
Spring 2011 

Prof. Hyesoon Kim 



• Each stage cane be also pipelined

• The slowest of the pipeline stage determines the 

rendering speed.

• Frames per second (fps) 

RasterizerGeometryApplication

CPU



• Executes on the CPU

- Collision detection – may provide the 

feedback 

- Global acceleration algorithms, etc 

- Generate rendering primitives, points, 

lines, triangles ..

- Input from other sources (keyboard, 

mouse..) 

-.. 



• The majority of the per-polygon and per-vertex 

operations  (Floating point operations)

• Intel’s MMX/SSE

• Old time: Software implementation.

• Move objects (matrix multiplication)

• Move the camera (matrix multiplication)

• Compute lighting at vertices of triangle

• Project onto screen (3D to 2D)

• Clipping (avoid triangles outside screen)

• Map to window
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Mapping



• The defining “corners” of a primitive

• Often means a triangle
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• From GEOMETRY to visible pixels on screen

 Add textures and various other per-pixel operations

 And visibility is resolved here: sorts the primitives in the z-
direction

 Per pixel operation

 Mostly integer operations 



RasterizerGeometryApplication Frame Buffer



• 2D array of R,G,B color 
pixel values

• 8 bits (256 levels) per color 
component

• Three 8-bit components 
can represent 16 million 
different colors, including 
256 shades of gray

• 4th component: alpha; used 
for blending
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• AGP: Advanced Graphics Port – an 

interface between the computer core logic and 

the graphics processor

– AGP 1x: 266 MB/sec – twice as fast as PCI

– AGP 2x: 533 MB/sec

– AGP 4x: 1 GB/sec  AGP 8x: 2 GB/sec

– 256 MB/sec readback from graphics to system

• PCI-E: PCI Express – a faster interface 

between the computer core logic and the 

graphics processor

– PCI-E 1.0: 4 GB/sec each way  8 GB/sec total

– PCI-E 2.0: 8 GB/sec each way  16 GB/sec total

AGP

http://www.cis.upenn.edu/~suvenkat/700/
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• One of the first true 3D game cards

• Worked by supplementing standard 2D 

video card.

• Did not do vertex transformations: these 

were done in the CPU

• Did do texture mapping, z-buffering.
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Vertex
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• Main innovation: shifting the 

transformation and lighting calculations 

to the GPU

• Allowed multi-texturing: giving bump 

maps, light maps, and others..

• Faster AGP bus instead of PCI
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Vertex
Transforms

http://accelenation.com/?ac.id.123.7

• For the first time, allowed limited 

amount of programmability in the vertex 

pipeline

• Also allowed volume texturing and 

multi-sampling (for antialiasing)
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Vertex
Transforms
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• This generation is the first generation of 

fully-programmable graphics cards

• Different versions have different 

resource limits on fragment/vertex 

programs
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Not exactly a quantum leap, but…

• Simultaneous rendering to multiple buffers

• True conditionals and loops 

• Higher precision throughput in the pipeline 

(64 bits end-to-end, compared to 32 bits 

earlier.)

• PCIe bus

• More memory/program length/texture 

accesses

http://www.cis.upenn.edu/~suvenkat/700/
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16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS,         

768 MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU
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• Xbox 360 : Unified shader (ATI/AMD)

• Playstation 3: a modified version of 

GeForce 7800 (NVIDIA)

• Cuda: unified shader (NVIDIA)
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• The model transform

• Originally, an object is in ”model space”

• Move, orient, and transform geometrical objects 

into ”world space”

• Example, a sphere is defined with origin at 

(0,0,0) with radius 1

– Translate, rotate, scale to make it appear elsewhere

• Done per vertex with a 4x4 matrix multiplication!

• The user can apply different matrices over time 

to animate objects
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• You can move the camera in the same 

manner

• But apply inverse transform to objects, so 

that camera looks down negative z-axis

z x
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• Compute ”lighting” at vertices

light

Geometry

blue

red green

 Try to mimic how light in nature behaves
– Empirical models and some real theory

Rastrizer

(interpolation)



Tomas Akenine-Mőller © 2002

• Two major ways to do it

– Orthogonal (useful in few applications)

– Perspective (most often used)

• Mimics how humans perceive the world, i.e., 

objects’ apparent size decreases with distance

Application Geometry Rasterizer
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• Square (cube) after projection

• Clip primitives to square

 Screen mapping, scales and translates square 
so that it ends up in a rendering window

 These ”screen space coordinates” together 
with Z (depth) are sent to the rasterizer stage
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model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen



Tomas Akenine-Mőller © 2002

• Scan-conversion

– Find out which pixels are inside the primitive

• Texturing

– Put images on triangles

• Interpolation over triangle

• Z-buffering

– Make sure that what is visible from the camera 
really is displayed

• Double buffering

• And more…
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• Triangle vertices from GEOMETRY is input

• Find pixels inside the triangle

– Or on a line, or on a point

• Do per-pixel operations on these pixels:

– Interpolation

– Texturing

– Z-buffering

– And more…
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• Interpolate colors over the triangle

– Called Gouraud interpolation
blue

red green
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 One application of texturing is to ”glue” images 

onto geometrical object

 Associate points in an image to points in a 

geometric object



From wikipedia

1. Without texture mapping

2. With texture mapping  



From wikipedia

+
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• The fixed graphics hardware ”just” draws 
triangles

• However, a triangle that is covered by a more 
closely located triangle should not be visible

• Assume two equally large tris at different 
depths

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correct
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• Would be nice to avoid sorting…

• The Z-buffer (aka depth buffer) solves this

• Idea:

– Store z (depth) at each pixel

– When scan-converting a triangle, compute z 
at each pixel on triangle

– Compare triangle’s z to Z-buffer z-value

– If triangle’s z is smaller, then replace Z-buffer 
and color buffer

– Else do nothing

• Can render in any order
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• The monitor displays one image at a time

• So if we render the next image to screen, 

then rendered primitives pop up

• And even worse, we often clear the screen 

before generating a new image

• A better solution is ”double buffering”
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• Use two buffers: one front and one back

• The front buffer is displayed

• The back buffer is rendered to

• When new image has been created in back 

buffer, swap front and back



• Lab #2 will be posted today 

• Quiz-I Feb. 14 (M)

• Class Feb. 16 (W) will be rescheduled. 

• Review session & Lab #2 additional exp, 

Friday 


