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Xbox 360 System Block Diagram
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Figure 2. Xbox 360 systam block diagram.
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Xbox 360 Architecture

3 CPU cores

— 4-way SIMD vector units

— 8-way 1MB L2 cache (3.2 GHz)
— 2 way SMT

* 48 unified shaders

« 3D graphics units

* 512-Mbyte DRAM main memory

 FSB (Front-side bus): 5.4 Gbps/pin/s (16 pins)
* 10.8 Gbyte/s read and write

Georgia Caollegeef
Tech Compuifing



_ = HE o
Xbox 360 vs. Windows

« Xbox 360: Big endian
* Windows: Little endian

Register Fegister
I"-.-"IEl'ﬂGl‘_‘g.F OAO BOCOD OAOBOCOD Memory
a:|0A (—J —»  a:|0D
a+1:|0B| <——— R
at+2:|0C | == —> a+2:/08
> a+3:|0A
at+3:|/0D| = : . Litfle-endian :
: Eig-endian
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http://en.wikipedia.org/wiki/File:Big-Endian.svg
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Xbox 360 CPU Block Diagram
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On-chip caches

» L2 cache:
— Greedy allocation algorithm

— Different workloads have different working set
sizes

« 2-way 32 Kbyte L1 I-cache
« 4-way 32 Kbyte L1 data cache
» Write through, no write allocation

» Cache block size :128B (high spatial
locality)
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Core

¢ 2-way SMT,
» 2 Insts/cycle,
* In-order issue
« Separate vector/scalar issue queue (VIQ)

= HE N

Vector

Instructions
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Execution
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A Brief History

»  First game console by Microsoft, released in 2001, $299

Glorified PC
— 733 Mhz x86 Intel CPU, 64MB DRAM, NVIDIA GPU (graphics)

— Ran modified version of Windows OS
— ~25 million sold
. XBox 360
—  Second generation, released in 2005, $299-$399
— All-new custom hardware

— 3.2 Ghz PowerPC IBM processor (custom design for XBox 360)
— ATl graphics chip (custom design for XBox 360)

— 34+ million sold (as of 2009)
«  Design principles of XBox 360 [Andrews & Baker]
- Value for 5-7 years
-lig performance increase over last generation
- Support anti-aliased high-definition video (720*1280*4 @ 30+ fps)
- extremely high pixel fill rate (goal: 100+ million pixels/s)
- Flexible to suit dynamic range of games
- balance hardware, homogenous resources
- Programmability (easy to program)
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COUEGK® ©U
>

Slide is from http://www.cis.upenn.edu/~ci3501/Iectures(/‘1e2%'_as'abx.




Xenon

« Code name of Xbox 360’s core

« Shared cell (playstation processor) 's design
philosophy.

¢ 2-way SMT

« Good: Procedural synthesis is highly multi-thread

« Bad: three types of game-oriented tasks are likely
to suffer from the lack of high ILP support: game
control, artificial intelligence (Al), and physics.

allNavamva =3
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Xenon Processor

ISA: 64-bit PowerPC chip
— RISCISA

— Like MIPS, but with condition codes
— Fixed-length 32-bit instructions
— 32 64-bit general purpose registers (GPRS)

ISA++: Extended with VMX-128 operations

— 128 registers, 128-bits each

— Packed “vector” operations

— Example: four 32-bit floating point numbers
— One instruction: VR1 * VR2 | VR3

— Four single-precision operations
— Also supports conversion to MS DirectX data formats

Works great for 3D graphics kernels and compression
3.2 GHZ
Peak performance Peak performance: ~75 gigaflops

—Va rw< #
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Data path

» Four-instruction fetch

» Two-instruction “dispatch”
* Five functional units

* “WMX128” execution
“decoupled” from other units
* 14-cycle VMX dot-product
* Branch predictor:

« “4K” G-share predictor

» Unclear if 4KB or 4K 2-bit
counters

* Per thread
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Issue and Dispatch

* |ssue and Dispatch mean differently
depending on companies, academia etc.

intel Issue dispatch
Scheduler/Reservation
) FU
station
iBM  dispatch issue
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BACKGROUND:SMT
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Simultaneous Multi-Threading

* Uni-Processor: 4-6 wide, lucky if you get 1-2 IPC
— poor utilization

« SMP: 2-4 CPUs, but need independent tasks
— else poor utilization as well

« SMT: Idea is to use a single large uni-processor
as a multi-processor

NEEvs
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SMT (2)

Thread 1 CE context switch code Thread 2
Imtermpt, extception, or 6 caJl rehum fromm exception T

- S G

p -Approx 1x HW Cost |
2x HW Cost |
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Overview of SMT Hardware Changes

 For an N-way (N threads) SMT, we need:
— Ability to fetch from N threads
— N sets of architectural registers (including PCs)
— N rename tables (RATS)
— N virtual memory spaces
— Front-end: branch predictor?: no, RAS? :yes

« But we don’t need to replicate the entire OOO
execution engine (schedulers, execution units,
bypass networks, ROBs, etc.)
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SMT Fetch

* Multiplex the Fetch Logic

RS

v

PC, -
zg; *{ 1$ ertch *E—>| %co%, et@ ¢

cycle % N

Can do simple round-rebin between active
threads, or favor some over the others

based on how much eachiis stalling
relative to the others

Georgia College of
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SMT Rename

e Thread #1's R12 1= Thread #2's R12

— separate name spaces
— need to disambiguate

Thread, _
Register # RAT,

PRF

Threadl N RATl
Register #

Georgia Caollege el
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SMT Issue, Exec, Bypass, ...

No change needed

. After Renaming |

Thread O: Thread O:
Add R1 =R2 + R3
Sub R4 =R1-R5
XorR3=R1"R4
Load R2 = O[R3]

Add T12=T20 + T8
T19=T12-T16

XorT14 =T12"T19

Load T23 = 0[T14]

Thread 1: Thread 1:

Add R1 =R2 + R3 T17=T29+ T3
SubR4 =R1-R5 T5=T17 -T2
XorR3=R1"R4 T31=T17"T5
Load R2 = O[R3] T25 =0[T31]

=)

Shared RS Entries

SupTS=T17 -T2

Add T12=T20 + T8

Lozic) T25 = O[T31]

Xor T14 =T12 * T19

Load T23 = 0[T14]

T19=T12-T16

AorT31=T17"T5

Add T17 =T29 + T3
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SMT Cache

» Each process has own virtual address
space
— TLB must be thread-aware
« translate (thread-id,virtual page) - physical page
— Virtual portion of caches must also be thread-

aware

* VIVT cache must now be (virtual addr, thread-id)-
Indexed, (virtual addr, thread-id)-tagged

 Similar for VIPT cache
* No changes needed if using PIPT cache (like L2)

H —~ in ANV N rq

Georgia College ef
(>, 2

Tech © NG




SMT Commit

* Register File Management

— ARF/PRF organization
* need one ARF per thread

* Need to maintain interrupts, exceptions,
faults on a per-thread basis
— like OOQO needs to appear to outside world

that it is in-order, SMT needs to appear as if it
Is actually N CPUs

T | | Py |
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SMT Performance

 When it works, it fills idle “issue slots” with
work from other threads; throughput

improves
HiENIN e HiNININ e
HiENIN e OO0O00000
O0O00008 00 O0O00000O0
O0O0O000 00 O0O0000 00

 But sometimes it can cause
performance degradation!
Time(| I 1) < Time(l | )

Finish one task,
then do the other

Do both at same
time using SMT

Georgia Caollegeef
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How?

» Cache thrashing

D$

s

Thread, just fits in
the Level-1 Caches

Thread, also fits

nicely in the caches |

Executes
reasonably
quickly due

to high cache
hit rates

k -
ﬁ it
- ‘ 2

L2
11

$ DS

Caches were just big enough
to hold one thread’s data, but
not two thread’s worth

Now both threads have
significantly higher cache
MISS rates
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XBOX 360 ...
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VMX 128

* Four-way SIMD VMX 128 units:
— FP, permute, and simple

« 128 registers of 128 bits each per hardware
thread

» Added dot product instruction (simplifying the
rounding of intermediate multiply results)

« 3D compressed data formats . Use compressed
format to store at L2 or memory. 50% of space
saving.

Mz va 3
Georgia Collegeof
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Procedural Synthesis

« Microsoft refers to this ratio of stored scene data to
rendered vertex data as a compression ratio, the idea
being that main memory stores a "compressed" version of
the scene, while the GPU renders a "decompressed"

version of the scene.

Main Memory

Rendering a wind-blown tree, the conventional way

Rendering a wind-blown tree on the xbox 360

Georgia Collegeof
From http://arstechnica.com/articles/paedia/cpu/xbox360-1.ars/2 Tech
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The Benefits of Procedure Synthesis

e Scalable “virtual” artists

* Reduction of bandwidth from main memory
to GPUs

Georgia Caollege el
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Real-time Tessellation

« Tessellation: The process of taking a higher
order curve and approximating it with a network
of small flat surfaces is called tessellation.

 Traditional GPU: Artist
» Xbox 360: using Xeon

* Real time tessellation
— Another form of data compression

— Instead of list of vertex, stores them

as higher order of curves . .

— Dynamic Level of Detail (LOD) |Leigsoaon) “gi‘:éﬁag%h““
« Keep the total number of polygons in a scene under

Georgia Collegeef
From http://arstechncl%:gQ)H/(é)rlicles/paedia/cpu/xbox360-1.ars/2 Tech' Computing
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Real-time Skinning

(a) (b) (c)

(d) (e) 0

) 1

Images are from shi et al.’s “Example-based Dynamic Skinning in Real Time”

 Artists use standard tools to generate a character model
a long with a series of key poses

* Model: a set of bones + deformable skins
« Xenon interpolate new poses as needed
« Skins are generated on the fly

« Xenon only sends the vertices that have changed to save

bandwidth Georgia Collegeof
From http://arstechnica.com/articles/paedia/cpu/xbox360-1.ars/2 Tech  Compuiiing



Background: Packed and Scalar Floﬂng-!ﬂ

Instructions
Source 2 Y3 Y2 Yl Y0
OP OP OP
Destination X3 OP Y3 X2 OP Y2 X1 0P Y1 X0 OP YO
Packed single-precision floating-point operation
Source 2 Y3 Y2 Y1 YO0
OP
\ 4 \ 4 \ 4
Destination X3 X2 X1 X0 OP YO
Scalar single-precision floating-point operation




Background: Shuffle and Uripadkii® [
Instructions

Source 1 X3 X2 X1 X0
Source 2 Y3 Y2 \\j YO
Destination Y3...YO Y3...Y0 X1 X0 OP YO

Scalar single-precision floating-point operation

Georgia v;Ouuij) off
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SIMD Background: Loop unrolling

for (i=1; i < 12; i++) x[i] = j[i]+1;

for (i=1;i < 12; i=i+4)

{

X[i] =]

x[i+1

x[i+2]

X[1+3] =]

[i]+1;

=)
=)

1+1]+1;

i+2]+1; SSE ADD

[i+3]+1;

Georgia Caollegeef
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SIMD Background: Swizzling

» Changing the order of vector elements by
calling some operands

* Vector2 foo;
Vector4 bar = Vector4(1.0f, 3.0f, 1.0f, 1.0f);

foo.xy = bar.zw;

Georgia Caollege el
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SOA & AOS

 Array of structures (AOS)

—{x1,y1, z1,wl}, {x2,y2, z2,w2} , {x3,y3, z3,w3}
, {x4,y4, zZ4 w4} ....

— Intuitive but less efficient
— What if we want to perform only x axis?

 Structure of array (SOA)

—{x1,x2,x3,x4}, ... {y1,y2,y3,y4}, ...{z1,22,23,z4},

. {wl,w2,w3,w4}. ..
— Better SIMD unit utilization, better cache
— Also called “swizzled data”

aNavzva =3
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BACKGROUND: G-SHARE
BRANCH PREDICTOR

Georgia Caollegeef
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Branches...

« Movement of Kung Fu Panda is dependent on user inputs
« What happened to the previous scenes
« “Branches” in the code makes a decision

« Draw all the motions and new characters after an user input

— Requires fast computing,

— May be we can prepare speculatively
Georgia College of
Tech Cempuiting


http://www.gamespot.com/xbox360/action/kungfupanda/images/0/7/?tag=screenshot

Branch Code

A

N

TARG

br.cond TARGET

A+1

* Depending on the direction of branch In
basic block A, we have to decide whether
we fetch TARG or A+1

Georgia Caollegeef
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Branches: Prediction

 Predict Branches
— Predict the next fetch address

* Fetch, decode, etc. on the predicted path
Execute anyway (speculation)

* Recover from mispredictions
— Restart fetch from correct path
* How?
— Based on old history
« Simple example: last time predictor

H allNavamva =3
Georgia Caollegeef
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Two Bits Counter Based Prediction

Predict NT
Predict T

Transistion on T outcome

I 1OO

Transistion on NT outcome

FSM for Last-time FSM for 2bC
Prediction (2-bit Counter)

Georgia v;o leg® off
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Example

1bC: Initial Training/Warm-up

©@®®...‘®@@©@
o I 1 o N D I
v v v x x v v
2bC:
®©___‘®©@®©
L . T N T T T

Only 1 Mispredict per N branches now!
DCO08: 99.999% DC44: 99.0%

Georgia Collegeof
Tech
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Two-level Branch Predictor

Pattern History Table

00 ....00
11.....10 00 .... 01

previousone 00....10

BHR
(branch
history : v 4 1
: index
register)
11 ... 11
Yeh&patt'92

Georgia v;Ouuij) off
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BHR (Branch History Register)

Initialization value (O or 1)
Old history New history

000000

1 : branch is taken
0: branch is not-taken

History length

New BHR = old BHR<<1 | (br_dir)

Example

BHR: 00000
Brl : taken - BHR 00001
Br 2: not-taken - BHR 00010
Br 3: taken - BHR 00101

Georgia College of
Tech Compuifing
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Gshare Branch Predictor

2bc

1711....10 2bc
BHR \ / 2bc
index

XOR

0x809000 /

PC

2bc

McFarling’93

Predictor size: 2~(history length)*2bit

Tech Coempuiing
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Why Branch Predictor Works ?

* Repeated history
— Could be user actions

— Many generic regularity in many applications,

 Correlations

— Panda acquired a new skill it will use it later
—E.g.
* |f (skill > higher)
— Pandga gets a new fancy knife

* If (panda has a new fancy knife)
— draw it. etc..

allNavamva =3
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MEMORY SYSTEM: STREAM
OPTIMIZATIONS

Georgia College of
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Xbox 360 Memory Hiearchy

128B cache blocks throughout

32KB 2-way set-associative instruction cache (per core)
32KB 4-way set-associative data cache (per core)
Write-through, lots of store buffering

Parity

1MB 8-way set-associative second-level cache (per chip)
Special “skip L2" prefetch instruction

MESI cache coherence

ECC

512MB GDDR3 DRAM, dual memory controllers

Total of 22.4 GB/s of memory bandwidth

Direct path to GPU (not supported in qurrent PCS)

http://www.cis.upenn.edu/~cis501/lectures/12_xbox.pdf *Tech | | Comprrting
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Background: Prefetch

o Software Prefetch

— Non-binding prefetch instructions
for(ii=0; ii < 100; ii++){
Y[ii]=X[ii]+1
}
for(ii=0; ii < 100; ii++){
pref(X[ii+10]);
Y[ii]=X[ii]+1 10 can vary depending on memory latency

}

« Hardware Prefetch

— Hardware detect memory streams and generate

memory requests before demand requests

Georgia Caollegeef
Tech ' Compuiing
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xDCBT

» Extended data cache block touch
* Prefetch data but do not put L2
 Directly put data into L1

« Stream behavior applications

* Reducing L2 cache pollution

Georgia Caollegeef
Tech Compuifing
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Block Compression
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* a texture compression technigue for
reducing texture size.

1

2

3

4

S
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Background: Cache Coherence Problem

Al: 20

Main Memory.

Georgia @@Gﬂ@@@@ﬁ
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SNOOPING

Al 20 Al: 20

Main Memory.

Georgia College of
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MSI Example

J P1 l P2 | P3
§ MEM][A1] 20 DNVEERWIPAE 30
Al:20 W |Hit $Nl AL30 ¥
Cache Mis$ .
Cache Miss

— L

- A

Main Memory

Georgia Collegeef
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MSI

Bus
re rite

| ‘,ﬂn -
|/ S ‘)

cpu read

cpu read

/ Bus write

Bus write

Bus read

Q

cpu kead/write

M

ia GColleg®ef
Tech ' Cempuiiing



= Bl O
MESI Snoopy Protocol

e State of block B in cache C can be

— Invalid: B is not cached in C
« To read or write, must make a request on the bus
— Modified: B is dirty in C
 has the block, no other cache has the block,
and C must update memory when it displaces B
« Can read or write B without going to the bus

— Exclusive: B is clean and has only copy
« Can write B without going to the bus

— Shared: Bis cleanin C

« C has the block, other caches have the block,
and C need not update memory when it displaces B

« Can read B without going to bus
« To write, must send an upgrade request to the bus

2 o '
> llavzva a9
Georgia College of
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MESI Protocol

* New state: exclusive
— data Is clean
— but | have the only copy (except memory)

 Benefit: bandwidth reduction

— No broadcasting from E-> M because | have
COpy

I g

Georgia College of
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lllinois’ Protocol (MESI)

Bus cpu read
re rite

cpu read, shared

Bus write

Bus read

Bus write | GPU Write |
cpu write

cpu read |
(write through)

exclusive

Bus read

cpu kead/write M

Ccpu write cpu read
(write back)

Georgia College of
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Stream Optimizations

« 128B cache line size

« Write streaming:
— L1s are write through, write misses do not allocate in L1
— 4 uncacheable write gathering buffers per core
— 8 cacheable, non-sequential write gathering buffers per core

* Read streaming:
— 8 outstanding loads/prefetches.

— XDCBT: Extended data cache block touch, brining data directly to
L1, never store L2

— Useful for non-shared data

2 o '
> llavzva a9
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CPU/GPU

 CPU can send 3D compressed data
directly to the GPU w/o cache

« Geometry data

 XPS support:

—(1): GPU and the FSB for a 128-byte GPU
read from the CPU

— (2) From GPU to the CPU by extending the
GPU's tail pointer write-back feature.

aNavzva =3
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Cache-set-locking

« Threads owns a cache sets until the instructions retires.
« Reduce cache contention.
« Common in Embedded systems

« Use L2 cache as a FIFO buffer: sending the data stream
Into the GPU

CPU

Georgia College of
Tech ' Cempuiiing
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Tail Pointer write-back

 Tail pointer write-back: method of controlling
communication from the GPU to the CPU by
having the CPU poll on a cacheable location,
which is updated when a GPU instruction writes
an updated to the pointer.

* Free FIFO entry

« System coherency system supports this.
* Reduce latency compared to interrupts.
 Tall pointer backing-store target

T | | Py |
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Core 2

Core
Caora 0
LI | Load/ L1D
32 Instruction unit Y Load/ | LD Int Store KDEE
—— o ]| ™ | store |32 I res
Branch | VIO I E?f,g Tas. Kbytes
" ¥ Kbytes|. | ?
- : MML
A ™
f// e D32D compressed data,
FPU", VM stores to L2
2| VMY | VMX | VMX MMU ‘ b
m L}
S Fp | perm | smp | PV 4|
i — \
— xDCET 128-byte prefetch ,."- '
arcund L2, into L1 data E:ELE:hE'J. )
L2 |I Mode cmssbéln'qu euing
1'
e Mon-sequential gathering,
pIC Sl L2 L2 15 da locked set in L2
diractory | directory |
Test, y Bus interface
cebug, \\
clocks, T
temperature \\ Y
SEnsor.
Front side bus (FSE)
GPU 128-byte read from L2

VEL Vector'scalar unit T i :
Perm Pemute Y

Simp Simpla
MMU Main-meamaory unit From memory To GPU
Int Integer

PIC Programmabla interrupt
controller

Figure 4. CPU cached data-streaming example.
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Memory systems

Figure 4. The architecture of the L2 cache

Core Speed (3.2 GHz)

Half Core Speed (1.6 GHz)

Snoop

Georgia Collegeaef



Non-Blocking Caches

e Hit Under Miss
— Allow cache hits while one miss in progress
— But another miss has to wait
« Miss Under Miss, Hit Under Multiple Misses
— Allow hits and misses when other misses in progress
— Memory system must allow multiple pending requests

« MSHR (Miss Information/Status Holding Register):
Stores unresolved miss information for each miss that will
be handled concurrently.




