

Spring 2011

Prof. Hyesoon Kim

Georgia ©ollege of
Tech
computing

PERFORMANCE MODELING OF GPUS

Roofline Model

- Attainable GFLOP/sec
$=$ min \{Peak Floating-Point performance ,
Peak memory bandwidth X Operational Intensity\}

Little's law

$N=\lambda L$

- N : mean number of tasks in system
- $\lambda^{\text {arrival rate }}$
- L: latency
- Mean number of tasks in system = arrival rate x mean response time
- Q: Memory latency is 500 cycles. Memory requests are sent every $5^{\text {th }}$ cycle, how many requests are in the memory system?
- $500 * 1 / 5=100$, on average 100 memory requests are in the system
- Or, every $5^{\text {th }}$ cycle memory requests are sent and there are 100 memory requests are in the flight: what will be the memory latency?

Applying Little's law to GPGPU

- Memory latency is 500 cycles. Each warp (32 threads) generates 1 memory request every $5^{\text {th }}$ instructions.
- How many warps do we need to hide memory latency?
- Assume that we have only one core and as many as warps possible.
-
- If there is a batch, the Number will be reduced by batch size.

Shebanow's limiter's theory

Limiter's theory: Hiding Latency

- Principle:
- Little's Law:

$N=\lambda L$

- $N=$ "number in flight", $\lambda=$ arrival rate, $L=$ memory latency
- Arrival Rate product of:
- Desired execution rate (IPC)
- Density of LOAD instructions (\%)
- Use batching
- Group independent LDs together
- Modified law:

$-B=$ batch size
- LD, Dep inst, LD, Dep inst
- 1 warp

$L=8, \lambda=1 / 2$,
- 4 warps

- 2 warps, load hoist (batch size 2): How to increase batch size?

Mid-term

- Performance Modeling and analysis for G80 architecture
- Design decision based on benchmark characteristics
- Xbox 360 optimization techniques (just describe)
- Bring your calculator
- \# of questions:~= 3

Design Decisions

- Clock frequency
- Designing factors
- Circuit technology
- Memory latency, IPC
- Pipeline depth decisions
- Power consideration
- Area considerations
- SFU?
- SIMD unit and SIMD width?

Benchmark Profiling \& Design

- App1: ILP = 0.5, ILP<ooo> = 0.7 TLP= 4 (100% parallelizable), FP_MUL= 20\% of instructions, ILP only FP=32, cache hit ratio trend $256 \mathrm{~KB}=40 \%, 512 \mathrm{~KB}=50 \%, 1 \mathrm{M}=80 \%, 2 \mathrm{M}=90 \%$, 20% Mem insts
- App2: ILP=0.25, ILP <ooo> = 0.5 TLP = 8 (100% parallelizable) FP_MUL=5\%, cache hit ratio trend $256 \mathrm{~KB}=30 \%, 512 \mathrm{~KB}=30 \%, 1 \mathrm{M}=$ $50 \%, 2 \mathrm{M}=50 \%$, ILP only FP=16, 20% Mem insts
- Budget :200 units (area), 1 level cache: latency ($256 \mathrm{~K}=5,512 \mathrm{~K}=7$, $1 \mathrm{M}=9,2 \mathrm{M}=20\}$, mem latency $=100$ cycle, pipeline depth $=9$ cycles + execution latency (1 for INT)
- ooo-core w/o cache:2w: 40, $2 w$: 50 ooo-SMT core w/o cache: w2: 55
- In-core w/o cache: 1w:20, 2w: 30, in-core SMT w/o cache 2w: 35
- cache size $256 \mathrm{~KB}=20$ units, FMUL (10 latency) 0.2 per 1FP, FMUL (2 latency) 0.5 per 1FP

ILP, Working Set Size

- Critical path $=4$,
- ILP = 8/4 ~= 2

CPU performance w/ different instructions

Instruction Type	Frequency	CPI
Integer	40%	1.0
Branch	20%	4.0
Load time $=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{IC}_{\mathrm{i}} \times \mathrm{CPI}_{\mathrm{i}}\right) \times$ Clock cycle time		
Store	20%	2.0

Total Insts $=50 \mathrm{~B}$, Clock speed $=2 \mathrm{GHz}$

$$
=\left(0.4^{*} 1.0+0.2^{*} 4.0+0.2^{*} 2.0+0.1^{*} 3.0\right) * 50 * 10^{\wedge} 9^{*} 1 /\left(2^{*} 10^{\wedge} 9\right)
$$

