
Spring 2010

Prof. Hyesoon Kim

ARM processor

Nintendo DS programming

(ARM Assembly coding)
- Interrupt/polling method

- Immediate operands, shift

- Memory indexing

- Memory mapped I/O processors

- Condition code

- Predicated execution

- Fixed point operations

- SPI connections

- Basic graphics (translation, scaling, rotation)

- Split transactions

- Advanced Microcontroller Bus Architecture (AMBA)

- Handling nested function calls

• LRB architecture: U&V pipe

– Ring network

– Gather/scatter operations

• Cell processors

– Heterogeneous architecture

– In-order/out-of-order processors

– DMA, Load/store managements

– Branch handling

– Power efficient design

• MIPS

– Delayed branch

– Pipeline stalls

• Performance questions

• Speedup when only fraction of program can be

parallelized

  













Enhanced

Enhanced
Enhanced

Speedup

Fraction
Fraction1

1
 Speedup Overall

20 SpeedupEnhanced  0.1 FractionEnhanced 

 
105.1

20

1.0
1.01

1
 Speedup 













1.2 SpeedupEnhanced  .90 FractionEnhanced 

 
176.1

2.1

9.0
9.01

1
 Speedup 













VS

new

old

TimeExecution

TimeExecution

tEnhancemen with TimeExecution

tEnhancemen without TimeExecution
 Speedup 

  












 

Enhanced

Enhanced
Enhancedoldnew

Speedup

Fraction
Fraction1TimeExecution TimeExecution

Func A 80% , Func B 20%

• After parallelizing Func A, we run the parallelized

program on an 128-core GPU machine. What is

the maximum speedup?

 
85.4

128

8.0
8.01

1
 Speedup 













  













Enhanced

Enhanced
Enhanced

Speedup

Fraction
Fraction1

1
 Speedup Overall

Func A 80% , Func B 20%
• We run this code in a cell. Parallelized func A is run on 7 SPEs and

non-parallelized Fun B is run on 1 PPE. PPE is 80% faster than base

line and the speed of SPE is the same as baseline. What is the

overall speedup?

  












 

Enhanced

Enhanced
Enhancedoldnew

Speedup

Fraction
Fraction1TimeExecution TimeExecution

new

old

TimeExecution

TimeExecution

tEnhancemen with TimeExecution

tEnhancemen without TimeExecution
 Speedup 














 

Enhanced

Enhanced

Enhanced

Enhanced
oldnew

1.8

2.0

7

8.0
TimeExecution TimeExecution

43.4

1.8

2.0

7

8.0

1
 Speedup 













• The native ARM ISA has a 32-bit instruction format. To reduce the

instruction code size, ARM introduced the Thumb ISA. The Thumb

ISA has a 16-bit instruction format but not all native instructions are

translated into one Thumb instruction. The following table shows how

the ARM Native instructions are translated into the Thumb ISA.

• Q: I-cache size is 256B, I-cache miss rate for Native ISA vs. Thumb ISA?

• I-cache miss execution latency is 10 cycles, all other instructions takes 1

cycle. Total execution time difference?

Native ISA Thumb ISA

ADD ADD

MAD ADD, MUL

BRCMP CMP, BR

BR BR

Native ISA static dynamic

ADD 5 50

MAD 2 10

BRCMP 1 5

BR 2 10

• Using 12 bits how to represent 32-bit immediate

value?

• Immediate = (0255) x 22n

– Where 0≤n≥ 12 (4 bits rotation)

– 8 bit immediate + 4-bit shift

– 8 bit + 24 = 32 bit representation

• Which values can be represented by immediate values?

– 0x4300

– 0x4592

– 0x5600

– 0x360120

0x207 7

0x206 6

0x205 5

0x204 4

0x203 3

0x202 2

0x201 1

0x200 0

MEM addr / Mem data

r10 = 0x204

LDMIA r10, {r0,r1,r4}

What’s the value of r0, r1, r4?

STMIB r10, {r0,r1,r4}

The contents of memory?

MOV r1 #1

ADDS r0, r2, r3

MOVHI r1 #0

• What would be r1 value if r2 = 0x8000

r3=0x3fff

• We will provide the condition code table.

Fixed point number: 0x500

Value ?

5

Fixed point number: 0x104

Value?

0x104=b1 0000 0100 = 1 +

0*1/2+0*1/4+0*1/8+0*1/16+0*1/32+1*1/64+0*1/128+0*/256

Value 4.75  Fixed point?

4.75 = 4 + 0.5+ 0.25  (4 << 8 | 1 << 7 | 1 << 6)

= 0x4C0

• Find the affine

transform

matrix

Original image

(1,1) (1,2), (2,1) ,(2,2)
Transformed images

(8,1) (10,3), (1,11) ,(6,13)

• This is a code w/o delayed branch slots. MIPS

uses 2 instruction delayed slots. What will be the

new code when there is 2 instruction delayed

slots?

sub r1, r2,r3

add r4, r2,r3

br target

0x900 target mul r2, r3,r4

0x800

0x804

0x808

0x80b

0x810

0x900 target mul r2, r3,r4

• Wed (4/28)

– 5 min for team presentation + demo (nintendo Ds)

– Bring your notebook and Nintendo DS kit

– Peer review (review itself is also graded)

• F (4/30)

– Final project submission

– Report, code

• M (5/3)

– 11:30 AM 1:30 exam, bring your calculator

– Return Nintendo DS kit (no return, no update in your grade.)

