

CS4803DGC Design Game Consoles

Spring 2010 Prof. Hyesoon Kim

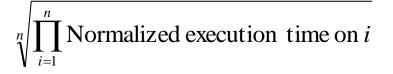
Workload Characterizations

- Benchmarking is critical to make a design decision and measuring performance
 - Performance evaluations:
 - Design decisions
 - Earlier time : analytical based evaluations
 - From 90's: heavy rely on simulations.
 - Processor evaluations
 - Workload characterizations: better understand the workloads

Measuring Performance

- Benchmarks
 - Real applications and application suites
 - E.g., SPEC CPU2000, SPEC2006, TPC-C, TPC-H, EEMBC, MediaBench, PARSEC, SYSmark
 - Kernels
 - "Representative" parts of real applications
 - Easier and quicker to set up and run
 - Often not really representative of the entire app
 - Toy programs, synthetic benchmarks, etc.
 - Not very useful for reporting
 - Sometimes used to test/stress specific functions/features

Performance Metrics


- GFLOPS, TFLOPS
- MIPS (Million instructions per second)

Normalizing & the Geometric Mean

- Speedup of arithmeitc means != arithmetic mean of speedup
- Use geometric mean:

- Neat property of the geometric mean: Consistent whatever the reference machine
- Do not use the arithmetic mean for normalized execution times

CPI/IPC

- Often when making comparisons in comparch studies:
 - Program (or set of) is the same for two CPUs
 - The clock speed is the same for two CPUs
- So we can just directly compare CPI's and often we use IPC's

Average CPI vs. "Average" IPC

• Average $CPI = (CPI_1 + CPI_2 + ... + CPI_n)/n$

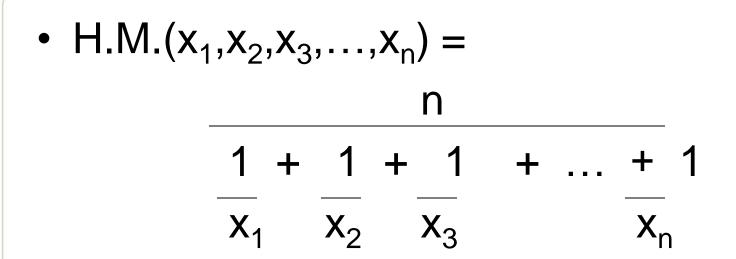
• A.M. of IPC = $(IPC_1 + IPC_2 \neq ... + IPC_n)/n$

Not Equal to A.M. of CPI!!!

Georgia

ſech

Computing


• Must use Harmonic Mean to remain ∞ to runtime

Georgia Tech

Computing

Harmonic Mean

What in the world is this?
Average of inverse relationships

A.M.(CPI) vs. H.M.(IPC)

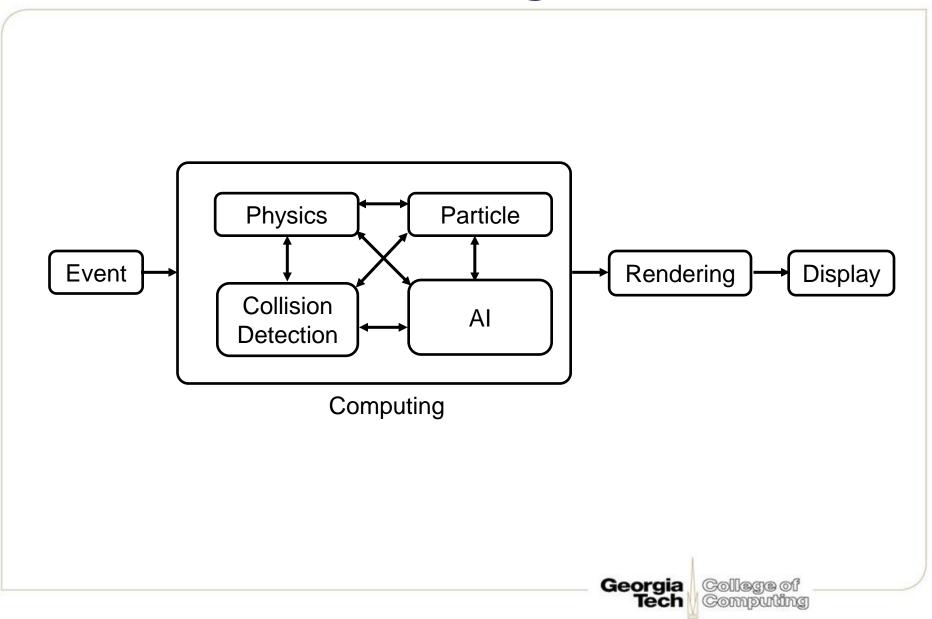
•	"Av	erage" IPC	; =	1		
			A.M.	(CPI)		
	=		1			
		CPI ₁ +	CPI ₂ +	CPI ₃	+ + (CPI _n
		n	n	n	n	_
	=		n			
		CPI ₁ +	CPI ₂ +	CPI ₃ +	+ CP	l _n
	=		n			
		1 +	1 +	1 +	+ 1	=
	H.N	/I.(IPC)				-
		IPC ₁	IPC ₂	IPC ₃	IP	C _n
					Georgia	College of
					Tech	Computing

GPU Benchmarks

- Stanford graphics benchmarks
 Simple graphics workload. Academic
- Mostly game applications
 - 3DMark:
 - http://www.futuremark.com/benchmarks/3dmar kvantage
 - Tom's hardware

Game Workload Charcterizations

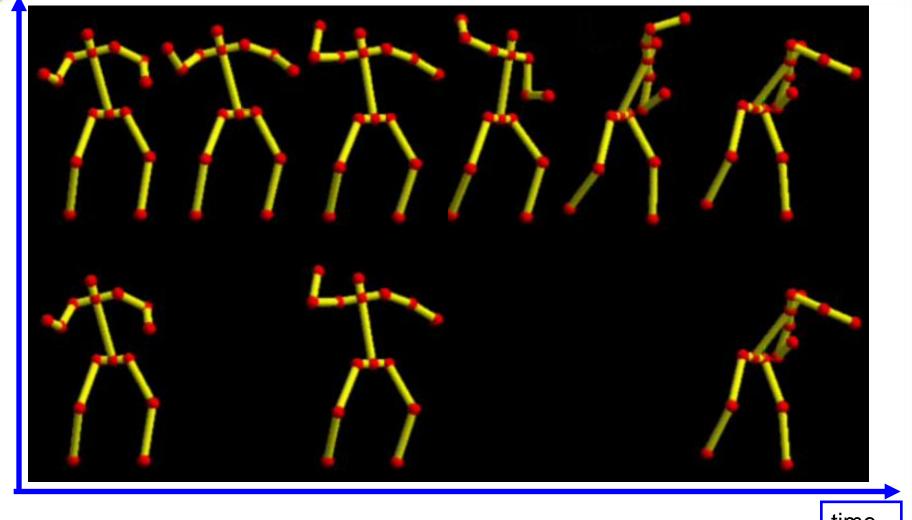
- Still graphics is the major performance bottlenecks
- Previous research: emphasis on graphics



Game workloads

- Several genres of video games
 First Person Shooter
 - Fast-paced, graphically enhanced
 - Focus of this presentation
 - Role-Playing Games
 - Lower graphics and slower play
 - Board Games
 - Just plain boring

Overview of Game Engine

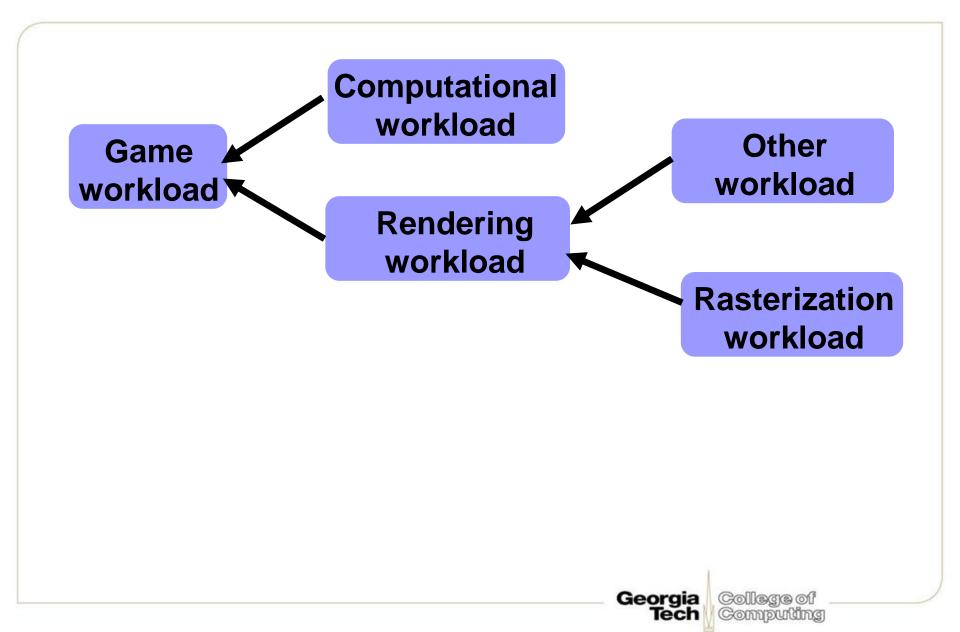


Frame Rates

- Current game design principles:
 - higher frame rates imply the better game quality
- Recent study on frame rates [Claypool et al. MMCN 2006]
 - very high frame rates are not necessary, very low frame rates impact the game quality severely

A First Cut: Reduce Frame Rates

Snapshots of animation [Davis et al. Eurographics 2003]


time

Computing

Tech

Game workloads

Game workload characterization

- Case study
 - Workload characterization of 3D games, Roca, et al. IISWC 2006 [WOR]
 - Use ATTILA

TABLE III

AVERAGE INDICES PER BATCH AND FRAME AND TOTAL BW

Game/Timedemo	avg. indexes per batch	avg. indexes per frame	bytes per index	BW @100fps
UT2004/Primeval	1110	249285	2	50 MB/s
Doom3/trdemo1	275	196416	4	79 MB/s
Doom3/trdemo2	304	136548	4	55 MB/s
Quake4/demo4	405	172330	4	69 MB/s
Quake4/guru5	166	135051	4	54 MB/s
Riddick/MainFrame	356	214965	2	43 MB/s
Riddick/PrisonArea	658	239425	2	48 MB/s
FEAR/built-in demo	641	331374	2	66 MB/s
FEAR/interval2	1085	307202	2	61 MB/s
Half Life 2 LC/built-in	736	328919	2	66 MB/s
Oblivion/Anvil Castle	998	711196	2	142 MB/s
Splinter Cell 3/first level	308	177300	2	35 MB/s

Georgia Tech Computing

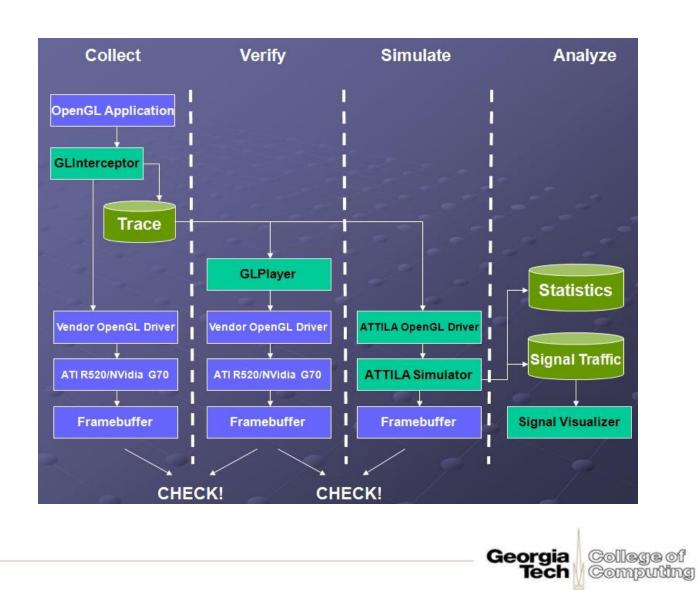
Characterization Items

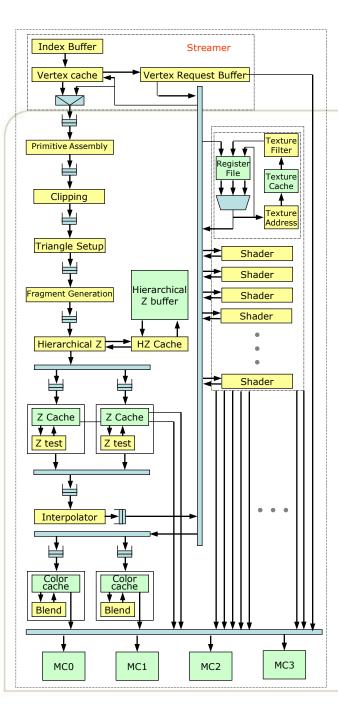
- Average primitives per frame
- Average vertex shader instructions
- Vertex cache hit ratio
- System bus bandwidths
- Percentage of clipped, culled, and traversed triangles
- Average triangle sizes

Georgia

Tech

College of


Computing


ATTILA

- GPU execution driven simulator
- <u>https://attila</u>ac.upc.edu/wiki/index.php/Architecture
- Can simulate OpenGL at this moments

Attila Frame

• Attila architecture

Unit	Size	Element width	
Streamer	48	16x4x32 bits	
Primitive Assembly	8	3x16x4x32 bits	
Clipping	4	3x4x32 bits	
Triangle Setup	12	3x4x32 bits	
Fragment Generation	16	3x4x32 bits	
Hierarchical Z	64	(2x16+4x32)x4 bits	
Z Tests	64	(2x16+4x32)x4 bits	
Interpolator			
Color Write	64	(2x16+4x32)x4 bits	
Unified Shader (vertex)	12+4	16x4x32 bits	
Unified Shader (fragment)	240+16	10x4x32 bits	

Table 2. Queue sizes and number of threads in the ATTILA reference architecture

Simulation

- Execution driven:
 - Correctness, long development time,
 - Execute binary
- Trace driven
 - Easy to develop
 - Simulation time could be shorten
 - Large trace file size

Tech

Computing

Analytical Model

- No simulation is required
- To provide insights
- Statistical Methods
- CPU
 - First-order
- GPU
 - Warp level parallelism

CPU workload characterizations

- Hardware performance counters
 - Built in counters (instruction count, cache misses, branch mispredicitons)
- Profiler
- Architecture simulator
- Characterized items
 - Cache miss, branch misprediciton, row-buffer hit ratio

P#1

- States Lab setting
- Recommended deadline (1/25)
 No penalty until 1/27
- Newsgroup:
 - Active participants will get extra credit
- Lab assignment TAing
 - Volunteer
 - Graduate (who have taken CS6290 course)
 - Send email to me.