
Spring 2011

Prof. Hyesoon Kim

• Each stage cane be also pipelined

• The slowest of the pipeline stage determines the

rendering speed.

• Frames per second (fps)

RasterizerGeometryApplication

CPU

• Executes on the CPU

- Collision detection – may provide the

feedback

- Global acceleration algorithms, etc

- Generate rendering primitives, points,

lines, triangles ..

- Input from other sources (keyboard,

mouse..)

-..

• The majority of the per-polygon and per-vertex

operations (Floating point operations)

• Intel’s MMX/SSE

• Old time: Software implementation.

• Move objects (matrix multiplication)

• Move the camera (matrix multiplication)

• Compute lighting at vertices of triangle

• Project onto screen (3D to 2D)

• Clipping (avoid triangles outside screen)

• Map to window

Model & View
Transform

Vertex
Shading

Projection Clipping Screen
Mapping

• The defining “corners” of a primitive

• Often means a triangle

A

Triangle

Vertices

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• From GEOMETRY to visible pixels on screen

 Add textures and various other per-pixel operations

 And visibility is resolved here: sorts the primitives in the z-
direction

 Per pixel operation

 Mostly integer operations

RasterizerGeometryApplication Frame Buffer

• 2D array of R,G,B color
pixel values

• 8 bits (256 levels) per color
component

• Three 8-bit components
can represent 16 million
different colors, including
256 shades of gray

• 4th component: alpha; used
for blending

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• AGP: Advanced Graphics Port – an

interface between the computer core logic and

the graphics processor

– AGP 1x: 266 MB/sec – twice as fast as PCI

– AGP 2x: 533 MB/sec

– AGP 4x: 1 GB/sec AGP 8x: 2 GB/sec

– 256 MB/sec readback from graphics to system

• PCI-E: PCI Express – a faster interface

between the computer core logic and the

graphics processor

– PCI-E 1.0: 4 GB/sec each way 8 GB/sec total

– PCI-E 2.0: 8 GB/sec each way 16 GB/sec total

AGP

http://www.cis.upenn.edu/~suvenkat/700/

http://ww

w.cis.up

http://accelenation.com/?ac.id.123.2

• One of the first true 3D game cards

• Worked by supplementing standard 2D

video card.

• Did not do vertex transformations: these

were done in the CPU

• Did do texture mapping, z-buffering.

Primitive
Assembly

Vertex
Transforms

Frame
Buffer

Raster
Operations

Rasterization
and
Interpolation

CPU GPU
PCI

http://www.cis.upenn.edu/~suvenkat/700/

http://ww

w.cis.up

Vertex
Transforms

http://accelenation.com/?ac.id.123.5

• Main innovation: shifting the

transformation and lighting calculations

to the GPU

• Allowed multi-texturing: giving bump

maps, light maps, and others..

• Faster AGP bus instead of PCI

Primitive
Assembly

Frame
Buffer

Raster
Operations

Rasterization
and
Interpolation

GPU
AGP

http://www.cis.upenn.edu/~suvenkat/700/

Vertex
Transforms

http://accelenation.com/?ac.id.123.7

• For the first time, allowed limited

amount of programmability in the vertex

pipeline

• Also allowed volume texturing and

multi-sampling (for antialiasing)

Primitive
Assembly

Frame
Buffer

Raster
Operations

Rasterization
and
Interpolation

GPU
AGP

Small vertex
shaders

http://www.cis.upenn.edu/~suvenkat/700/

http://www.cis.upenn.edu/~suvenkat/700/

Vertex
Transforms

http://accelenation.com/?ac.id.123.8

• This generation is the first generation of

fully-programmable graphics cards

• Different versions have different

resource limits on fragment/vertex

programs

Primitive
Assembly

Frame
Buffer

Raster
Operations

Rasterization
and
Interpolation

AGP
Programmable
Vertex shader

Programmable
Fragment
Processor

Not exactly a quantum leap, but…

• Simultaneous rendering to multiple buffers

• True conditionals and loops

• Higher precision throughput in the pipeline

(64 bits end-to-end, compared to 32 bits

earlier.)

• PCIe bus

• More memory/program length/texture

accesses

http://www.cis.upenn.edu/~suvenkat/700/

Vertex
Index
Stream

3D API
Commands

Assembled
Primitives

Pixel
Updates

Pixel
Location
Stream

Programmable
Fragment
Processor

T
ra

n
s
fo

rm
e
d

V
e
rt

ic
e
s

Programmable
Vertex
Processor

GPU
Front End

Primitive
Assembly

Frame
Buffer

Raster
Operations

Rasterization
and
Interpolation

3D API:
OpenGL or
Direct3D

3D
Application
Or Game

P
re

-tra
n
s
fo

rm
e
d

V
e
rtic

e
s

P
re

-tra
n
s
fo

rm
e
d

F
ra

g
m

e
n
ts

T
ra

n
s
fo

rm
e
d

F
ra

g
m

e
n
ts

G
P
U

C
o
m

m
a
n
d
 &

D
a
ta

 S
tre

a
m

CPU-GPU Boundary (AGP/PCIe)

Fixed-function pipeline

http://www.cis.upenn.edu/~suvenkat/700/

16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS,

768 MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC

• Xbox 360 : Unified shader (ATI/AMD)

• Playstation 3: a modified version of

GeForce 7800 (NVIDIA)

• Cuda: unified shader (NVIDIA)

Tomas Akenine-Mőller © 2002

• The model transform

• Originally, an object is in ”model space”

• Move, orient, and transform geometrical objects

into ”world space”

• Example, a sphere is defined with origin at

(0,0,0) with radius 1

– Translate, rotate, scale to make it appear elsewhere

• Done per vertex with a 4x4 matrix multiplication!

• The user can apply different matrices over time

to animate objects

Tomas Akenine-Mőller © 2002

• You can move the camera in the same

manner

• But apply inverse transform to objects, so

that camera looks down negative z-axis

z x

Tomas Akenine-Mőller © 2002

• Compute ”lighting” at vertices

light

Geometry

blue

red green

 Try to mimic how light in nature behaves
– Empirical models and some real theory

Rastrizer

(interpolation)

Tomas Akenine-Mőller © 2002

• Two major ways to do it

– Orthogonal (useful in few applications)

– Perspective (most often used)

• Mimics how humans perceive the world, i.e.,

objects’ apparent size decreases with distance

Application Geometry Rasterizer

Tomas Akenine-Mőller © 2002

• Square (cube) after projection

• Clip primitives to square

 Screen mapping, scales and translates square
so that it ends up in a rendering window

 These ”screen space coordinates” together
with Z (depth) are sent to the rasterizer stage

Tomas Akenine-Mőller © 2002

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

Tomas Akenine-Mőller © 2002

• Scan-conversion

– Find out which pixels are inside the primitive

• Texturing

– Put images on triangles

• Interpolation over triangle

• Z-buffering

– Make sure that what is visible from the camera
really is displayed

• Double buffering

• And more…

Tomas Akenine-Mőller © 2002

• Triangle vertices from GEOMETRY is input

• Find pixels inside the triangle

– Or on a line, or on a point

• Do per-pixel operations on these pixels:

– Interpolation

– Texturing

– Z-buffering

– And more…

Tomas Akenine-Mőller © 2002

• Interpolate colors over the triangle

– Called Gouraud interpolation
blue

red green

Tomas Akenine-Mőller © 2002

+ =

 One application of texturing is to ”glue” images

onto geometrical object

 Associate points in an image to points in a

geometric object

From wikipedia

1. Without texture mapping

2. With texture mapping

From wikipedia

+
=

Tomas Akenine-Mőller © 2002

• The fixed graphics hardware ”just” draws
triangles

• However, a triangle that is covered by a more
closely located triangle should not be visible

• Assume two equally large tris at different
depths

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correct

Tomas Akenine-Mőller © 2002

• Would be nice to avoid sorting…

• The Z-buffer (aka depth buffer) solves this

• Idea:

– Store z (depth) at each pixel

– When scan-converting a triangle, compute z
at each pixel on triangle

– Compare triangle’s z to Z-buffer z-value

– If triangle’s z is smaller, then replace Z-buffer
and color buffer

– Else do nothing

• Can render in any order

Tomas Akenine-Mőller © 2002

• The monitor displays one image at a time

• So if we render the next image to screen,

then rendered primitives pop up

• And even worse, we often clear the screen

before generating a new image

• A better solution is ”double buffering”

Tomas Akenine-Mőller © 2002

• Use two buffers: one front and one back

• The front buffer is displayed

• The back buffer is rendered to

• When new image has been created in back

buffer, swap front and back

• Lab #2 will be posted today

• Quiz-I Feb. 14 (M)

• Class Feb. 16 (W) will be rescheduled.

• Review session & Lab #2 additional exp,

Friday

