
Spring 2011

Prof. Hyesoon Kim

• Each thread can:

– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant

memory

– Read only per-grid texture memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

• The host can R/W

global, constant, and

texture memories

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Register – dedicated HW - single cycle

• Shared Memory – dedicated HW - single cycle

• Local Memory – DRAM, no cache - *slow*

• Global Memory – DRAM, no cache - *slow*

• Constant Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality

• Texture Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality

• Instruction Memory (invisible) – DRAM, cached

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• All threads access global memory

for their input matrix elements

– Two memory accesses (8 bytes)

per floating point multiply-add

– 4B/s of memory

bandwidth/FLOPS

– 86.4 GB/s limits the code at

21.6 GFLOPS

• The actual code should run at

about 15 GFLOPS

• Need to drastically cut down

memory accesses to get closer to

the peak 346.5 GFLOPS

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction

Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant

Cache

Texture

Cache

Global, constant, texture memories

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Each input element is read by WIDTH threads.

• If we load each element into Shared Memory and have
several threads use the local version, we can drastically
reduce the memory bandwidth

– Load all the matrix ?
– Tiled algorithms

• Pattern
– Copy data from global to shared memory

– Synchronization

– Computation (iteration)

– Synchronization

– Copy data from shared to global memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N is called

the block size

for i = 1 to N

for j = 1 to N

{read block C(i,j) into shared memory}

for k = 1 to N

{read block A(i,k) into shared memory}

{read block B(k,j) into shared memory}

C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to global memory}

= + *

C(i,j) C(i,j) A(i,k)

B(k,j)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,1) C(1,1)

A(1,1) B(1,1)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,1) C(1,1)

A(1,2) B(2,1)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,1) C(1,1)

A(1,3) B(3,1)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,2) C(1,2)

A(1,1)
B(1,2)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,2) C(1,2)

A(1,2) B(2,2)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

= + *C(1,2) C(1,2)

A(1,3) B(3,2)

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

• One block computes one square sub-

matrix Psub of size BLOCK_SIZE

• One thread computes one element of

Psub

• Assume that the dimensions of M and

N are multiples of BLOCK_SIZE and

square shape

M

N

P

Psub

BLOCK_SIZE

WIDTHWIDTH

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_
S

IZ
E

B
L

O
C

K
_
S

IZ
E

B
L

O
C

K
_
S

IZ
E

W
ID

T
H

W
ID

T
H

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Each SMP has 16KB shared memory
– Each Thread Block uses 2 *256*4B = 2KB of shared

memory. [2: two matrix, 256 = 16*16, 4B (floating
point)]

– Can potentially have up to 8 Thread Blocks actively
executing

– Initial load:
• For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096

pending loads (8 blocks, 2 loads * 256)

• In practice, there will probably be up to half of this due to
scheduling to make use of SPs.

– The next BLOCK_SIZE 32 would lead to 2*32*32*4B=
8KB shared memory usage per Thread Block, allowing
only up to two Thread Blocks active at the same time

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Setup the execution configuration

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid(N.width / dimBlock.x,

M.height / dimBlock.y);

For very large N and M dimensions, one

will need to add another level of blocking and

execute the second-level blocks sequentially.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Block index

int bx = blockIdx.x;

int by = blockIdx.y;

// Thread index

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix

// that is computed by the thread

float Pvalue = 0;

// Loop over all the sub-matrices of M and N

// required to compute the block sub-matrix

for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {

code from the next few slides };

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix(M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix(N, bx, m);

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE];

// each thread loads one element of the sub-matrix

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• //Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is

//located col sub-matrices to the right and row sub-matrices down

//from the upper-left corner of A

__device__ Matrix GetSubMatrix(Matrix A, const int row, const int

col)

{

Matrix Asub;

Asub.width = BLOCK_SIZE;

Asub.height = BLOCK_SIZE;

Asub.stride = A.stride;

Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row +

BLOCK_SIZE * col];

return Asub;

}

// Synchronize to make sure the sub-matrices are loaded

// before starting the computation

__syncthreads();

// each thread computes one element of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding

// computation is done before loading two new

// sub-matrices of M and N in the next iteration

__syncthreads();

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

// Get a pointer to the block sub-matrix of P

Matrix Psub = GetSubMatrix(P, bx, by);

// Write the block sub-matrix to device memory;

// each thread writes one element

SetMatrixElement(Psub, tx, ty, Pvalue);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Macro functions will be provided.

• void __syncthreads();

• Synchronizes all threads in a block

• Once all threads have reached this point, execution resumes

normally

• Used to avoid RAW/WAR/WAW hazards when accessing shared or

global memory

• Allowed in conditional constructs only if the conditional is uniform

across the entire thread block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

if (tid>16) {__syncthreads(); code1 …}

else { code1; }

• Some Useful Information on Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Any source file containing CUDA language
extensions must be compiled with nvcc

• nvcc is a compiler driver
– Works by invoking all the necessary tools and

compilers like cudacc, g++, cl, ...

• nvcc can output:
– Either C code

• That must then be compiled with the rest of the application
using another tool

– Or object code directly

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• An executable compiled in device emulation
mode (nvcc -deviceemu) runs completely on
the host using the CUDA runtime
– No need of any device and CUDA driver (??)

– Each device thread is emulated with a host thread

• When running in device emulation mode, one
can:
– Use host native debug support (breakpoints, inspection, etc.)

– Access any device-specific data from host code and vice-versa

– Call any host function from device code (e.g. printf) and
vice-versa

– Detect deadlock situations caused by improper usage of
__syncthreads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Emulated device threads execute sequentially, so
simultaneous accesses of the same memory location by
multiple threads could produce different results.

• Dereferencing device pointers on the host or host
pointers on the device can produce correct results in
device emulation mode, but will generate an error in
device execution mode

• Results of floating-point computations will slightly differ
because of:
– Different compiler outputs, instruction sets

– Use of extended precision for intermediate results

• There are various options to force strict single precision on the host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

