
Spring 2011

Prof. Hyesoon Kim

Source: AMD Accelerated Parallel Processing

OpenCL Programming Guide

Source: AMD Accelerated Parallel Processing

OpenCL Programming Guide

OpenCL : CUDA

Work-item: thread

Work-group: Block

AMD : NVIDIA

Wavefront: warp

Source: AMD Accelerated Parallel Processing

OpenCL Programming Guide

• Memory per compute unit

– Local data store (on-chip)

– Registers

– L1 cache (8KB for 5870) per

compute unit

• L2 Cache shared between

compute units (512KB for

5870)

• Fast path for only 32 bit

operations { no atomic}

• Complete path for atomics and

< 32bit operations

SIMD Engine

LDS, Registers

Compute Unit to Memory X-bar

LDS

L1 Cache

L2 Cache Write Cache

Atomic Path

Perhaad Mistry & Dana Schaa, Northeastern Univ

Computer Architecture Research Lab, with Ben Gaster,

AMD © 2011

SIMT Execution Model

1 2 3 4 5 6 7 8 9

AddAddAddAddAddAddAddAdd
AddAddAddAddAddAddAddAdd

AddAddAddAddAddAddAddAdd
AddAddAddAddAddAddAddAdd

MulMulMulMulMulMulMulMul
MulMulMulMulMulMulMulMul

MulMulMulMulMulMulMulMul
MulMulMulMulMulMulMulMul

…

Wavefront

…Cycle

SIMD Width

 SIMD execution can be combined with pipelining

 ALUs all execute the same instruction

 Pipelining is used to break instruction into phases

 When first instruction completes (4 cycles here), the next
instruction is ready to execute

6
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

AMD Memory Model in OpenCL

 Subset of hardware memory
exposed in OpenCL

 Local Data Share (LDS)
exposed as local memory
 Share data between items of a

work group designed to increase
performance

 High Bandwidth access per SIMD
Engine

 Private memory utilizes
registers per work item

 Constant Memory
 __constant tags utilize L1 cache.

Global Memory

Private

Memory

Workitem 1

Private

Memory

Workitem 1

Compute Unit 1

Local Memory

Global / Constant Memory Data Cache

Local Memory

Private

Memory

Workitem 1

Private

Memory

Workitem 1

Compute Unit N

Compute Device

Compute Device Memory

7
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

AMD Constant Memory Usage

 Constant Memory declarations for AMD GPUs only

beneficial for following access patterns

 Direct-Addressing Patterns: For non array constant values

where the address is known initially

 Same Index Patterns: When all work-items reference the

same constant address

 Globally scoped constant arrays: Arrays that are initialized,

globally scoped can use the cache if less than 16KB

 Cases where each work item accesses different indices,

are not cached and deliver the same performance as a

global memory read

Source: AMD Accelerated Parallel Processing OpenCL Programming Guide

8
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

• For the AMD 5870 GPU, memory accesses of 16

consecutive threads are evaluated together and

can be coalesced to fully utilize the bus

– This unit is called a quarter-wavefront

• Both NVIDIA and ATI use 16 consecutive

threads as the minimum memory traffics

• 16*4B = 64B 16*8B = 128B

Coalescing Memory Accesses

 Global memory performance for a simple data copying

kernel of entirely coalesced and entirely non-coalesced

accesses on an NVIDIA GTX 285

0

20

40

60

80

100

120

140

1 4 16 32 64 128 256

B
a

n
d

w
id

th
 (G

B
/s

)

Data Size (MB)

Coalesced

Uncoalesced

10
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Memory Banks

 Memory is made up of banks

 Memory banks are the hardware units that actually store data

 The memory banks targeted by a memory access depend on

the address of the data to be read/written

 Note that on current GPUs, there are more memory banks than

can be addressed at once by the global memory bus, so it is

possible for different accesses to target different banks

 Bank response time, not access requests, is the bottleneck

 Successive data are stored in successive banks (strides of

32-bit words on GPUs) so that a group of threads accessing

successive elements will produce no bank conflicts

11
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Bank Conflicts – Local Memory

 Bank conflicts have the largest negative effect on local

memory operations

 Local memory does not require that accesses are to

sequentially increasing elements

 Accesses from successive threads should target

different memory banks

 Threads accessing sequentially increasing data will fall into

this category

12
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Bank Conflicts – Local Memory

 On AMD, a wavefront that generates bank conflicts stalls

until all local memory operations complete

 The hardware does not hide the stall by switching to

another wavefront

 The following examples show local memory access

patterns and whether conflicts are generated

 For readability, only 8 memory banks are shown

13
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Bank Conflicts – Local Memory

 If there are no bank conflicts, each bank can return an
element without any delays
 Both of the following patterns will complete without stalls on

current GPU hardware

0

1

2

3

4

5

6

7

Memory Bank

0

1

2

3

4

5

6

7

Thread

0

1

2

3

4

5

6

7

Memory Bank

0

1

2

3

4

5

6

7

Thread

14
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Bank Conflicts – Local Memory

 If multiple accesses occur to the same bank, then the bank
with the most conflicts will determine the latency

 The following pattern will take 3 times the access latency to
complete

0

1

2

3

4

5

6

7

Memory Bank

0

1

2

3

4

5

6

7

Thread

2

1

3

1

1

Conflicts

15
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Bank Conflicts – Local Memory

 If all accesses are to the same address, then the bank can
perform a broadcast and no delay is incurred
 The following will only take one access to complete assuming the

same data element is accessed

0

1

2

3

4

5

6

7

Memory Bank

0

1

2

3

4

5

6

7

Thread

16
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Bank Conflicts – Global Memory

 Bank conflicts in global memory rely on the same principles,
however the global memory bus makes the impact of conflicts
more subtle

 Since accessing data in global memory requires that an entire
bus-line be read, bank conflicts within a work-group have a
similar effect as non-coalesced accesses

 If threads reading from global memory had a bank conflict then by
definition it manifest as a non-coalesced access

 Not all non-coalesced accesses are bank conflicts, however

 The ideal case for global memory is when different work-
groups read from different banks

 In reality, this is a very low-level optimization and should not be
prioritized when first writing a program

17
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Occupancy
 On current GPUs, work groups get mapped to compute

units
 When a work group is mapped to a compute unit, it cannot be

swapped off until all of its threads complete their execution

 If there are enough resources available, multiple work
groups can be mapped to the same compute unit at the
same time
 Wavefronts from another work group can be swapped in to

hide latency

 Resources are fixed per compute unit (number of registers,
local memory size, maximum number of threads)
 Any one of these resource constraints may limit the number of

work groups on a compute unit

 The term occupancy is used to describe how well the
resources of the compute unit are being utilized

18
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Occupancy – Registers
 The availability of registers is one of the major limiting

factor for larger kernels

 The maximum number of registers required by a
kernel must be available for all threads of a workgroup

 Example: Consider a GPU with 16384 registers per
compute unit running a kernel that requires 35 registers
per thread

 Each compute unit can execute at most 468 threads

 This affects the choice of workgroup size

 A workgroup of 512 is not possible

 Only 1 workgroup of 256 threads is allowed at a time, even
though 212 more threads could be running

 3 workgroups of 128 threads are allowed, providing 384
threads to be scheduled, etc.

19
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Occupancy – Registers

 Consider another example:

 A GPU has 16384 registers per compute unit

 The work group size of a kernel is fixed at 256 threads

 The kernel currently requires 17 registers per thread

 Given the information, each work group requires 4352

registers

 This allows for 3 active work groups if registers are the

only limiting factor

 If the code can be restructured to only use 16

registers, then 4 active work groups would be possible

20
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Occupancy – Local Memory

 GPUs have a limited amount of local memory on each

compute unit

 32KB of local memory on AMD GPUs

 32-48KB of local memory on NVIDIA GPUs

 Local memory limits the number of active work groups

per compute unit

 Depending on the kernel, the data per workgroup may

be fixed regardless of number of threads (e.g.,

histograms), or may vary based on the number of

threads (e.g., matrix multiplication, convolution)

21
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Occupancy – Threads
 GPUs have hardware limitations on the maximum number

of threads per work group

 256 threads per WG on AMD GPUs

 512 threads per WG on NVIDIA GPUs

 NVIDIA GPUs have per-compute-unit limits on the number
of active threads and work groups (depending on the GPU
model)

 768 or 1024 threads per compute unit

 8 or 16 warps per compute unit

 AMD GPUs have GPU-wide limits on the number of
wavefronts

 496 wavefronts on the 5870 GPU (~25 wavefronts or ~1600
threads per compute unit)

22
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Occupancy – Limiting Factors
 The minimum of these three factors is what limits the

active number of threads (or occupancy) of a compute
unit

 The interactions between the factors are complex

 The limiting factor may have either thread or wavefront
granularity

 Changing work group size may affect register or shared
memory usage

 Reducing any factor (such as register usage) slightly
may have allow another work group to be active

 The CUDA occupancy calculator from NVIDIA plots
these factors visually allowing the tradeoffs to be
visualized

23
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Compute Unit

PE0 PE1 PEn-1
...PE2

Vectorization

 On AMD GPUs, each processing element executes a

5-way VLIW instruction

 5 scalar operations or

 4 scalar operations + 1 transcendental operation

Registers

ALU

ALU + T-unit

Incoming

Instruction

Branch Unit

24
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Vectorization

 Vectorization allows a single thread to perform

multiple operations at once

 Explicit vectorization is achieved by using vector
datatypes (such as float4) in the source program

 When a number is appended to a datatype, the datatype

becomes an array of that length

 Operations can be performed on vector datatypes just

like regular datatypes

 Each ALU will operate on different element of the float4

data

25
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

Vectorization

 Vectorization improves memory performance on AMD

GPUs

 The AMD Accelerated Parallel Processing OpenCL
Programming Guide compares float to float4

memory bandwidth

26
Perhaad Mistry & Dana Schaa, Northeastern Univ Computer

Architecture Research Lab, with Ben Gaster, AMD © 2011

