
Spring 2011

Prof. Hyesoon Kim

• Today, we will study typical patterns of

parallel programming

• This is just one of the ways.

• Materials are based on a book by Timothy.

Patterns for parallel programming Timothy et al.

Original Problem

Decompose

Into tasks

Program Thread n

{

….

for (;;;) {

….

}

}

Program Thread 1

{

….

for (;;;) {

….

}

}

Program Thread 1

{

….

for (;;;) {

….

}

}

Code with a

parallel program Env.

Tasks, shared and local data

Units of execution + new shared data

for extracted dependencies Corresponding source code

• High quality solution to frequently recurring

problem in some domain

• Learning design patterns makes the

programmer to quickly understand the

solution and its context.

Patterns for parallel programming Timothy et al.

• Parallel programs often start as sequential

programs

– Easy to write and debug

– Already developed/tested

• Identify program hot spots

• Parallelization

– Start with hot spots first

– Make sequences of small changes, each followed by

testing

– Patterns provide guidance

Dr. Rodric Rabbah, IBM

• Speedup =

Performance for entire task using the enhancement when possible

• Speedup = 1 / (P/N+S)

• P = parallel fraction (1-S)

• N = number of processors

• S = serial fraction

Performance for entire task without using the enhancement

0

2

4

6

8

10

12

14

16

18

1
0.

95 0.
9
0.

85 0.
8
0.

75 0.
7
0.

65 0.
6
0.

55 0.
5
0.

45 0.
4
0.

35 0.
3
0.

25 0.
2
0.

15 0.
1
0.

05

Serial fraction

s
p

e
e
d

u
p

2

4

8

16

100

Step 1: Find concurrency

Step 2: Structure the algorithm so that

concurrency can be exploited

Step 3 : Implement the algorithm in a suitable

programming environment

Step 4: Execute and tune the performance of

the code on a parallel system

Patterns for parallel programming Timothy et al.

Decomposition

Task Decomposition

Data Decomposition

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Patterns for parallel programming Timothy et al.

Things to consider: Flexibility, Efficiency, Simplicity

• Flexibility
– Program design should afford flexibility in the number and size of

tasks generated

• Tasks should not tie to a specific architecture

• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of creating

and managing them

– Tasks should be sufficiently independent so that managing
dependencies doesn’t become the bottleneck

• Simplicity
–The code has to remain readable and easy to understand, and

debug

Dr. Rodric Rabbah, IBM

• Data decomposition is often implied by task
decomposition

• Programmers need to address task and data
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of

a large data structure

– Similar operations are applied to different parts of the
data structure

Dr. Rodric Rabbah, IBM

• Flexibility

– Size and number of data chunks should support a

wide range of executions

• Efficiency

– Data chunks should generate comparable amounts of

work (for load balancing)

• Simplicity

– Complex data compositions can get difficult to manage

and debug

Dr. Rodric Rabbah, IBM

• Geometric data structures

– Decomposition of arrays along rows, column,

blocks

• Recursive data structures

– Example: list, tree, graph

Organize by tasks

Task parallelism

Divide and conquer

Organize by

data decomposition

Geometric decomposition

Recursive data

Organize by flow of data

Pipeline

Event-based coordinate

Patterns for parallel programming Timothy et al.

Start

Organize by

tasks
Organize by

data decomposition

Organize by

flow of data

Linear Recursive Linear Recursive Linear Recursive

Task

parallelism

Divide and

conquer

Geometric

decomposition
Recursive

data

Pipeline Event-based

coordination

Patterns for parallel programming Timothy et al.

• Removable dependencies
Temporary variable

int ii = 0, jj = 0;

for (int i = 0; i < N; i++) {

ii = ii + 1;

d[ii] = big_time_consuming_work (ii);

jj = jj + i;

a[jj] = other_big_calc(jj);

}

- transformed code

For (int i =0; i < N; i++) {

d[i+1] = big_time_consuming_work(i+1);

a[(i*i+i)/2] = other_big_calc((i*i+i)/2));

• Separable dependencies
for (int i = 0; i < N; i++) {

sum = sum + f(i);

}

Patterns for parallel programming Timothy et al.

Program structures

SPMD

Master/Worker

Data structures

Shared Data

Shared Queue
Loop Parallelism

Distributed ArrayFork/Join

Patterns for parallel programming Timothy et al.

• Single program, multiple data

• All UEs execute the same program in
parallel, but each has its own set of data.

– Initialize

– Obtain a unique identifier

– Run the same program each processor

– Distributed data

– Finalize

• CUDA

Patterns for parallel programming Timothy et al.

• A master process or thread set up a pool of worker processes of

threads and a bag of tasks.

• The workers execute concurrently, with each worker repeatedly

removing a tasks from the bag of the tasks.

• Embarrassingly parallel problems

Patterns for parallel programming Timothy et al.

Master

Initiate computation

Set up problem

Create bag of tasks

Lunch workers

Wait

Collect results

Terminate computation

do works
do works

worker 1 worker N

• Many programs are expressed using iterative
constructs
– Programming models like OpenMP provide directives

to automatically assign loop iteration to execution units

– Especially good when code cannot be massively
restructured

Dr. Rodric Rabbah, IBM

#pragma omp parallel for

For (i = 0; i < 16; i++)

c[i] = A[i]+B[I];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

i = 12

i = 13

i = 14

i = 15

• A main UE forks off some number of other UEs
that then continue in parallel to accomplish some
portion of the overall work.

• Parent tasks creates new task (fork) then waits
until all they complete (join) before continuing on
with the computation

Patterns for parallel programming Timothy et al.

Parallel region

• Examples:
– Instruction pipeline in modern CPUs

– Algorithm level pipelining

– Signal processing

– Graphics

– Shell programs

– Cat sampleFile | grep “word” | wc

Task

Parallel.

Divide/

Conquer

Geometric

Decomp.

Recursive

Data

Pipeline Event-

based

SPMD ☺☺☺☺ ☺☺☺ ☺☺☺☺ ☺☺ ☺☺☺ ☺☺

Loop

Parallel

☺☺☺☺ ☺☺ ☺☺☺

Master/W

orker

☺☺☺☺ ☺☺ ☺ ☺ ☺ ☺

Fork/

Join

☺☺ ☺☺☺☺ ☺☺ ☺☺☺☺ ☺☺☺☺

Patterns for parallel programming Timothy et al.

OpenMP MPI CUDA

SPMD ☺☺☺ ☺☺☺☺ ☺☺☺☺

☺

Loop

Parallel

☺☺☺☺ ☺

Master/

Slave

☺☺ ☺☺☺

Fork/Join ☺☺☺

Prof. Hwu and Dr. Kirk’s lecture

• Program language

• Hardware

UE Management Synchronization

Thread control

Process control

Communications

Memory sync/fences

Barriers

Mutual exclusion

Message passing

Collective communications

Other communications

Patterns for parallel programming Timothy et al.

• Task

• Unit of Execution (UE): process, thread

• Processing Element (PE)

• Load balance

• Synchronization

• Race conditions

• Dead locks

• Concurrency

Patterns for parallel programming Timothy et al.

• The lecture is just one guidelines.

• Most parallel programming is finding ways

of avoiding data dependences, finding

efficient data structures.

• Can compiler do it?

– Automatic parallelization

– Speculative parallelization?

• Paid/non-paid positions.

• Game developers for cloud game

– Or any companies if you know, let me know

• Other research positions

– Good programming skills.

– Not related to games

• If you know other students, let me know.

