
Spring 2011

Prof. Hyesoon Kim

2

TT T TTT T T

SIMD Execution Unit

TT T T

Warp is the basic unit of execution
 A group of threads (e.g. 32 threads for the Tesla GPU architecture)

Warp Execution

One warp

Sources ready

3

One warp One warp

Inst 1

Inst 2

Inst 3

Sources ready Sources ready

TT T T TT T T

Finite number of streaming processors

• Threads are assigned to SMs in Block

granularity

– Up to 8 Blocks to each SM as

resource allows (# of blocks is

dependent on the architecture)

– SM in G80 can take up to 768 threads

• Could be 256 (threads/block) * 3

blocks

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently

– SM assigns/maintains thread id #s

– SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

PC

PC
PC

PC
PC

PC
PC

Mux
I-cache

warp #id stall

• Fetch

– One instruction for each warp (could be further

optimizations)

– Round Robin, Greedy-fetch (switch when stall events

such as branch, I-cache misses, buffer full)

• Thread scheduling polices

– Execute when all sources are ready

– In-order execution within warps

– Scheduling polices: Greedy-execution, round-robin

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4 Kirk & Hwu

• Enough parallelism

– Switch to another thread

– Speculative execution is

• Branch predictor could be expensive

– Per thread predictor

• Branch elimination techniques

• Pipeline flush is too costly

• Basic Block

– Def: a sequence of consecutive operations in

which flow of control enters at the beginning

and leaves at the end without halt or possibility

of branching except at the end

– Single entry, single exit
Add r1, r2, r3

Br.cond target

Mov r3, r4

Br jmp join

Target add r1, r2, r3
Join mov r4 r5

A
A

B

C

D

B C

D

Control-flow graph

http://www.eecs.umich.edu/~mahlke/583w04/

• Defn: Dominator – Given a CFG, a

node x dominates a node y, if every

path from the Entry block to y

contains x

– Given some BB, which blocks are

guaranteed to have executed prior

to executing the BB

• Defn: Post dominator: Given a

CFG, a node x post dominates a

node y, if every path from y to the

Exit contains x
• Given some BB, which blocks are guaranteed

to have executed after executing the BB

– reverse of dominator

BB1

BB2

BB4

BB3

BB5 BB6

BB7

http://www.eecs.umich.edu/~mahlke/583w04/

• Immediate post dominator is the

reconvergence point of divergent

branch

• Defn: Immediate post

dominator (ipdom) – Each

node n has a unique

immediate post dominator m

that is the first post

dominator of n on any path

from n to the Exit

– Closest node that post

dominates

– First breadth-first successor

that post dominates a node

BB1

BB2

BB4

BB3

BB5 BB6

BB7

Entry

Exit

http://www.eecs.umich.edu/~mahlke/583w04/

• Recap:
– 32 threads in a warm are executed in SIMD (share one

instruction sequencer)

– Threads within a warp can be disabled (masked)
• For example, handling bank conflicts

– Threads contain arbitrary code including conditional
branches

• How do we handle different conditions in different
threads?
– No problem if the threads are in different warps

– Control divergence

– Predication

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect14_G80Control.pdf

• Predication

• Loop unrolling

Convert control flow dependency to data dependency

Pro: Eliminate hard-to-predict branches (in traditional architecture)

Eliminate branch divergence (in CUDA)

Cons: Extra instructions

(normal branch code)

C B

D

A
T N

p1 = (cond)

branch p1, TARGET

mov b, 1

jmp JOIN

TARGET:

mov b, 0

A

B

C

B

C

D

A

(predicated code)

A

B

C

if (cond) {

b = 0;

}

else {

b = 1;

} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

• Comparison instructions set condition codes (CC)

• Instructions can be predicated to write results only when CC meets
criterion (CC != 0, CC >= 0, etc.)

• Compiler tries to predict if a branch condition is likely to produce
many divergent warps

– If guaranteed not to diverge: only predicates if < 4 instructions

– If not guaranteed: only predicates if < 7 instructions

• May replace branches with instruction predication

• ALL predicated instructions take execution cycles

– Those with false conditions don’t write their output

• Or invoke memory loads and stores

– Saves branch instructions, so can be cheaper than serializing
divergent paths

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Transforms an M-iteration loop into

a loop with M/N iterations

– We say that the loop has been unrolled N

times
for(i=0;i<100;i+=4){

a[i]*=2;

a[i+1]*=2;

a[i+2]*=2;

a[i+3]*=2;

}

for(i=0;i<100;i++)

a[i]*=2;

http://www.cc.gatech.edu/~milos/CS6290F07/

• Sum { 1- 100}, How to calculate?

• Reduction example

• What about other threads?

• What about different paths?

0 1 2 3 4 5 6 7

0 2 4 6

0 4

0

If (threadId.x%==2)

If (threadId.x%==4)

If (threadId.x%==8)

A

B

C

D

If (threadid.x>2) {

do work B}

else {

do work C

}

From Fung et al. MICRO ‘07

Divergent branch!

• All branch conditions are serialized and will be executed
– Parallel code sequential code

• Divergence occurs within a warp granularity.

• It’s a performance issue
– Degree of nested branches

• Depending on memory instructions, (cache hits or

misses), divergent warps can occur
– Dynamic warp subdivision [Meng’10]

• Hardware solutions to reduce divergent branches
– Dynamic warp formation [Fung’07]

• Register File (RF)

– 32 KB

– Provides 4 operands/clock

• TEX pipe can also read/write RF

– 2 SMs share 1 TEX

• Load/Store pipe can also

read/write RF

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Multiple read ports • Banks

R
e
a
d
1

R
e
a
d
2

w
rite

1

R
e
a
d

w
rite

R
e
a
d
3

R
e
a
d
4

R
e
a
d

w
rite

R
e
a
d

w
rite

R
e
a
d

w
rite

R1 R2

R3 R4

R1

R2

R3

R4

• Threads in a Block share data &

results

– In Memory and Shared Memory

– Synchronize at barrier instruction

• Per-Block Shared Memory Allocation

– Keeps data close to processor

– Minimize trips to global Memory

– SM Shared Memory dynamically

allocated to Blocks, one of the limiting
resources

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:

John Nicols, NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Immediate address constants

• Indexed address constants

• Constants stored in DRAM, and cached on

chip

– L1 per SM

• A constant value can be broadcast to all

threads in a Warp

– Extremely efficient way of accessing a value

that is common for all threads in a Block!

• Can reduce the number of registers.

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Textures are 1D,2D, 3D arrays of values

stored in global DRAM

• Textures are cached in L1 and L2

• Read-only access

• Caches are optimized for 2D access:

– Threads in a warp that follow 2D locality will

achieve better memory performance

• Texels: elements of the arrays, texture

elements

https://users.ece.utexas.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname=EE382V_Fa07_Lect13_G80Mem.pdf

• Designed to map textures onto 3D polygons

• Specialty hardware pipelines for:

– Fast data sampling from 1D, 2D, 3D arrays

– Swizzling of 2D, 3D data for optimal access

– Bilinear filtering in zero cycles

– Image compositing & blending operations

• Arrays indexed by u,v,w coordinates – easy to
program

• Extremely well suited for multigrid & finite
difference methods

• Many levels of queues

• Large size of queues

• High number of DRAM banks

• Sensitive to memory scheduling algorithms
– FRFCFS >> FCFS

• Interconnection network algorithm to get FRFCFS Effects
– Yan’09,

MSHR MSHR MSHR

• In-order execution but

• Warp cannot execute an instruction when sources are

dependent on memory instructions, not when it generates

memory requests

• High MLP

C C DMM C

C C DMM C

Context SwitchW0

W1

Memory Request

Memory Request

Memory Request

Memory Request

• High Merging Effects
– Inter-core merging

– Intra-core merging

• Techniques to take advantages of this SDMT
– Compiler optimization[Yang’10]: increase memory reuse

– Cache coherence [Tarjan’10]

– Cache increase reuses

MSHR MSHR MSHR

• No Bank Conflicts

– Linear addressing

stride == 1

• No Bank Conflicts

– Random 1:1

Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller

– 4-way bank conflicts:
__shared__ char shared[];

foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];

foo = shared[baseIndex + threadIdx.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Bulk-Synchronous Parallel (BSP) program

(Valiant [90])

• Synchronization within blocks using explicit

barrier

• Implicit barrier across kernels

– Kernel 1 Kernel 2

– C.f.) Cuda 3.x

barrier

Block

barrier

Block

barrier

barrier

Block

barrier

Block

barrier

Block

Kernel1

Kernel2

Barrier

• Use multiple kernels

• Write to same memory addresses

– Behavior is not guaranteed

– Data race

• Atomic operation

– No other threads can write to the same location

– Memory Write order is still arbitrary

– Keep being updated: atomic{Add, Sub, Exch, Min, Max,

Inc, Dec, CAS, And, Or, Xor}

• Performance degradation

– Fermi increases atomic performance by 5x to 20x (M. Shebanow)

White paper, NVIDIA’s Next Generation, CUDA Compute Architecture Fermi

White paper: World’s Fastest GPU Delivering Great Gaming Performance

with True Geometric Realism

• SM

– 32 CUDA cores per SM (fully 32-lane)

– Dual Warp Scheduler and dispatches from two independent

warps

– 64KB of RAM with a configurable partitioning of shared memory

and L1 cache

• Programming support

– Unified Address Space with Full C++ Support

– Full 32-bit integer path with 64-bit extensions

– Memory access instructions to support transition to 64-bit

addressing

• Memory system

– Data cache , ECC support , Atomic memory operations

• Concurrent kernel execution

• Better integer support

• 4 SFU

• Dual warp scheduler

• More TLP

• 16 cores are executed

together

