

CS4803DGC Design Game Consoles

Spring 2010 Prof. Hyesoon Kim

Thanks to Prof. Loh & Prof. Prvulovic

Multiprocessing

- Flynn's Taxonomy of Parallel Machines
 - How many Instruction streams?
 - How many Data streams?
- SISD: Single I Stream, Single D Stream
 A uniprocessor
- SIMD: Single I, Multiple D Streams
 - Each "processor" works on its own data
 - But all execute the same instrs in lockstep
 - E.g. a vector processor or MMX, CUDA

Flynn's Taxonomy

- MISD: Multiple I, Single D Stream
 Not used much
 - Stream processors are closest to MISD
- MIMD: Multiple I, Multiple D Streams
 - Each processor executes its own instructions and operates on its own data
 - This is your typical off-the-shelf multiprocessor (made using a bunch of "normal" processors)
 - Includes multi-core processors

Computing

SIMD Model

- Texas C62xx, IA32 (SSE), AMD K6, CUDA, Xbox..
- Early SIMD machines: e.g.) CM-2 (large distributed system)
 - Lack of vector register files and efficient transposition support in the memory system.
 - Lack of irregular indexed memory accesses
- Modern SIMD machines:
 - SIMD engine is in the same die

SIMD Execution Model

Locality and Caches

- Data Locality
 - Temporal: if data item needed now,
 it is likely to be needed again in near future
 - Spatial: if data item needed now, nearby data likely to be needed in near future
- Exploiting Locality: Caches
 - Keep recently used data in fast memory close to the processor
 - Also bring nearby data there

MEMORY SYSTEM

College of Computing

Storage Hierarchy and Locality

Computing

Memory Latency is Long

- 60-100ns not uncommon
- Quick back-of-the-envelope calculation: – 2GHz CPU
 - \rightarrow 0.5ns / cycle
 - 100ns memory \rightarrow 200 cycle memory latency!
- Solution: Caches

Cache

CPU-DRAM

Computing

SRAM vs. DRAM

• DRAM = Dynamic RAM

- SRAM: 6T per bit
 - built with normal high-speed CMOS technology
- DRAM: 1T per bit
 - built with special DRAM process optimized for density

Hardware Structures

DRAM Chip Organization

DRAM Chip Organization (2)

- Differences with SRAM
 - reads are *destructive*: contents are erased after reading
 - row buffer
 - read lots of bits all at once, and then parcel them out based on different column addresses
 - similar to reading a full cache line, but only accessing one word at a time

Computing

- "Fast-Page Mode" FPM DRAM organizes the DRAM row to contain bits for a complete page
 - row address held constant, and then fast read from different locations from the same page

DRAM Read Operation

Destructive Read

CACHE COHERENCE

College of Computing

Problem

A1: 10	
A2: 20	
A3: 39	
A4: 17	

College of Computing **SNOOPING**

A4: 17

College of Computing

Georgia Tech

Computing

MSI Snoopy Protocol

- State of block B in cache C can be
 - Invalid: B is not cached in C
 - To read or write, must make a request on the bus
 - Modified: B is dirty in C
 - has the block, no other cache has the block, and C must update memory when it displaces B
 - Can read or write B without going to the bus
 - Shared: B is clean in C
 - C has the block, other caches have the block, and C need not update memory when it displaces B
 - Can read B without going to bus
 - To write, must send an upgrade request to the bus

MSI Example

