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Multiprocessing

* Flynn’s Taxonomy of Parallel Machines
— How many Instruction streams?
— How many Data streams?

» SISD: Single | Stream, Single D Stream
— A uniprocessor

« SIMD: Single I, Multiple D Streams
— Each “processor” works on its own data
— But all execute the same instrs in lockstep
— E.g. a vector processor or MMX, CUDA
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Flynn’s Taxonomy

 MISD: Multiple I, Single D Stream

— Not used much
— Stream processors are closest to MISD

 MIMD: Multiple I, Multiple D Streams

— Each processor executes its own instructions
and operates on its own data

— This Is your typical off-the-shelf multiprocessor
(made using a bunch of “normal” processors)

— Includes multi-core processors
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SIMD Model

» Texas C62xx, IA32 (SSE), AMD K6,
CUDA, Xbox..

« Early SIMD machines: e.g.) CM-2 (large
distributed system)

— Lack of vector register files and efficient

transposition support in the memory system.

— Lack of irregular indexed memory accesses
 Modern SIMD machines:
— SIMD engine is in the same die
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SIMD Execution Model

Source 1

Source 2

Destination

e

for (it = 0; ii < 4; ii++)
X[il] = y[ii]+z[ii];

X3 X2 X1 X0
Y3 Y2 Y1 YO
X3 OP Y3 X2 OP Y2 X10PY1 X0 OP YO
SIMD_ADD(X, Y, 2)
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Locality and Caches

« Data Locality

— Temporal: if data item needed now,
it Is likely to be needed again in near future

— Spatial: if data item needed now,
nearby data likely to be needed in near future

* Exploiting Locality: Caches

— Keep recently used data
In fast memory close to the processor

— Also bring nearby data there
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Storage Hierarchy and Locality

Capacity +
Speed -
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Disk
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Main Memory

L3 Cache

L2 Cache

Instruction Cache
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Memory Latency is Long

e 60-100Nns not uncommon

* Quick back-of-the-envelope calculation:
— 2GHz CPU
— = 0.5ns / cycle
— 100ns memory -> 200 cycle memory latency!

e Solution: Caches
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Cache

I-cache REG

L4

D-cache

o/

LRI

SIGN EXT -

FE_stge ID_stage EX_stage MEM_stage WB_stage

L2 cache

Memory
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CPU-DRAM

Processor
(Intel)

Nl

External Bus

(FSB, Front Side Bus) pemory Controller
(North Bridge Chip)

< Control >

Address

Memory Bus
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SRAM vs. DRAM

 DRAM = Dynamic RAM

« SRAM: 6T per bit

— built with normal high-speed CMOS
technology

« DRAM: 1T per bit

— built with special DRAM process optimized for
density
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Hardware Structures

wordline

SRAM

wordline
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DRAM Chip Organization
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DRAM Chip Organization (2)

Differences with SRAM

* reads are destructive: contents are erased after
reading

— row buffer

* read lots of bits all at once, and then parcel them
out based on different column addresses

— similar to reading a full cache line, but only accessing one
word at a time

« “Fast-Page Mode” FPM DRAM organizes the
DRAM row to contain bits for a complete page

— row address held constant, and then fast read from
different locations from the same page
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DRAM Read Operation
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Destructive Read
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CACHE COHERENCE
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Problem

Al: 20

Main Memory.
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SNOOPING

Al 20 Al: 20

Main Memory.
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MSI Snoopy Protocol

o State of block B in cache C can be

— Invalid: B is not cached in C
« To read or write, must make a request on the bus
— Modified: B is dirty in C
* has the block, no other cache has the block,
and C must update memory when it displaces B
« Can read or write B without going to the bus

— Shared: B is clean in C

» C has the block, other caches have the block,
and C need not update memory when it displaces B

« Can read B without going to bus
« To write, must send an upgrade request to the bus
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MSI Example
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