
Spring 2011

Prof. Hyesoon Kim

Xbox 360 System Architecture, ‘Anderews, Baker

• 3 CPU cores

– 4-way SIMD vector units

– 8-way 1MB L2 cache (3.2 GHz)

– 2 way SMT

• 48 unified shaders

• 3D graphics units

• 512-Mbyte DRAM main memory

• FSB (Front-side bus): 5.4 Gbps/pin/s (16 pins)

• 10.8 Gbyte/s read and write

• Xbox 360: Big endian

• Windows: Little endian

http://msdn.microsoft.com/en-us/library/cc308005(VS.85).aspx

• L2 cache :

– Greedy allocation algorithm

– Different workloads have different working set
sizes

• 2-way 32 Kbyte L1 I-cache • 2-way 32 Kbyte L1 I-cache

• 4-way 32 Kbyte L1 data cache

• Write through, no write allocation

• Cache block size :128B (high spatial
locality)

• 2-way SMT,

• 2 insts/cycle,

• In-order issue

• Separate vector/scalar issue queue (VIQ) • Separate vector/scalar issue queue (VIQ)

Vector

Scalar

Vector
Execution

Unit

Scalar
Execution

Unit

Instructions

• First game console by Microsoft, released in 2001, $299

Glorified PC

– 733 Mhz x86 Intel CPU, 64MB DRAM, NVIDIA GPU (graphics)

– Ran modified version of Windows OS

– ~25 million sold

• XBox 360

– Second generation, released in 2005, $299-$399

– All-new custom hardware

– 3.2 Ghz PowerPC IBM processor (custom design for XBox 360)– 3.2 Ghz PowerPC IBM processor (custom design for XBox 360)
– ATI graphics chip (custom design for XBox 360)

– 34+ million sold (as of 2009)

• Design principles of XBox 360 [Andrews & Baker]

- Value for 5-7 years

-!ig performance increase over last generation

- Support anti-aliased high-definition video (720*1280*4 @ 30+ fps)

- extremely high pixel fill rate (goal: 100+ million pixels/s)

- Flexible to suit dynamic range of games

- balance hardware, homogenous resources

- Programmability (easy to program)

Slide is from http://www.cis.upenn.edu/~cis501/lectures/12_xbox.pdf

• Code name of Xbox 360’s core

• Shared cell (playstation processor) ’s design
philosophy.

• 2-way SMT

• Good: Procedural synthesis is highly multi-thread• Good: Procedural synthesis is highly multi-thread

• Bad: three types of game-oriented tasks are likely
to suffer from the lack of high ILP support: game
control, artificial intelligence (AI), and physics.

• ISA: 64-bit PowerPC chip
– RISC ISA

– Like MIPS, but with condition codes

– Fixed-length 32-bit instructions

– 32 64-bit general purpose registers (GPRs)

• ISA++: Extended with VMX-128 operations• ISA++: Extended with VMX-128 operations
– 128 registers, 128-bits each

– Packed “vector” operations

– Example: four 32-bit floating point numbers

– One instruction: VR1 * VR2 ! VR3

– Four single-precision operations
– Also supports conversion to MS DirectX data formats

• Works great for 3D graphics kernels and compression

• 3.2 GHZ

• Peak performance Peak performance: ~75 gigaflops

Slide is from http://www.cis.upenn.edu/~cis501/lectures/12_xbox.pdf

• Four-instruction fetch
• Two-instruction “dispatch”
• Five functional units
• “VMX128” execution
“decoupled” from other units“decoupled” from other units
• 14-cycle VMX dot-product
• Branch predictor:
• “4K” G-share predictor
• Unclear if 4KB or 4K 2-bit
counters
• Per thread

• Issue and Dispatch mean differently
depending on companies, academia etc.

Scheduler/Reservation
station

FU

Issue dispatchintel

dispatch issueIBM

• Make-up class Wed 6-7 pm. The same
classroom

• By Friday:

– Student’s information sheet

– Presentation partner and topic information

• SMT: Idea is to use a single large uni-processor
as a multi-processor

Regular CPU

CMP

2x HW Cost

SMT (4 threads)

Approx 1x HW Cost

• For an N-way (N threads) SMT, we need:

– Ability to fetch from N threads

– N sets of architectural registers (including PCs)

– N rename tables (RATs)

– N virtual memory spaces– N virtual memory spaces

– Front-end: branch predictor?: no, RAS? :yes

• But we don’t need to replicate the entire OOO
execution engine (schedulers, execution units,
bypass networks, ROBs, etc.)

17

• Multiplex the Fetch Logic

I$
PC0

PC1

PC2

fetch Decode, etc.

RS

cycle % N

Can do simple roundCan do simple round--robin between active robin between active
threads, or favor some over the others threads, or favor some over the others

based on how much each is stalling based on how much each is stalling
relative to the othersrelative to the others

18

• Thread #1’s R12 != Thread #2’s R12

– separate name spaces

– need to disambiguate

RAT0

RAT1

Thread0

Register #

Thread1

Register #

PRF

19

• No change needed

Thread 0:

Add R1 = R2 + R3
Sub R4 = R1 – R5

Thread 0:

Add T12 = T20 + T8
Sub T19 = T12 – T16

Add T12 = T20 + T8

SubSub T5 = T17 – T2

Shared RS Entries

After Renaming

Sub R4 = R1 – R5
Xor R3 = R1 ^ R4
Load R2 = 0[R3]

Thread 1:

Add R1 = R2 + R3
Sub R4 = R1 – R5
Xor R3 = R1 ^ R4
Load R2 = 0[R3]

Sub T19 = T12 – T16
Xor T14 = T12 ^ T19
Load T23 = 0[T14]

Thread 1:

AddAdd T17 = T29 + T3
SubSub T5 = T17 – T2
XorXor T31 = T17 ^ T5
LoadLoad T25 = 0[T31]

Add T12 = T20 + T8

Sub T19 = T12 – T16

Xor T14 = T12 ^ T19

Load T23 = 0[T14]

AddAdd T17 = T29 + T3

XorXor T31 = T17 ^ T5

LoadLoad T25 = 0[T31]

20

• Each process has own virtual address
space

– TLB must be thread-aware

• translate (thread-id,virtual page) � physical page

– Virtual portion of caches must also be thread-– Virtual portion of caches must also be thread-
aware

• VIVT cache must now be (virtual addr, thread-id)-
indexed, (virtual addr, thread-id)-tagged

• Similar for VIPT cache

• No changes needed if using PIPT cache (like L2)

21

• Register File Management

– ARF/PRF organization

• need one ARF per thread

• Need to maintain interrupts, exceptions, • Need to maintain interrupts, exceptions,
faults on a per-thread basis

– like OOO needs to appear to outside world
that it is in-order, SMT needs to appear as if it
is actually N CPUs

22

• When it works, it fills idle “issue slots” with
work from other threads; throughput
improves

23

• But sometimes it can cause
performance degradation!

Time() < Time()

Finish one task,
then do the other

Do both at same
time using SMT

• Cache thrashing

I$ D$

Thread0 just fits in
the Level-1 Caches

Executes
reasonably
quickly due

to high cache
hit rates I$ D$

L2

the Level-1 Caches hit rates

Context switch to Thread1

I$ D$

Thread1 also fits
nicely in the caches

I$ D$

Caches were just big enough
to hold one thread’s data, but

not two thread’s worth

Now both threads have
significantly higher cache

miss rates

24

• Four-way SIMD VMX 128 units:

– FP, permute, and simple

• 128 registers of 128 bits each per hardware
thread

• Added dot product instruction (simplifying the • Added dot product instruction (simplifying the
rounding of intermediate multiply results)

• 3D compressed data formats . Use compressed
format to store at L2 or memory. 50% of space
saving.

– DXT1, DXT2/DXT3, and DXT4/DXT5

– CTX1

• Microsoft refers to this ratio of stored scene data to
rendered vertex data as a compression ratio, the idea
being that main memory stores a "compressed" version of
the scene, while the GPU renders a "decompressed"
version of the scene.

From http://arstechnica.com/articles/paedia/cpu/xbox360-1.ars/2

• Scalable “virtual” artists

• Reduction of bandwidth from main memory
to GPUs

• Tessellation: The process of taking a higher
order curve and approximating it with a network
of small flat surfaces is called tessellation.

• Traditional GPU: Artist

• Xbox 360: using Xeon• Xbox 360: using Xeon

• Real time tessellation

– Another form of data compression

– Instead of list of vertex, stores them

as higher order of curves

– Dynamic Level of Detail (LOD)

• Keep the total number of polygons in a scene under
control

From http://arstechnica.com/articles/paedia/cpu/xbox360-1.ars/2

• Artists use standard tools to generate a character model
a long with a series of key poses

• Model: a set of bones + deformable skins

• Xenon interpolate new poses as needed

• Skins are generated on the fly

• Xenon only sends the vertices that have changed to save
bandwidth

Images are from shi et al.’s “Example-based Dynamic Skinning in Real Time”

From http://arstechnica.com/articles/paedia/cpu/xbox360-1.ars/2

• 128B cache blocks throughout

• 32KB 2-way set-associative instruction cache (per core)

• 32KB 4-way set-associative data cache (per core)

• Write-through, lots of store buffering

• Parity• Parity

• 1MB 8-way set-associative second-level cache (per chip)

• Special “skip L2” prefetch instruction

• MESI cache coherence

• ECC

• 512MB GDDR3 DRAM, dual memory controllers

• Total of 22.4 GB/s of memory bandwidth

• Direct path to GPU (not supported in current PCs)
http://www.cis.upenn.edu/~cis501/lectures/12_xbox.pdf

• Software Prefetch

– Non-binding prefetch instructions

for(ii=0; ii < 100; ii++){
Y[ii]=X[ii]+1

}

for(ii=0; ii < 100; ii++){

pref(X[ii+10]);

Y[ii]=X[ii]+1

}

• Hardware Prefetch
– Hardware detect memory streams and generate

memory requests before demand requests

10 can vary depending on memory latency

• Extended data cache block touch

• Prefetch data but do not put L2

• Directly put data into L1

• Stream behavior applications • Stream behavior applications

• Reducing L2 cache pollution

• a texture compression technique for
reducing texture size.

1 2 3

4 5 6

1 2 3 4 5 6 7 8 9

1 2 9 info7 8 9 1 2 9 info

• 128B cache line size

• Write streaming:

– L1s are write through, write misses do not allocate in L1

– 4 uncacheable write gathering buffers per core

– 8 cacheable, non-sequential write gathering buffers per core

• Read streaming: • Read streaming:
– 8 outstanding loads/prefetches.

– xDCBT: Extended data cache block touch, brining data directly to
L1 , never store L2

– Useful for non-shared data

• CPU can send 3D compressed data
directly to the GPU w/o cache

• Geometry data

• XPS support:• XPS support:

– (1): GPU and the FSB for a 128-byte GPU
read from the CPU

– (2) From GPU to the CPU by extending the
GPU’s tail pointer write-back feature.

• Threads owns a cache sets until the instructions retires.

• Reduce cache contention.

• Common in Embedded systems

• Use L2 cache as a FIFO buffer: sending the data stream
into the GPU

CPU CPU CPU

GPU

• Tail pointer write-back: method of controlling
communication from the GPU to the CPU by
having the CPU poll on a cacheable location,
which is updated when a GPU instruction writes
an updated to the pointer. an updated to the pointer.

• Free FIFO entry

• System coherency system supports this.

• Reduce latency compared to interrupts.

• Tail pointer backing-store target

• Hit Under Miss
– Allow cache hits while one miss in progress

– But another miss has to wait

• Miss Under Miss, Hit Under Multiple Misses
– Allow hits and misses when other misses in progress

– Memory system must allow multiple pending requests

• MSHR (Miss Information/Status Holding Register):
Stores unresolved miss information for each miss that will
be handled concurrently.

• Make-up class, today 6 pm, the classroom

– CUDA Programming

• By Friday

– Student’s information sheet– Student’s information sheet

– Presentation:

• 20 min about any game consoles (hardware focus,
architecture focus)

• Partner’s name and topics (more than one)

• Email addresses

