i 3
fe : ! : | !
. ‘.'_- = it E |
~Ts - = s e RS
< - : ! __—E . ‘ -= : - ‘ -.' :
: } e " lyawn |
i -— . L] T 1 AL |
1 . 18 Ay LUTHIY
-] ! i 24 e
‘1 S || ;
P -~ 1 | v
e Al N iy ¥
-) 1 ST 2 g i
= ol N PR
94803DGC Design an

Programming of Game Consoles

Spring 2011
on Kim

Georgia College of
Tech Computing

—~ e 3
B .

\ L

L

CUDA Device Memory Space Review

« Each thread can:

e The host can R/W
global, constant, and
texture memories

R/W per-thread registers
R/W per-thread local memory

R/W per-block shared memory

R/W per-grid global memory

Read only per-grid constant
memory

Read only per-grid texture memory

(Device) Grid

Block (0, 0)

|

Block (1, 0)

|

Thread (0, 0)| Thread (1, 0)

Thread (0, 0)| Thread (1, 0)

Host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Tech Gompuiiing

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Co

s >t
ﬁ . B
7
i
- »

Access Times

Register — dedicated HW - single cycle
Shared Memory — dedicated HW - single cycle
Local Memory — DRAM, no cache - *slow*
Global Memory — DRAM, no cache - *slow*

Constant Memory — DRAM, cached, 1...10s...100s of
cycles, depending on cache locality

Texture Memory — DRAM, cached, 1...10s...100s of
cycles, depending on cache locality

Instruction Memory (invisible) — DRAM, cached

~>~Navzvae =63
Georgia Collage of
:
‘LJJJ"L(.J

IE HE B

How about performance?

Device

 All threads access global memory
for their input matrix elemenNs Multiprocessor N
— Two memory accesses (& bytes)]

per floating point multiply-add

— 4B/s of memory
bandwidth/FLOPS

— 86.4 GB/s limits the code at

216 GFLOPS - - - Instruction
Unit
° The actual Code ShOUId run a’t ocessor1l | Processor2 ®®e® pProcessorM

about 15 GFLOPS

* Need to drastically cut down
memory accesses to get closer to
the peak 346.5 GFLOPS A

Multiprocessor 2

Multiprocessor 1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Idea: Use Shared Memory to reuse gﬁba-
memory data

« Each input element is read by WIDTH threads.

« If we load each element into Shared Memory and have
several threads use the local version, we can drastically
reduce the memory bandwidth

— Load all the matrix ?
— Tiled algorithms

« Pattern
— Copy data from global to shared memory
— Synchronization
— Computation (iteration)
— Synchronization
— Copy data from shared to global memory

Georgia Caollegeof
© David Kirk/NVIDIA and Wen—-mei W. Hwu, 2007 ECE 498AL, UIUC Tech ' Cempuling

.

Blocked (Tiled) Matrix Multipiyois

Consider A,B,C to be N by N matrices of b by b subblocks where b=n/ N is called
the block size

fori=1toN
forj=1to N

{read block C(i,j) into shared memory}

fork=1to N
{read block A(i,k) into shared memory}
{read block B(k,j) into shared memory}
C(1,)) = C(1,)) + A(i,k) * B(k,J) {do a matrix multiply on blocks}

{write block C(i,j) back to global memory}

C(i.)) C(i,j) A(i,k)

[
+
*

o Bk

Georgia College of
www.sdsc.edu/~allans/cs260/lectures/matmul.ppt Tech Compuiing

Blocked (Tiled) Matrix Multipiyois

C(1,1)
“ih + ALL | * B(LY)

Georgia College ef
www.sdsc.edu/~allans/cs260/lectures/matmul.ppt Tech Compuiing

Blocked (Tiled) Matrix Multiply’ o [

c(1,1)
C(1,1) — + A(L2) * B(2.1)

i Colleg® eff
www.sdsc.edu/~allans/cs260/lectures/matmul.ppt Ge‘?r'é%'ﬁ %ﬁg}%ﬁ(ﬁ%

Blocked (Tiled) Matrix Multipiyois

C(1,1)
(1) + A1z | ¥ . B(3,1)

Georgia College ef
www.sdsc.edu/~allans/cs260/lectures/matmul.ppt Tech Compuiing

Blocked (Tiled) Matrix

Multiply

C(1,2)

C(1,2)

= HE N

www.sdsc.edu/~allans/cs260/lectures/matmul.ppt

B(L2)

Georgia M© leg® off
Tech Cemmpuiing

Blocked (Tiled) Matrix [& BiE ™

w2 cwa) | .
A(1,2) - B@2)

Georgia @© leg® off
www.sdsc.edu/~allans/cs260/lectures/matmul.ppt Tech Compuiing

Blocked (Tiled) Matrix Multipiyois

c(1.2) C(1,2) + *
A(1,3) i B(3,2)

Georgia College ef
www.sdsc.edu/~allans/cs260/lectures/matmul.ppt Tech Compuiing

Tiled Multiply Using Threaﬁlo!g

« One computes one square sub-
matrix P, of size BLOCK_SIZE

« One computes one element of

I:)sub l

« Assume that the dimensions of M and
N are multiples of BLOCK_SIZE and
sqguare shape

»
» N

"
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Coempuiing

v

A

ﬁ . "‘l]
e
wir

- 3

Shared Memory Usage

 Each SMP has 16KB shared memory

— Each Thread Block uses 2 *256*4B = 2KB of shared
memory. [2: two matrix, 256 = 16*16, 4B (floating
point) |

— Can potentially have up to 8 Thread Blocks actively
executing

— Initial load:

 For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096
pending loads (8 blocks 2 loads * 256)

* In practice, there will probably be up to half of this due to
scheduling to make use of SPs.

— The next BLOCK_SIZE 32 would lead to 2*32*32*4B=
8KB shared memory usage per Thread Block, allowing
only up to two Thread Blocks active at the same time

Georgia Caollegeof
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech ' GComputing

CUDA Code — Kernel Execuﬁon. I

Configuration

// Setup the execution configuration

dim3 dimBlOCk(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid (N.width / dimBlock.Zx,
M.height / dimBlock.y);

For very large N and M dimensions, one

will need to add another level of blocking and
execute the second-level blocks sequentially.

Georgia Caollegeef
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Cemputing

= HE 0
CUDA Code - Kernel Overview

// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIldx.x;
int ty = threadIldx.y;

// Pvalue stores the element of the block sub-matrix
// that is computed by the thread

float Pvalue = 0;

// Loop over all the sub-matrices of M and N
// required to compute the block sub-matrix

for (int m = 0; m < M.width/BLOCK SIZE; ++m) {
code from the next few slides };

© David Kirk/NVIDIA and Wen—-mei W. Hwu, 2007 ECE 498AL, UIUC Tech ' Cempuiing

F=
CUDA Code - Load Data to Shared ol

Memory

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix (M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix (N, bx, m);

shared float Ms[BLOCK SIZE] [BLOCK SIZE];

shared float Ns[BLOCK SIZE] [BLOCK SIZE];

// each thread loads one element of the sub-matrix

Ms[ty] [tx] = GetMatrixElement (Msub, tx, ty):

// each thread loads one element of the sub-matrix

Ns[ty] [tx] = GetMatrixElement (Nsub, tx, ty):

Georgia College of
© David Kirk/NVIDIA and Wen—-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Compulting

_ = HE 0
GetSubMatrix (M, m, by)

» //IGetthe BLOCK_ SIZEXBLOCK_SIZE sub-matrix Asub of A that is
//located col sub-matrices to the right and row sub-matrices down
/[from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A, const int row, const int
col)

{

Matrix Asub;

Asub.width = BLOCK_SIZE;

Asub.height = BLOCK_ SIZE;

Asub.stride = A.stride;

Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row +
BLOCK_ SIZE * col];

return Asub;

}

- _— ,
(N lavava a8
Georgia Caollegeof

Tech Coempuiing

= R D
CUDA Code - Compute Result

// Synchronize to make sure the sub-matrices are loaded

// before starting the computation

syncthreads () ;

// each thread computes one element of the block sub-matrix
for (int k = 0; k < BLOCK SIZE; ++k)
Pvalue += Ms[ty] [k] * Nsl[k] [tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new

// sub-matrices of M and N in the next iteration

__syncthreads() ;

ia GColleg®ef
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech ' Ceomputing

= Il O
CUDA Code - Save Result

// Get a pointer to the block sub-matrix of P
Matrix Psub = GetSubMatrix (P, bx, by);

// Write the block sub-matrix to device memory;

// each thread writes one element

SetMatrixElement (Psub, tx, ty, Pvalue);

Macro functions will be provided.

Georgia Collegeef
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech ' Cempuiing

@ EE u

Device Runtime Component:
Synchronization Function

e wvold syncthreads();
« Synchronizes all threads in a block

 Once all threads have reached this point, execution resumes
normally

« Used to avoid RAW/WAR/WAW hazards when accessing shared or
global memory

« Allowed in conditional constructs only if the conditional is uniform
across the entire thread block <
<

if (tid>16) {__syncthreads(); code1 . :if§<a
else { codel,; } QQ

bl

Georgia *)® off
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech © o JJ& *’*1(

i 3
| .. n
e 'J; SEicE!

e Some Useful Information on Tools

Cel

ia lleg® eff
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL. UIUC Tech Compuiing

Compilation

* Any source file containing CUDA language
extensions must be compiled with nvcc

* nvccis a compiler driver

— Works by invoking all the necessary tools and
compilers like cudacc, g++, cl, ...

°* NVCC can output:

— Either C code

« That must then be compiled with the rest of the application
using another tool

— Or object code directly

Georgia Caollegeef
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL. UIUC Tech | Compuiing

Debugging Using the ‘
Device Emulation Mode

* An executable compiled in device emulation
mode (nvcc —-deviceemu) runs completely on

the host using the CUDA runtime

— No need of any device and CUDA driver (??)
— Each device thread is emulated with a host thread

* When running in device emulation mode, one
can.
— Use host native debug support (breakpoints, inspection, etc.)

— Access any device-specific data from host code and vice-versa

— Call any host function from device code (e.g. printf) and
vice-versa

— Detect deadlock situations caused by improper usage of

syncthreads
Georgia College of

Cemput HnaE)
© David Kirk/NVIDIA and Wen—-mei W. Hwu, 2007 ECE 498AL, UIUC Tech | Ceomputing

= Il 0

Device Emulation Mode Pitfalls

 Emulated device threads execute sequentially, so
simultaneous accesses of the same memory location by
multiple threads could produce different results.

« Dereferencing device pointers on the host or host
pointers on the device can produce correct results in
device emulation mode, but will generate an error in
device execution mode

« Results of floating-point computations will slightly differ
because of:
— Different compiler outputs, instruction sets

— Use of extended precision for intermediate results
« There are various options to force strict single precision on the host

Georgia Caollege el
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech Computiing

