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• 3 CPU cores 

– 4-way SIMD vector units 

– 8-way 1MB L2 cache (3.2 GHz) 

– 2 way SMT 

• 48 unified shaders

• 3D graphics  units   

• 512-Mbyte DRAM main memory 

• FSB (Front-side bus): 5.4 Gbps/pin/s  (16 pins)

• 10.8 Gbyte/s read and write 



• Xbox 360: Big endian

• Windows: Little endian

http://msdn.microsoft.com/en-us/library/cc308005(VS.85).aspx

http://en.wikipedia.org/wiki/File:Big-Endian.svg
http://en.wikipedia.org/wiki/File:Little-Endian.svg




• L2 cache :

– Greedy allocation algorithm 

– Different workloads have different working set 

sizes 

• 2-way 32 Kbyte L1 I-cache 

• 4-way 32 Kbyte L1 data cache 

• Write through, no write allocation

• Cache block size :128B  (high spatial 

locality) 



• 2-way SMT,

• 2 insts/cycle, 

• In-order issue 

• Separate vector/scalar issue queue (VIQ) 

Vector 

Scalar 

Vector 

Execution 

Unit 

Scalar 

Execution 

Unit 

Instructions  



• First game console by Microsoft, released in 2001, $299

Glorified PC

– 733 Mhz x86 Intel CPU, 64MB DRAM, NVIDIA GPU (graphics)

– Ran modified version of Windows OS

– ~25 million sold

• XBox 360

– Second generation, released in 2005, $299-$399

– All-new custom hardware

– 3.2 Ghz PowerPC IBM processor (custom design for XBox 360)

– ATI graphics chip (custom design for XBox 360)

– 34+ million sold (as of 2009)

• Design principles of XBox 360 [Andrews & Baker]

- Value for 5-7 years

-!ig performance increase over last generation

- Support anti-aliased high-definition video (720*1280*4 @ 30+ fps)

- extremely high pixel fill rate (goal: 100+ million pixels/s)

- Flexible to suit dynamic range of games

- balance hardware, homogenous resources

- Programmability (easy to program)

Slide is from http://www.cis.upenn.edu/~cis501/lectures/12_xbox.pdf



• Code name of Xbox 360‟s core

• Shared cell (playstation processor) ‟s design 

philosophy. 

• 2-way SMT 

• Good: Procedural synthesis is highly multi-thread

• Bad: three types of game-oriented tasks are likely 

to suffer from the lack of high ILP support: game 

control, artificial intelligence (AI), and physics.



• ISA: 64-bit PowerPC chip

– RISC ISA

– Like MIPS, but with condition codes

– Fixed-length 32-bit instructions

– 32 64-bit general purpose registers (GPRs)

• ISA++: Extended with VMX-128 operations
– 128 registers, 128-bits each

– Packed “vector” operations

– Example: four 32-bit floating point numbers

– One instruction: VR1 * VR2 ! VR3

– Four single-precision operations

– Also supports conversion to MS DirectX data formats

• Works great for 3D graphics kernels and compression

• 3.2 GHZ 

• Peak performance Peak performance: ~75 gigaflops

Slide is from http://www.cis.upenn.edu/~cis501/lectures/12_xbox.pdf



• Four-instruction fetch

• Two-instruction “dispatch”

• Five functional units

• “VMX128” execution

“decoupled” from other units

• 14-cycle VMX dot-product

• Branch predictor:

• “4K” G-share predictor

• Unclear if 4KB or 4K 2-bit

counters

• Per thread



• Issue and Dispatch mean differently 

depending on companies, academia etc. 

Scheduler/Reservation 

station 
FU

Issue dispatch

dispatch issue

intel

IBM





• Uni-Processor: 4-6 wide, lucky if you get 1-2 IPC

– poor utilization

• SMP: 2-4 CPUs, but need independent tasks

– else poor utilization as well

• SMT: Idea is to use a single large uni-processor 

as a multi-processor



Regular CPU

CMP

2x HW Cost

SMT (4 threads)

Approx 1x HW Cost



• For an N-way (N threads) SMT, we need:

– Ability to fetch from N threads

– N sets of architectural registers (including PCs)

– N rename tables (RATs)

– N virtual memory spaces

– Front-end: branch predictor?: no, RAS? :yes

• But we don‟t need to replicate the entire OOO 

execution engine (schedulers, execution units, 

bypass networks, ROBs, etc.)

16



• Multiplex the Fetch Logic

I$
PC0

PC1

PC2

cycle % N

fetch Decode, etc.

RS

Can do simple round-robin between active 

threads, or favor some over the others 

based on how much each is stalling 

relative to the others
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• Thread #1‟s R12 != Thread #2‟s R12

– separate name spaces

– need to disambiguate

RAT0

RAT1

Thread0

Register #

Thread1

Register #

PRF

18



• No change needed

Thread 0:

Add R1 = R2 + R3

Sub R4 = R1 – R5

Xor R3 = R1 ^ R4

Load R2 = 0[R3]

Thread 1:

Add R1 = R2 + R3

Sub R4 = R1 – R5

Xor R3 = R1 ^ R4

Load R2 = 0[R3]

Thread 0:

Add T12 = T20 + T8

Sub T19 = T12 – T16

Xor T14 = T12 ^ T19

Load T23 = 0[T14]

Thread 1:

Add T17 = T29 + T3

Sub T5 = T17 – T2

Xor T31 = T17 ^ T5

Load T25 = 0[T31]

Add T12 = T20 + T8

Sub T19 = T12 – T16

Xor T14 = T12 ^ T19

Load T23 = 0[T14]

Add T17 = T29 + T3

Sub T5 = T17 – T2

Xor T31 = T17 ^ T5

Load T25 = 0[T31]

Shared RS Entries

After Renaming

19



• Each process has own virtual address 

space

– TLB must be thread-aware

• translate (thread-id,virtual page)  physical page

– Virtual portion of caches must also be thread-

aware

• VIVT cache must now be (virtual addr, thread-id)-

indexed, (virtual addr, thread-id)-tagged

• Similar for VIPT cache

• No changes needed if using PIPT cache (like L2)

20



• Register File Management

– ARF/PRF organization

• need one ARF per thread

• Need to maintain interrupts, exceptions, 

faults on a per-thread basis

– like OOO needs to appear to outside world 

that it is in-order, SMT needs to appear as if it 

is actually N CPUs

21



• When it works, it fills idle “issue slots” with 

work from other threads; throughput 

improves

22

• But sometimes it can cause 

performance degradation!
Time(                       )    <    Time(                        )

Finish one task,

then do the other
Do both at same

time using SMT



• Cache thrashing

I$ D$

Thread0 just fits in

the Level-1 Caches

Executes

reasonably

quickly due

to high cache

hit rates

Context switch to Thread1

I$ D$

Thread1 also fits

nicely in the caches

I$ D$

Caches were just big enough

to hold one thread‟s data, but

not two thread‟s worth

L2

Now both threads have

significantly higher cache

miss rates

23





• Four-way SIMD VMX 128 units:

– FP, permute, and simple 

• 128 registers of 128 bits each per hardware 

thread 

• Added dot product instruction (simplifying the 

rounding of intermediate multiply results) 

• 3D compressed data formats . Use compressed 

format to store at L2 or memory. 50% of space 

saving. 



• Microsoft refers to this ratio of stored scene data to 

rendered vertex data as a compression ratio, the idea 

being that main memory stores a "compressed" version of 

the scene, while the GPU renders a "decompressed" 

version of the scene. 

From http://arstechnica.com/articles/paedia/cpu/xbox360-1.ars/2



• Scalable “virtual” artists 

• Reduction of bandwidth from main memory 

to GPUs



• Tessellation: The process of taking a higher 

order curve and approximating it with a network 

of small flat surfaces is called tessellation. 

• Traditional GPU: Artist 

• Xbox 360: using Xeon

• Real time tessellation

– Another form of data compression

– Instead of list of vertex, stores them 

as higher order of curves 

– Dynamic Level of Detail (LOD)

• Keep the total number of polygons in a scene under 

control 
From http://arstechnica.com/articles/paedia/cpu/xbox360-1.ars/2



• Artists use standard tools to generate a character model 

a long with a series of key poses 

• Model: a set of bones + deformable skins 

• Xenon interpolate new poses as needed

• Skins are generated on the fly 

• Xenon only sends the vertices that have changed to save 

bandwidth 

Images are from shi et al.‟s “Example-based Dynamic Skinning in Real Time”

From http://arstechnica.com/articles/paedia/cpu/xbox360-1.ars/2



X0X2 X1X3

Y0Y2 Y1Y3

X0 OP Y0 X2 OP Y2 X1 OP Y1 X3 OP Y3 

OP OP OP OP

Source 1 

Source 2 

Destination

X0X2 X1X3

Y0Y2 Y1Y3

X0 OP Y0 X2 X1X3

OP

Source 1 

Source 2 

Destination

Packed single-precision floating-point operation

Scalar single-precision floating-point operation



X0X2 X1X3

Y0Y2 Y1Y3

X0 OP Y0 Y3…Y0 X1Y3…Y0

Source 1 

Source 2 

Destination

Scalar single-precision floating-point operation



for (i = 1; i < 12; i++) x[i] = j[i]+1;

for (i = 1; i < 12; i=i+4)

{

x[i] = j[i]+1;

x[i+1] = j[i+1]+1;       

x[i+2] = j[i+2]+1;

x[i+3] = j[i+3]+1;

}

SSE ADD 



• Changing the order of vector elements by 

calling some operands 

• Vector2 foo;

Vector4 bar = Vector4(1.0f, 3.0f, 1.0f, 1.0f);

foo.xy = bar.zw;



• Array of structures (AOS)

– {x1,y1, z1,w1} , {x2,y2, z2,w2} , {x3,y3, z3,w3} 

, {x4,y4, z4,w4}  ….

– Intuitive but less efficient

– What if we want to perform only x axis? 

• Structure of array (SOA)

– {x1,x2,x3,x4}, …,{y1,y2,y3,y4}, …{z1,z2,z3,z4}, 

… {w1,w2,w3,w4}…

– Better SIMD unit utilization, better cache

– Also called “swizzled data” 





• Movement of  Kung Fu Panda is dependent on user inputs 

• What happened to the previous scenes 

• “Branches” in the code makes a decision

• Draw all the motions and new characters after an user input 

– Requires fast computing, 

– May be we can prepare speculatively

http://www.gamespot.com/xbox360/action/kungfupanda/images/0/7/?tag=screenshot


• Depending on the direction of branch in 

basic block A, we have to decide whether 

we fetch TARG or A+1 

TARG A+1

A
T N

br.cond TARGET



• Predict Branches

– Predict the next fetch address 

• Fetch, decode, etc. on the predicted path

Execute anyway (speculation)

• Recover from mispredictions

– Restart fetch from correct path

• How? 

– Based on old history 

• Simple example: last time predictor 



0 1

FSM for Last-time

Prediction

0 1

2 3

FSM for 2bC

(2-bit Counter)

Predict NT

Predict T

Transistion on T outcome

Transistion on NT outcome
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1 1 ….. 1 0

BHR

(branch 

history 

register)

00 …. 00

00 …. 01

00 …. 10

11 ….  11

0 1

2 3

index

Pattern History Table 

previous one 

Yeh&patt‟92



0 0 0 0 0 0

History length 

Initialization value (0 or 1) 

1 : branch is taken 

0: branch is not-taken 

Old history New history 

New BHR  = old BHR<<1 | (br_dir) 

Example

BHR: 00000 

Br1 :  taken                   BHR 00001 

Br 2:  not-taken            BHR  00010 

Br 3:  taken                   BHR 00101



1 1 ….. 1 0

2bc

2bc

2bc

2bc

BHR

index

0x809000

PC

XOR

McFarling‟93

Predictor size:  2^(history length)*2bit 



• Repeated history 

– Could be user actions 

– Many generic regularity in many applications, 

• Correlations 

– Panda acquired a new skill it will use it later 

– E.g. 

• If (skill > higher)

– Pandga gets a new fancy knife 

• If (panda has a new fancy knife) 

– draw it. etc.. 





• 128B cache blocks throughout

• 32KB 2-way set-associative instruction cache (per core)

• 32KB 4-way set-associative data cache (per core)

• Write-through, lots of store buffering

• Parity

• 1MB 8-way set-associative second-level cache (per chip)

• Special “skip L2” prefetch instruction

• MESI cache coherence

• ECC

• 512MB GDDR3 DRAM, dual memory controllers

• Total of 22.4 GB/s of memory bandwidth

• Direct path to GPU (not supported in current PCs)
http://www.cis.upenn.edu/~cis501/lectures/12_xbox.pdf



• Software Prefetch

– Non-binding prefetch instructions 

for(ii=0; ii < 100; ii++){

Y[ii]=X[ii]+1

}

for(ii=0; ii < 100; ii++){

pref(X[ii+10]); 

Y[ii]=X[ii]+1

}

• Hardware Prefetch
– Hardware detect memory streams and generate 

memory requests before demand requests 

10 can vary depending on memory latency 



• Extended data cache block touch 

• Prefetch data but do not put L2 

• Directly put data into L1 

• Stream behavior applications 

• Reducing L2 cache pollution



• a texture compression technique for 

reducing texture size.

1 2 3

4 5 6

7 8 9

1 2 3 4 5 6 7 8 9

1 2 9 info



P2
P1

$

Main Memory

A1: 10

A2: 20

A3: 39

A4: 17

P1 P3

$ $

ST MEM[A1] 20

A1: 20

LD MEM[A1] LD MEM[A1] 

A1: 10

10 ? 20 



P2
P1

$

Main Memory

A1: 10

A2: 20

A3: 39

A4: 17

P1 P3

$ $
A1: 20

LD MEM[A1] 

A1: 20



P2
P1

$

Main Memory

A1: 10

A2: 20

A3: 39

A4: 17

P1 P3

$ $

ST MEM[A1] 20

A1: 20

LD MEM[A1] 

A1: 10

M
Cache Miss

Cache Miss

HitA1: 20A1: 20 S S

ST MEM[A1] 30

A1:30 M
I



I S

M

cpu read

cpu write cpu write

cpu read

cpu read/write

Bus write

Bus read

Bus read

Bus write

Bus 

read/write



• State of block B in cache C can be

– Invalid: B is not cached in C

• To read or write, must make a request on the bus

– Modified: B is dirty in C

• has the block, no other cache has the block,

and C must update memory when it displaces B

• Can read or write B without going to the bus

– Exclusive: B is clean and has only copy 

• Can write B without going to the bus 

– Shared: B is clean in C

• C has the block, other caches have the block,

and C need not update memory when it displaces B

• Can read B without going to bus

• To write, must send an upgrade request to the bus



• New state: exclusive

– data is clean

– but I have the only copy (except memory)

• Benefit: bandwidth reduction 

– No broadcasting from E M because I have 

copy 



I S

M

cpu read, shared

cpu write
cpu write

(write through)

cpu read

cpu read/write

Bus write

Bus read
Bus read

Bus write

Bus 

read/write

E
cpu readcpu write

(write back)

Bus write

Bus readcpu read, 

exclusive



• 128B cache line size 

• Write streaming: 

– L1s are write through, write misses do not allocate in L1 

– 4 uncacheable write gathering buffers per core

– 8 cacheable, non-sequential write gathering buffers per core 

• Read streaming: 

– 8 outstanding loads/prefetches. 

– xDCBT: Extended data cache block touch, brining data directly to 

L1 , never store L2  

– Useful for non-shared data 



• CPU can send 3D compressed data 

directly to the GPU w/o cache

• Geometry data 

• XPS support:

– (1): GPU and the FSB for a 128-byte GPU 

read from the CPU 

– (2) From GPU to the CPU by extending the 

GPU‟s tail pointer write-back feature. 



• Threads owns a cache sets until the instructions retires. 

• Reduce cache contention. 

• Common in Embedded systems 

• Use L2 cache as a FIFO buffer: sending the data stream 

into the GPU 

CPU CPU CPU

GPU



• Tail pointer write-back: method of controlling 

communication from the GPU to the CPU by 

having the CPU poll on a cacheable location, 

which is updated when a GPU instruction writes 

an updated to the pointer. 

• Free FIFO entry 

• System coherency system supports this. 

• Reduce latency compared to interrupts. 

• Tail pointer backing-store target 







• Hit Under Miss
– Allow cache hits while one miss in progress

– But another miss has to wait

• Miss Under Miss, Hit Under Multiple Misses
– Allow hits and misses when other misses in progress

– Memory system must allow multiple pending requests

• MSHR (Miss  Information/Status Holding Register): 
Stores unresolved miss information for each miss that will 
be handled concurrently. 


