
Spring 2010

Prof. Hyesoon Kim

Thanks to Prof. Loh & Prof. Prvulovic

C/C++

program

Assembly

Code

(binary)

Processor

Compiler

0010101010101011110

Memory

MAR MDR

Introduction to computing systems (patt&patel)

Control Unit

Processing UnitINPUT OUTPUT

ALU

PC

TEMP

IR

http://www.microlanbh.com/Portals/Default/RAM/SDRAM.jpg
http://www.cup.edu/nu_upload/Image/max gonano.jpg

• http://www.youtube.com/watch?v=_Lm7Acr

5ysY&feature=related

0x00020x0003PC

WBI-$

D-$

RF

LD R1, MEM[R0]

ADD R2, R2, #1

BRZERO 0x0001

0x0001

0x0002

0x0003

0x0001

15 cycles

7 cycles

DEC

Non-pipelined

Pipelined

0x00020x0003

t

• Data Dependencies

– RAW: Read-After-Write (True Dependence)

– WAR: Anti-Depedence

– WAW: Output Dependence

• Control Dependence

– When following instructions depend on the

outcome of a previous branch/jump

Reg

A
L
U

DMemIfetch Reg

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r2,r7

Ifetch

A
L
U

DMem RegReg Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

All sources are ready?

Why not execute them?

A: R1 = R2 + R3

B: R4 = R1 * R4

5

-2

9

3

R1

R2

R3

R4

Read-After-Write

7

-2

9

3

7

-2

9

21

A

B

5

-2

9

3

R1

R2

R3

R4

5

-2

9

15

7

-2

9

15
B

A

A: R1 = R3 / R4

B: R3 = R2 * R4

Write-After-Read

5

-2

9

3

R1

R2

R3

R4

3

-2

9

3

3

-2

-6

3

A
B

5

-2

9

3

R1

R2

R3

R4

5

-2

-6

3

-2

-2

-6

3

A
B

Write-After-Write

A: R1 = R2 + R3

B: R1 = R3 * R4

5

-2

9

3

R1

R2

R3

R4

7

-2

9

3

27

-2

9

3

A B

5

-2

9

3

R1

R2

R3

R4

27

-2

9

3

7

-2

9

3

AB

• WAR dependencies are from reusing

registers

A: R1 = R3 / R4

B: R3 = R2 * R4

5

-2

9

3

R1

R2

R3

R4

3

-2

9

3

3

-2

-6

3

A
B

5

-2

9

3

R1

R2

R3

R4

5

-2

-6

3

-2

-2

-6

3

B
A 5

-2

9

3

R1

R2

R3

R4

5

-2

9

3

3

-2

9

3

B
A

4R5 -6 -6

A: R1 = R3 / R4

B: R5 = R2 * R4
X

With no dependencies, reordering

still produces the correct results

• WAW dependencies are also from reusing

registers

5

-2

9

3

R1

R2

R3

R4

27

-2

9

3

27

-2

9

3

B A

4R5 4 7

A: R1 = R2 + R3

B: R1 = R3 * R4

5

-2

9

3

R1

R2

R3

R4

7

-2

9

3

27

-2

9

3

A B 5

-2

9

3

R1

R2

R3

R4

27

-2

9

3

7

-2

9

3

AB

A: R5 = R2 + R3

B: R1 = R3 * R4
X

Same solution works

• Give processor more registers than

specified by the ISA

– temporarily map ISA registers (“logical” or

“architected” registers) to the physical registers

to avoid overwrites

• Components:

– mapping mechanism

– physical registers

• allocated vs. free registers

• allocation/deallocation mechanism

I1: ADD R1, R2, R3

I2: SUB R2, R1, R5

I3: AND R5, R11, R7

I4: OR R8, R5, R2

I5: XOR R2, R4, R11

Program code• Example

– I3 can not exec before I2 because

I3 will overwrite R5

– I5 can not go before I2 because

I2, when it goes, will overwrite

R2 with a stale value

RAW

WAR

WAW

• Solution:
Let’s give I3 temporary name/
location (e.g., S) for the value
it produces.

• But I4 uses that value,
so we must also change that to S…

• In fact, all uses of R5 from I3 to the next
instruction that writes to R5 again must now be
changed to S!

• We remove WAW deps in the same way: change
R2 in I5 (and subsequent instrs) to T.

I1: ADD R1, R2, R3

I2: SUB R2, R1, R5

I3: AND R5 R11, R7

I4: OR R8, R5, R2

I5: XOR R2, R4, R11

I4: OR R8, S, R2

I1: ADD R1, R2, R3

I3: AND S, R11, R7

I2: SUB R2, R1, R5

I5: XOR T, R4, R11

• Implementation

– Space for S, T, etc.

– How do we know when

to rename a register?

• Simple Solution

– Do renaming for every instruction

– Change the name of a register

each time we decode an

instruction that will write to it.

– Remember what name we gave it

I1: ADD R1, R2, R3

I2: SUB R2, R1, R5

I3: AND S, R11, R7

I4: OR R8, S, R2

I5: XOR T, R4, R11

Program code

• We need some physical structure to store
the register values

PRF

ARF

RAT

Register

Alias

Table

Physical

Register

File

Architected

Register

File

One PREG per instruction in-flight

“Outside” world sees the ARF

• Separates architected vs. physical

registers

• Tracks program order of all in-flight insts

– Enables in-order completion or “commit”

Instruction Buffers

op Qj Qk Vj Vk

Reservation Stations and ALUs

op Qj Qk Vj Vk

op Qj Qk Vj Vk

op Qj Qk Vj Vk

Add

op Qj Qk Vj Vk

op Qj Qk Vj Vk

Mult

Architected Register FileRAT

type dest value fin

ROB

“head”

• Read inst from inst

buffer

• Check if resources

available:

– Appropriate RS entry

– ROB entry

• Read RAT, read

(available) sources,

update RAT

• Write to RS and

ROB

Instruction Buffers

op Qj Qk Vj Vk

Reservation Stations and ALUs

op Qj Qk Vj Vk

op Qj Qk Vj Vk

op Qj Qk Vj Vk

Add

op Qj Qk Vj Vk

op Qj Qk Vj Vk

Mult

Architected Register FileRAT

type dest value fin

ROB

“head”

• Same as before

– Wait for all operands to arrive

– Compete to use functional unit

– Execute!

• Broadcast result on CDB

– (any dependents will grab the value)

• Write result back to your ROB entry

– The ARF holds the “official” register state,

which we will only update in program order

– Mark ready/finished bit in ROB (note that this

inst has completed execution)

• Reservation station can be freed.

• When an inst is the oldest in the ROB

– i.e., ROB-head points to it

• Write result (if ready/finished bit is set)

– If register producing instruction: write to
architected register file

– If store: write to memory
• Q: What about load?

• Advance ROB-head to next instruction

• This is what the outside world sees

– And it’s all in-order

• Make instruction execution “visible” to the

outside world

– “Commit” the changes to the architected state

A

B

C

D

E

F

G

H

J

K

ARF

WB result Outside World “sees”:

A executed

B executed

C executed

D executed

E executed

ROB

Instructions execute out of program order,

but outside world still “believes” it’s in-order

• Single thread in superscalar execution:
dependences cause most of stalls

• Idea: when one thread stalled, other can go

• Different granularities of multithreading

– Coarse MT: can change thread every few
cycles

– Fine MT: can change thread every cycle

– Simultaneous Multithreading (SMT)
• Instrs from different threads even in the same cycle

• AKA Hyperthreading

• Uni-Processor: 4-6 wide, lucky if you get 1-2 IPC

– poor utilization

• SMP: 2-4 CPUs, but need independent tasks

– else poor utilization as well

• SMT: Idea is to use a single large uni-processor

as a multi-processor

Regular CPU

CMP

2x HW Cost

SMT (4 threads)

Approx 1x HW Cost

• For an N-way (N threads) SMT, we need:

– Ability to fetch from N threads

– N sets of architectural registers (including PCs)

– N rename tables (RATs)

– N virtual memory spaces

– Front-end: branch predictor?: no, RAS? :yes

• But we don’t need to replicate the entire OOO

execution engine (schedulers, execution units,

bypass networks, ROBs, etc.)

31

• Multiplex the Fetch Logic

I$
PC0

PC1

PC2

cycle % N

fetch Decode, etc.

RS

Can do simple round-robin between active

threads, or favor some over the others

based on how much each is stalling

relative to the others

32

• Thread #1’s R12 != Thread #2’s R12

– separate name spaces

– need to disambiguate

RAT0

RAT1

Thread0

Register #

Thread1

Register #

PRF

33

• No change needed

Thread 0:

Add R1 = R2 + R3

Sub R4 = R1 – R5

Xor R3 = R1 ^ R4

Load R2 = 0[R3]

Thread 1:

Add R1 = R2 + R3

Sub R4 = R1 – R5

Xor R3 = R1 ^ R4

Load R2 = 0[R3]

Thread 0:

Add T12 = T20 + T8

Sub T19 = T12 – T16

Xor T14 = T12 ^ T19

Load T23 = 0[T14]

Thread 1:

Add T17 = T29 + T3

Sub T5 = T17 – T2

Xor T31 = T17 ^ T5

Load T25 = 0[T31]

Add T12 = T20 + T8

Sub T19 = T12 – T16

Xor T14 = T12 ^ T19

Load T23 = 0[T14]

Add T17 = T29 + T3

Sub T5 = T17 – T2

Xor T31 = T17 ^ T5

Load T25 = 0[T31]

Shared RS Entries

After Renaming

34

• Register File Management

– ARF/PRF organization

• need one ARF per thread

• Need to maintain interrupts, exceptions,

faults on a per-thread basis

– like OOO needs to appear to outside world

that it is in-order, SMT needs to appear as if it

is actually N CPUs

35

