

CS4803DGC Design and **Programming of Game Consoles**

Spring 2011 Prof. Hyesoon Kim

Georgia College of Tech Computing

What Will We Learn?

- Game programming
- Game architecture
- Graphics programming
- Computer architecture
- Emerging architecture
- Graphics processor hardware
- CUDA/OpenCL programming
- Embedded processor programming (Nintendo DS programming)

Game Console

- CPU
- GPU

Who Should Take?

- If you want to develop
 - Xbox 720 Xbox 1440?
 - Playstation 4,5,6 ?
- If you want to program efficiently using those hardware.
 - ARM Processors, Nintendo DS, PSP
- Background
 - CS2200

Course Info

 http://www.cc.gatech.edu/~hyesoon/spr11/i ndex.html

Changes from Last Year's Course

- Nintendo DS programming (ARM) programming
- More material on ARM, less material on computer architecture background
- More Lab oriented.
- Final Project

Why Game Consoles?

Georgia Tech

Computing

Effects of Game Industries

- Leading the industry
- Game processors are used for other applications
 - GPGPU:
 - Medical image processing
 - Scientific applications
- Movie industries

Requirements for GC

- Time constrain
- Lots of Data
- Heavy use of graphics
- Both Integer/floating point operations are important
- Floating point → low precision
- Stream applications
- Embedded systems
- Various I/O devices
- No comparability issues (no reason to support legacy code)
- All the platform is stable:
- Platform optimizations

Lab Classes

- Every Friday
- Lectures on CUDA Programming (first half of the semester)
- Nintendo DS programming (the second half of the semester)

- No TA
 - Help each other!
 - Use newsgroup to post and ask questions
- Newsgroup activity is counted as class participation points.
- cs4803dgc-2011@googlegroups.com

Presentations

- Form a team (2 members) and choose a target game console/consoles
- Game architectures/programming/available information
- Examples
 - iPad, wii, PSP, iPhone, Android Phones, etc.
 - 3D game future?

Final Projects

- Typically game programming
- Using GPUs
- Nintendo DS Programming
- Using Tegra 2 Platform
 - Potentially provide full Tablet features
 - Dev development kit will be provided
 - No lab assignments

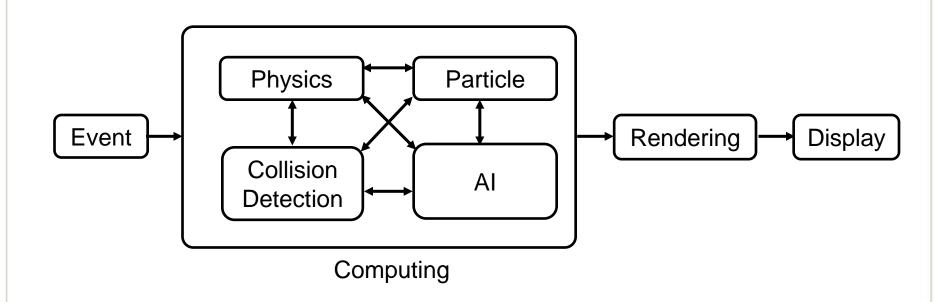
GAME WORKLOADS

Game Workload Charcterizations

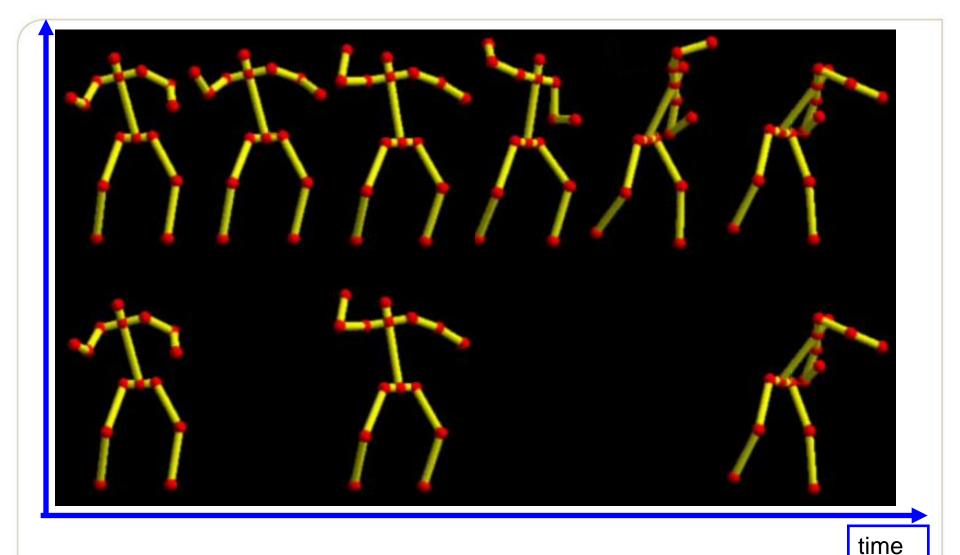
- Still graphics is the major performance bottlenecks
- Previous research: emphasis on graphics
 - 2D/3D graphics tests
- Example: 3DMark Vantage
 - CPU and GPU tests
 - visual and game-play effects
 - CPU side: Physics Simulation and Al
 - Rendering tests (both CPU and GPU)

Game workloads

- Several genres of video games
 - First Person Shooter
 - Fast-paced, graphically enhanced
 - Focus of this presentation
 - Role-Playing Games
 - Lower graphics and slower play
 - Board Games
 - Just plain boring



Overview of Game Engine



Frame Rates

- Current game design principles:
 - higher frame rates imply the better game quality
- Recent study on frame rates [Claypool et al. MMCN 2006]
 - very high frame rates are not necessary, very low frame rates impact the game quality severely

A First Cut: Reduce Frame Rates

Snapshots of animation [Davis et al. Eurographics 2003]

College of

