R1+R4

1 warp
24 cycles delay between 2 insts 1 warp

24 cycle delay is hidden by TLP

w0

wN

w1

•  Recall the reduction example

•  What about other threads?
•  What about different paths?

0 1 2 3 4 5 6 7

0 2 4 6

0 4
0

If (threadId.x%==2)

If (threadId.x%==4)

If (threadId.x%==8)

A

B

C

D

If (threadid.x>2) {
 do work B}

else {
 do work C

}

From Fung et al. MICRO ‘07

Divergent branch!

•  All branch conditions are serialized and will be executed
–  Parallel code à sequential code

•  Divergence occurs within a warp granularity.
•  It’s a performance issue

–  Degree of nested branches
•  Depending on memory instructions, (cache hits or

misses), divergent warps can occur
–  Dynamic warp subdivision [Meng’10]

•  Hardware solutions to reduce divergent branches
–  Dynamic warp formation [Fung’07]

•  On-the-fly elimination
–  Pure software solution [Zhang’11]

•  Block compaction: [Fung and Aamodt’11]

•  Divergent branches serialize execution of
warps

•  Many levels of queues
•  Large size of queues
•  High number of DRAM banks
•  Sensitive to memory scheduling algorithms

–  FRFCFS >> FCFS
•  Interconnection network algorithm to get FRFCFS Effects

–  Yan’09,

MSHR MSHR MSHR

•  Even coalesced memory accesses generate multiple transactions.
4B*32 = 128 B req size

Coalesced memory access type
One memory transaction

Thread 1	 Thread 2	 Thread 3	 Thread 4	 Thread 5	 Thread 6	 Thread N	

Addr 1	 Addr 2	 Addr 3	 Addr 4	 Addr 5	 Addr 6	 Addr N	

Thread 2	 Thread 3	 Thread 4	 Thread N	Thread 1	

Multiple memory transactions

Addr 1	 Addr 10	 Addr 2	 Addr 20	 Addr N	

One warp generates a memory request

Uncoalesced memory access type

- More processing cycles for the uncoalesced case

One warp

•  Compute capability > 1.2

•  Reduce the number of memory
transactions as few as possible

Thread 2	 Thread 3	 Thread 4	 Thread N	Thread 1	

Addr 1	 Addr 10	 Addr 2	 Addr 20	 Addr N	

Addr 1	 Addr 2	 Addr 10	 Addr 11	 Addr 20	 Addr 21	 Addr 22	 Addr 23	 Addr 24	

•  In-order execution but
•  Warp cannot execute an instruction when sources are

dependent on memory instructions, not when it generate
memory requests

•  High MLP

C C D M M C

C C D M M C
Context Switch W0

W1

Memory Request
Memory Request

Memory Request

Memory Request

•  High Merging Effects
–  Inter-core merging

–  Intra-core merging

•  Techniques to take advantages of this SDMT
–  Compiler optimization[Yang’10]: increase memory reuse
–  Cache coherence [Tarjan’10]
–  Cache increase reuses

MSHR MSHR MSHR

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

