1
sene
| aeas
Isens
pae
'll
‘sane
T
1
"
&
S
]
|

"CS4803DGC D

Programming of Game Consoles
Spring 2011

on Kim

Georgia College of
Tech Compulifing

=

Overview of GPU (Tesla) Architecture

Streaming Streaming Streaming
Multiprocessor | | Multiprocessor | o o o | Multiprocessor

e |

I-Cache

Decoder

Shared Memory

Interconnection Network

\

Global Memory (Device memory)

10SS920.d weans
10SS920.d weans

10SS9201d Weans
[]
10SS9201d Weass

Caches

ia Collegeoef
Tech Commpuiing

.

| » .- u
B _'lg - i.J

Execution Unit: Warp

 Warp is the basic unit of execution
o A group of threads (e.g. 32 threads for the Tesla GPU architecture)

Warp Execution

[Inst1 | __Saourcesready Sourcesready Sources ready

inst 2 TTTT....TTTT

InSt 3 L | J J
One warp One warp One warp

Finite number of streaming processors
SIMD Execution Unit

s|s|s|s
PIP|P|P

ia GCollegeoef
Tech GConputiing

SM Executes Blocks

t0t1t2...tmI SMO SM 1

NNNNNNNNNN

S

Blocks

il N

IE HE

|
t0t1t2..tm

NNNNNNNNNN

> | Blocks

D) }g > _|

« Threads are assigned to SMs in Block
granularity

— Upto 8 Blocks to each SM as
resource allows (# of blocks is
dependent on the architecture)

— SMin G80 can take up to 768 threads

* Could be 256 (threads/block) * 3
blocks

* Or 128 (threads/block) * 6 blocks, etc.
« Threads run concurrently
— SM assigns/maintains thread id #s

— SM manages/schedules thread
execution
Georgia Collegeof

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech

Warp Maintaing Unit

U= R D

Mux

warp #id

stall

I-cache

ia Collegeef
Tech Coempuidfing

Pipeline
IiTBl, w1 stall4|
—T1B2, w1 stall—————TB3, W2 stall———]
CoTBL TB2 | TB3 | TB3 | TB2 | TB1 | TBL | TBL | TB3
- PoopowWLo wi w1 w2 W1 Ui e Ui w2
Instruction: | 1 "2 3 4 5i6|1 2]|1 2|1 2|3 4|7 8]1 2]|1 2[3 4 Kirk & Hwu
—Time-» TB = Thread Block, W = Warp
* Fetch

— One instruction for each warp (could be further
optimizations)

— Round Robin, Greedy-fetch (switch when stall events
such as branch, I-cache misses, buffer full)
« Thread scheduling polices
— Execute when all sources are ready
— In-order execution within warps
— Scheduling polices: Greedy-execution, round-robin

No Branch Prediction. Why?

* Enough parallelism
— Switch to another thread
— Speculative execution Is

» Branch predictor could be expensive
— Per thread predictor

* Branch elimination techniques
* Pipeline flush is too costly

(A M e 3

Collegelol

(7D rseyrs o R
Tech Ceompuiting

Background: CFG (Control Flow i
Graph)
* Basic Block

— Def: a sequence of consecutive operations In
which flow of control enters at the beginning
and leaves at the end without halt or possibility
of branching except at the end

: : _ Control-flow graph
— Single entry, single exit

Addrl, r2, r3 A
Br.cond target A =
Moy r3,_ r_4 B B c
Br imp |oIn
Target add r1, 12,13 | C .
Join _mov r4r5 D D

http://www.eecs.umich.edu/~mahlke/583w04/ Toch || Gomputing

Dominator/Postdominator

 Defn: Dominator —Givena CFG, a
node x dominates a nodey, if every

,I o
54
- ;¢ L

BB1

path from the Entry block to y

BB2

contains x

— Given some BB, which blocks are
guaranteed to have executed prior
to executing the BB

BB3

o~

BB4

« Defn: Postdominator: Given a

BB5

BB6

CFG, a node x post dominates a
nodey, if every path fromy to the

Exit contains x

Given some BB, which blocks are guaranteed
to have executed after executing the BB

— reverse of dominator

http://www.eecs.umich.edu/~mahlke/583w04/

S~

BB7

_ | = I
Immediate Post Domiantor

- Defn: Immediate post @
dominator (ipdom) — Each |
pode g_htas a uPidque_ t BB1
immediate post dominator m
that is the first post N
dominator of n on any path BB2 BB3
from n to the Exit o~
— Closest node that post BB4
dominates
— First breadth-first successor /\
that post dominates a node BB5 BB6
« Immediate post dominator is the 3R~
reconvergence point of divergent |

branch CExit)

PeTe)

. Georgia Collegeaof
http://www.eecs.umich.edu/~mahlke/583w04/ Tech' Compuing

Control Flow

* Recap:
— 32 threads in a warm are executed in SIMD (share one
Instruction sequencer)

— Threads within a warp can be disabled (masked)
» Forexample, handling bank conflicts

— Threads contain arbitrary code including conditional
branches

« How do we handle different conditions Iin different
threads?
— No problem if the threads are In different warps
— Control divergence
— Predication

H (>~ Tlravzve &7
g'a WAUASAS & (O
arnYal
SUUS)

https://users.ece.utexas.edu/~merez/new/pmwi ki.php/EE382VFaO7/ScheduIe’?actionzdownIoad&upname=EE382V_FaO7_Lec'fle§hontro’f§@

S = HE o
Eliminating Branches

* Predication
* Loop unrolling

ia Collegeef
Tech Caommpuiing

o = HE D
Predication

(normal branch code)
A

if (cond) { IZ\ A
b=0; Fé ﬁ B

} N4 C

(predicated code)

else { D D
b=1;, A
pl=(cond) A
} branch p1, TARGET pl = (cond)
B
;Pnog’J%,lN I (Ipl)mov b, 1
CTARCr;nEJI:b O “' (pl)mov b,0

Convert control flow dependency to data dependency
Pro: Eliminate hard-to-predict branches (in traditional architecture)
Eliminate branch divergence (in CUDA)

Cons: Extra instructions Georgia Collegeof
Tech Caommpuiing

e

Instruction Predication in G80

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

Comparison instructions set condition codes (CC)

Instructions can be predicated to write results only when CC meets
criterion (CC!'=0, CC >=0, etc.)

Compiler tries to predict if a branch condition is likely to produce
many divergent warps

— Ifguaranteed not to diverge: only predicates if < 4 instructions
— If not guaranteed: only predicates if < 7 instructions
May replace branches with instruction predication

ALL predicated instructions take execution cycles
— Those with false conditions don’t write their output
Or invoke memory loads and stores

— Saves branch instructions, so can be cheaper than serializing
divergent paths

_ = s
Loop Unrolling

* Transforms an M-iteration loop Into
a loop with M/N iterations

— We say that the loop has been unrolled N

times
for (i=0;i<100;i+=4) {
. - . 11 *=2 -
for (i=0;i<100;i++) afi]*=2;
i]%=2; [::j> a[i+l]*=2;
mlalm=z a[i+2]*=2;
a[i+3]*=2;

Georgia Collegec
http://www.cc.gatech.edu/~milos/CS6290F07/ Tech Ca nw*‘r

_ = lE O
Reduction Example

« Sum{ 1- 100}, How to calculate?

ia Collegeef
Tech Caommpuiing

_ D= EE W
Handling Branch Instructions

Reduction examp& 00000606 O
E2222212%

If (threadld.x%==2) @ 9 @ @ _
If (threadld.x%==4) @ O _
O

If (threadld.x%==8)

« What about other threads?

« What about different paths?

If (threadid.x>2) {
do work B}
else {
do work C

}

Divergent branch!

%uﬁgm U :tM ICRO 07

- wr

ﬁ i
N

- ‘ >

Divergent Branches

« All branch conditions are serialized and will be executed
— Parallel code - sequential code

« Divergence occurs within a warp granularity.

« It's a performance issue
— Degree of nested branches

* Depending on memory instructions, (cache hits or
misses), divergent warps can occur
— Dynamic warp subdivision [Meng’10]

« Hardware solutions to reduce divergent branches
— Dynamic warp formation [Fung'07]

v

rM1111

r

BA110 1

L

i

TOS —= £

[Cro00]

|Dio110| | Frooo1 |

(a) Example Program

s —=

13
TOS —= (5

Het/Eaconyv. PC

I"-.IﬂxG‘tF'C Actve Mask

1111

[E] F 0001

B 1110

c) Intial State

Het/Eacony. PC Mext PC Achve Mask

- E] 1111

[E F 0001

G 3 1110

E] 0110

E L TLUUL

(d) After Divergent Branch

Het/BEacony., PC Mext PC Achve Mask

- E] 1111

F UL |

E 1110

(@) After Reconvergence

E F

G

ARl

_::.
—
—_—

—

AAL

2211k

ok

:) Tima

(b) Re-corvergence at iImmediate Post-Dominator of B

Georgia
Tech

Stack Based Divergent Branch Bl [T
Execution

(1)
(M)
()

Y S <
Colleg® eff

DDABAE Y
Conmpuiiing

SM Register File

* Register File (RF)
— 32KB
— Provides 4 operands/clock

 TEX pipe can also read/write RF
— 2 SMs share 1 TEX

« Load/Store pipe can also
read/write RF

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

.
- ‘ 3 u =

1$
L1

V
Multithreaded
Instruction Buffer

v

)); R C$ | |Shared
F L1 Mem

v v v

Operand Select

= lE B
Ports vs. Banks

R1
R1 R2
R2
5 £ 5 =
Q — QD =
R3 o 9] o D
R4 R3 R4
5 £ 5 =
Q — b =
o D o o

TPeay
Zpeay
cpeay
vpesay
TOIIM

» Multiple read ports * Banks

Georgia Collegeaof
Tech Commpuiing

SM Memory ArchitecturecJg B

| |
tot1t2...tm | "% SM O SM 1 tOt1t2...tm ‘

NNNNNNNNNY NNNNNNNNNN

S
sy | Blocks

S

 Threadsin a Block share data &
results
— In Memory and Shared Memory
— Synchronize at barrier instruction

« Per-Block Shared Memory Allocation
HE R

— Keeps data close to processor

~ Minimize tr
Courtesy: Minimize trips to global Memory

John Nicols, NVIDIA — SM Shared Memory dynamically
o allocated to Blocks, one of the limiting
resources

Blocks

Georgia Collegeof

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech

2 > =]
|
i '.
- ‘ L L /

Constants
* |Immediate address constants $
L1
* |Indexed address constants [
« Constants stored in DRAM, and cached on aulithreaded
chip v
— L1 perSM S Vem
« A constant value can be broadcast to all v v v
threads in a Warp Operand Select
— Extremely efficient way of accessing a value v v
that is common for all threads in a Block! MAD SFU

« Can reduce the number of registers.

Georgia Collegeof
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC Tech x/::‘)@ﬁﬁﬁﬁ?\“ﬁfﬁ‘.«g}

@ My @
- .

Textures

https://users.ece.ute

Textures are 1D,2D, 3D arrays of values
stored in global DRAM

Textures are cachedin L1 and L2
Read-only access

Caches are optimized for 2D access:

— Threads in a warp that follow 2D locality will
achieve better memory performance

Texels: elements of the arrays, texture
elements

Georgia College ol
.edu/~merez/new/pmwiki.php/EE382VFa07/Schedule?action=download&upname E&'mh OYLQ‘EI&? Gadmzm pdf

=
Exploiting the Texture Samplers

Designed to map textures onto 3D polygons
« Specialty hardware pipelines for:

— Fast data sampling from 1D, 2D, 3D arrays
— Swizzling of 2D, 3D data for optimal access
— Bilinear filtering in zero cycles

— Image compositing & blending operations

Arrays indexed by u,v,w coordinates — easy to
program

« Extremely well suited for multigrid & finite
difference methods

GPU Memory System

Streaming
Multiprocessor

Streaming
Multiprocessor

MSHR

MSHR

Streaming
Multiprocessor

MSHR

g g = Interconnection Network = E =

Global Memory (Device memory)

« Many levels of queues

« Large size of queues
» High number of DRAM banks

« Sensitive to memory scheduling algorithms

— FRFCFS >> FCFS

* Interconnection network algorithm to get FRFCFS Effects

— Yan'09,

Georgia

-

i
54
. Ly

A M avova 63
Collegelol
(D e W
Ceonpuiding

_ _ = I
Multiple In-flight Memory Requests

* |In-order execution but

« Warp cannot execute an instruction when sources are
dependent on memory instructions, not when it generates
memory requests

. High MLP

WO C(M)C. C(M)Da cContextSwitch
w1 C{M) C . C{M)D

=
Same Data from Multiple Threads (SDMT)

High Merging Effects
— Inter-core merging sM‘Jﬁ?;?L'l%ssor Muliprocassor | + + | Multiprocassor

MSHR MSHR MSHR

— Intra-core merging

4

Interconnection Network

Global Memory (Device memory)

* Techniques to take advantages of this SDMT

— Compiler optimization[Yang'10]: increase memory reuse
— Cache coherence [Tarjan’10]
— Cache increase reuses

=

Shared Memory: Bank Addressing Examples

.

« No Bank Conflicts

— Linear addressing
stride ==

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

VVYVVVVYVY

No Bank Conflicts

— Random 1:1
Permutation

Thread O

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

N

Georgia College el
Tech Commpuiing

= IR 0
Data types and bank conflicts

« This has no conflicts if type of shared is 32-bits:

foo = shared[baselIndex + threadldx.x] —
Thread 1
Thread 2
- Butnot if the data type is smaller —
read 4
— 4-way bank conflicts: hEachS
Thread 6
_shared char shared[]; Thread 7
foo = shared[baseIndex + threadIdx.x];

— 2-way bank conflicts:
shared short shared|[];

Thread 0 ———

foo = shared[baselIndex + threadIdx.x]; Thread 1
Thread 2

Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

o = R
Synchronization Model

* Bulk-Synchronous Parallel (BSP) program
(Valiant [90])

« Synchronization within blocks using explicit

barrier et
 Implicit barrier across kernels

— Kernel 1 - Kernel 2 Block

— C.f.) Cuda 3.x
Kernel2 DD

Georgia College el
Tech ' Cempuifing

o =
Global Communications

Use multiple kernels

Write to same memory addresses

— Behavioris not guaranteed
— Datarace

Atomic operation

— No other threads can write to the same location

— Memory Write order is still arbitrary

— Keep being updated: atomic{Add, Sub, Exch, Min, Max,
Inc, Dec, CAS, And, Or, Xor}

Performance degradation
— Fermiincreases atomic performance by 5x to 20x (M. Shebanow)

; . =]
|
i '.
- ‘ L L /

FERMI ARCHITECTURE

White paper, NVIDIA's Next Generation, CUDA Compute Architecture Fermi

White paper: World’'s Fastest GPU Delivering Great Gaming Performance
with True Geometric Realism Georgia Collegsof

’
.

Major Architecture Changes in Fermi
- SM
— 32 CUDA cores per SM (fully 32-lane)

— Dual Warp Scheduler and dispatches from two independent
warps

— 64KB of RAM with a configurable partitioning of shared memory
and L1 cache

Programming support
— Unified Address Space with Full C++ Support
— Full 32-bit integer path with 64-bit extensions

— Memory access instructions to support transition to 64-bit
addressing

Memory system
— Datacache, ECC support, Atomic memory operations

Concurrent kernel execution

~—
1
y .

Better integer suppor
4 SFU

Dual warp scheduler
More TLP

16 cores are execute [EmNEs

Dispatch Port

together 5“&

Fermi Streaming Multiprocessor (SM)

~——
1
AN

GPU G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating None 30 FMA ops / clock | 256 FMA ops /clock

Point Capability

Single Precision Floating 128 MAD 240 MAD ops / 512 FMA ops /clock

Point Capability ops/clock clock

Special Function Units 2 2 4

(SFUs) / SM

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or
16 KB

L1 Cache (per SM) None None Configurable 16 KB or
48 KB

L2 Cache None None 768 KB

ECC Memory Support No No Yes

Concurrent Kernels No No Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

ia Collegeof
Georgia College

| Conmmpuiiing

