

CS4803DGC Design and Programming of Game Console Spring 2011

Prof. Hyesoon Kim

Review: Exception Return

- After the exception handler, the hardware just starts from the user mode.
- Software must
 - Restore the modified registers
 - CPSR must be restored from the appropriate SPSR
 - PC must be changed back to the relevant instruction address in the user instruction stream
 - These two cannot happen independently

Return Address

- IRQ and FIQ must return one instruction early in order to execute the instruction that raised an exception
- Prefetch abort must return one instruction early to execute the instruction that had caused a memory fault when first requested
- Data abort must return the instruction that caused exception.

Computing

Use of R15

- R15: PC
 - PC may be used as a source operand
 - Register-based shift cannot use R15 as source operands.
- Running-ahead PC's behavior
 - PC is always running ahead
 - PC is always pointing +8 of the current instruction
 - Imagine 3-stage pipeline machine . PC is pointing what to fetch when an instruction is in the WB stage in the 3-stage pipeline machine
- When R15 is a source, the current PC + 8 is supplied to the source operand.
- When R15 is a destination
 - Second Content
 Second Content</

Exception generation time

• Pre-fetch abort : instruction fetch

Fetch	Decode	Execute
-------	--------	---------

PC+8

• Data abort : memory execution

Fetch	Decode	Execute

Controlling Interrupts

Typical example of interrupt handler

- SUB Ir, Ir, #4
- STMFD sp!{reglist, lr}

LDMFD sp!, {reglist,pc}^

College of Computing

ARM946E-S:(ARM 9 in Nintendo DS)

- Soc for embedded system.
- Single chip DSP
- Embedded applications running an RTOS
- Mass storage HDD & DVD
- Speech coders
- Automotive control
 - Cruise control, ABS, etc.
- Hands-free interfaces
- Modems and soft-modems
- Audio decoding
- Dolby AC3 digital
- MPEG MP3 audio
- Speech recognition and synthesis.

ARM946E-S:(ARM 9 in Nintendo DS):

- Data processing instructions
- Load and store instructions
- Branch instructions
- Coprocessor instructions
 - Coprocessor data processing
 - Coprocessor register transfer
 - Coprocessor data transfer

Georgia College of Tech Computing

ARM 11 MP Core Processor

http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf

New Features in ARM 11

- Improve Memory Accesses

 Non-blocking (hit-under-miss) operations
- LD/ST and ALU are decoupled.
- Out-of-order completion:
 - Instructions that have no dependency on the outcome of the previous instruction can complete. !!! → Good or Bad?

The ARM11 Microarchitecture, David Cormie, ARM Ltd Geor

Feature	ARM9E™	ARM10E™	Intel® XScale™	ARM11 [™]
Architecture	ARMv5TE(J)	ARMv5TE(J)	ARMv5TE	ARMv6
Pipeline Length	5	6	7	8
Java Decode	(ARM926EJ)	(ARM1026EJ)	No	Yes
V6 SIMD Instructions	No	No	No	Yes
MIA Instructions	No	No	Yes	Available as coprocessor
Branch Prediction	No	Static	Dynamic	Dynamic
Independent Load-Store Unit	No	Yes	Yes	Yes
Instruction Issue	Scalar, in-order	Scalar, in-order	Scalar, in-order	Scalar, in-orde
Concurrency	None	ALU/MAC, LSU	ALU, MAC, LSU	ALU/MAC, LSU
Out-of-order completion	No	Yes	Yes	Yes
Target Implementation	Synthesizable	Synthesizable	Custom chip	Synthesizable and Hard macr
Performance Range	Up to 250MHz	Up to 325MHz	200MHz – >1GHz	350MHz - >1GHz

Figure 5. ARM Architecture Feature Comparisons

Thumb-2 ISA

- Thumb-2 is a superset of the Thumb instruction set.
- Thumb-2 introduces 32-bit instructions that are intermixed with the 16-bit instructions. The Thumb-2 instruction set covers almost all the functionality of the ARM instruction set.
- Thumb-2 is backwards compatible with the ARMv6 Thumb instruction set.

SIMD in ARM

- Neon: ARM's SIMD engine
- 128bit SIMD
- NEON instructions perform "Packed SIMD" processing:
- Registers are considered as **vectors** of **elements** of the same **data** type
- Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single precision floating point

Georgia

Computing

Instructions perform the same **operation** in all **lanes**

Usage model of NEON

- Watch any video in **any** format
- Edit and enhance captured videos video stabilization
- Anti-aliased rendering and compositing
- Game processing
- Process multi-megapixel photos quickly
- Voice recognition
- Powerful multichannel hi-fi audio processing

http://www.arm.com/products/processors/technologies/neon.phph

• Coretex A-9

College of Computing

Tegra 2 SoC

- Dual core: ARM Cortex-A9 processors
 - Ultra Low Power GeForce GPU
 - ARM 7 core

11

н.

н.

Multimedia support

Georgia

Tech

Audio, vidoe decode/encode

College of

Computing

Slides from Kim and Kumar's presentation

Platforms using Tegra Boards

Notion Ink Adam

Motorola Xoom

1

Q Cooste

Slides from Kim and Kumar's presentation

dual Cortex A9, PowerVR SGX 543MP2

Cortex-A9 MPCore

College of Computing

A5

Floor Plan of A4 and A5

A4

http://www.chipworks.com/en/technical-competitive-analysis/resources/technology-blog/2011/03/apple a5-vs-a4-floorplan-comparison/

Spec

	Archit	ecture Comparison			
	ARM11	ARM Cortex A8	ARM Cortex A9	Qualcomm Scorpion	
Issue Width	single-issue	dual-issue	dual-issue	dual-issue	
Pipeline Depth	8 stages	13 stages	9 stages	13 stages	
Out of Order Execution	Ν	Ν	Y	Partial	
FPU	Optional VFPv2 (not-pipelined)	VFPv3 (not-pipelined)	Optional VFPv3-D16 (pipelined)	VFPv3 (pipelined)	
NEON	N/A	Y (64-bit wide)	Optional MPE (64-bit wide)	Y (128-bit wide)	
Process Technology	90nm	65nm/45nm	40nm	40nm	
Typical Clock Speeds	412MHz	600MHz/1GHz	1GHz	1GHz	

Operating System	iPhone OS 4.3			
Model	iPad2,3	Motherboard	K95AP	
Processor	ARMv7			
Processor ID				
Processor Frequency	894 MHz	Processors	1	
Cores	2	Threads	2	
L1 Instruction Cache	32.0 KB	L1 Data Cache	32.0 KB	
L2 Cache	1.00 MB	L3 Cache	0.00 B	
Memory	502 MB	FSB	250 MHz	O
BIOS	N/A			Georg

College of

Computing

Examples of Using Cortex-A9

Next-Generation Devices	Typical Cortex-A9 Configuration
Mobile Handsets Connected Mobile Computers	High-end mobile devices (1500-3000DMIPS) 2-3 core processor advanced power management 32K Instruction and Data caches, 256-512K shared L2 cache using PL310, partitioned AXI NEON technology-based Media Processing Engine
	Mid-range, cost reduction, (900-1500DMIPS) Single core processor with NEON or FPU 16K or 32K instruction and data caches 128-256K L2 cache using PL310, single AMBA AXI bus
	Feature-rich mass market (600-900DMIPS) Single core processor with FPU 16K instruction and data caches, single AXI
Consumer and Auto-infotainment	Consumer: user interactions (800-3000DMIPS) 1-4 core processors giving design scalability across family of devices 32K instruction and data caches with 0-512K L2 cache NEON technology for advanced media and DSP processing Advanced bus interface unit for high-speed memory transfers between on-chip 3D engines and network interface MACs AMP configurations using separate CPU for real-time RTOS
Networking / Home Gateways	Enterprise market (4000-8000DMIPS) 3-4 core performance optimized implementation 32K+64K Instruction and data cache 512K-2MB L2 cache, dual 64 bit AMBA AXI interfaces
	Consumer devices (800-1500DMIPS) 1x or 2x multicore utilizing coherent accelerators 32+32K instruction and data, with 256-512K shared L2 cache NEON or VFP when offering media gateway or services
Embedded	Embedded media and imaging (800-2000DMIPS) 2x multicore utilizing coherent accelerators 32+32K instruction and data with 256K shared L2 cache FPU for postscript and image manipulation and enhancement Code migration through selective AMP/SMP deployments

http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf

Coretex-A9 Micro-Architecture

MP Cortex A-9 Processors

FPU/NEON	N PTM I/F	FPU/NEON	I PTM I/F		FPU/NEON	1	PTM I/F		FPU/NEC	N PI	ГМ ′F
Falcor	n CPU	Falcon	Falcon CPU		Falcon CPU			Falcon CF			
Instruction Cache	Data Cache	Instruction Cache	Data Cache		Instruction Cache	Data Cache			Instruction Cache	Data Cach	e e
Snoop Control Unit (SCU)							Accelerator				
Interrupt Control and Distribution		Cache- Trai	-2-Cache nsfers	s Snoop Filtering Timers Coherer Filtering				oherenc Port	e		
Advanced Bus Interface Unit											
Primary AMBA 3 64bit Interface Optional 2nd I/F with Address Filtering											
Georgia College of											

ARM BUS

College of Computing

Advanced Microcontroller Bus Architecture (AMBA)

Computing

AMBA

- AHB (Advanced High-performance Bus)
 - New standard
 - Connect high-performance system
 - Burst mode data transfer and split transactions
 - Pipelined
- ASB (Advanced System Bus)
 - Old standard
 - Connect high-performance system
 - Pipelined
 - Multiple systems
- APB (Advanced Peripheral Bus)
 - A simpler interface for low-performance peripherals
 - Low power
 - Latched address, simple interface

Bus Arbitration

AMBA Arbitration

- A bus transaction is initiated by a bus master which requests access from a central arbiter.
- The arbiter decides priorities when there are conflicting requests.
- The design of the arbiter is a system specific issue.
- The ASB only specifies the protocol:
 - The master issues a request to the arbiter
 - When the bus is available, the arbiter issues a grant to the master.

wuzwuz.nuigalway.ie/.../SOC_Lecture_02_UCG%20Novembere62012%202002.ppt

Bus Pipelining

- A memory access consists of several cycles (including arbitration)
- Since the bus is not used in all cycles, pipelining can be used to increase performance

Split Transactions

- A transaction is splitted into a two transactions
 - Request-transaction
 - Reply-transaction
- Both transactions have to compete for the bus by arbitration

Burst Messages

- Overheads can be reduced if the requests are sent as a burst
- Overheads
 - Arbitration, Addressing, Acknowledgement
- Better efficiency, but be careful with long requests

Bus Bridges

- Bus bridges are used to separate highperformance devices from low-performance devices
- All communication from high-performance bus with the low performance device goes via the bridge

http://www.imit.kth.se/courses/2B1447/Lectures/2B1447_L4_Ectes.pdf