
Abstract

We present a method to decompose video sequences
into layers that represent the relative depths of complex
scenes. Our method combines spatial information with
temporal occlusions to determine relative depths of these
layers. Spatial information is obtained through edge
detection and a customized contour completion algorithm.
Activity in a scene is used to extract temporal occlusion
events, which are in turn, used to classify objects as
occluders or occludees. The path traversed by the moving
objects determines the segmentation of the scene. Several
examples of decompositing and compositing of video are
shown. This approach can be applied in the pre-processing
of sequences for compositing or tracking purposes and to
determine the approximate 3D structure of a scene. *

1 Introduction

We address the problem of decompositing video into
planar layers. As observed from a single camera, motion
within a scene can reveal the relative depths of static
objects. This motion serves to segment the 3D space, but
does not have to be caused by any specific activity – human
or otherwise.

From the camera’s perspective, activities that occur
near the lens occlude objects that are in the background.
Similarly, foreground objects occlude activities taking place
further from the lens. This second case is often treated as a
limitation of monocular tracking systems because
occlusions are not modeled explicitly. For example, a naïve
system could track a person walking through a room, but
might report that the person has lost their legs when they
move behind a couch.

Motivated to explicitly model occlusions and relative
depths of backgrounds, we borrow the concept of layers as
used in the world of film compositing. The 3D world is
modeled as a stack of 2D masks, essentially providing a
2½D representation. While compositing processes merge
existing layers of static and dynamic scenes, we seek to
generate and sort the static layers according to the path
followed by the active regions.

Since we use the path to generate 2½D information
from our 2D image sequences, our layer representation will
be as extensive as a given path permits. Figure 1 shows a
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multi-exposure image of a person walking through a scene.
Figure 2 shows the extracted constituent layers.

We present several examples of automatic
decomposition of video into its constituent layers. Dynamic
information in these sequences consisted of a person
walking through scenes of varying complexity. The
resulting relative depth information is used to perform
recomposition of the actual layers with synthetic ones.

Related Work: Our work benefits from several important
contributions from the fields of vision and graphics.
Psychological research on human visual perception shows
that we utilize occlusions in determining boundaries, even
in the absence of edge and brightness information [7, 6].
This serves as a primary motivation for our approach.
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Figure 2. Stack of layers extracted by this motion (Scene
newlab2).
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Figure 1. Time-lapse of a person moving through a
complex environment (Scene newlab2).



For the synthesis of realistic scenes, researchers in
computer graphics have proposed various techniques for
compositing. In most instances, compositing is performed
on layers that are separated out manually or by using
chroma-keying techniques. Smith’s triangulation method
stands as one of the most precise approaches to
segmentation [12]. However, this method is limited when
dealing with scenes containing action, since the actions
would have to be exactly repeatable in front of two different
backgrounds. Consequently, the special effects industry
continues to use the effective, though cumbersome,
approach pioneered by Vlahos to deal with blue screen (or
color differencing) segmentation [15, 14]. Blue screening
requires a special stage setup, which is a limiting factor for
some productions, and restricts the availability of this
technique to production studios.

The concept of extracting layers from video is not new
to computer vision. Several motion based methods have
been proposed to extract layers from moving scenes [17, 4].
In these approaches, optical flow measurement is used to
classify a scene into its constituent layers. Our work differs
from these in that we do not explicitly compute motion.
Instead, we rely on simple changes in occlusion, caused by
a moving object, to extract similar information. Figure 3
shows occlusion boundaries revealed by motion. This
allows for a higher-level representation of layers as our
method permits extraction of relative depth in a scene with
one moving object. We also avoid the standard problems
associated with optical flow [2].

Several groups have represented a static scene as a
combination of layers with heightfields [1, 11, 12]. The
heightfields are extracted using egomotion, where activity
within the scene itself is not permitted. This is an efficient
technique for compositing images to represent absolute
depth information from different viewpoints. While both
our approaches require some hand initialization, our method
uses a single viewpoint and a moving object to extract
layers with relative depth. Our method is favorable when
dealing with scenes containing action, or when intra-object
relationships are of interest.

Our approach is aimed at extracting static scene
information by observing activity. This is a different
approach than standard structure from motion, which
generally aims to reconstruct a complete representation of a
scene viewed by a moving camera.

Grimson et al. [5] present a method which uses
activities to construct a model of a scene. They use
information about the active object (e.g., height) and its
relationship to the ground-plane to compute depth. We
obtain similar results without specific domain knowledge.

The techniques presented in this paper can serve as an
automatic preprocessing step for tracking and synthesis of
activities in complex scenes. Systems like [6] could benefit
from the relative depth information we are able to obtain
automatically. In the rest of this paper, we describe the
details of our approach, give illustrative examples of our
results, and conclude with a discussion of possible uses of
our methodology.

2 Classifying Blobs

Layers consist of sets of static blobs. Our algorithm
separates blobs by spatially segmenting the scene into 2D
regions, based on color features and spatial coherency.

Correct assignment of these static blobs to layers comes as
a result of occlusions caused by the active blobs.

Active Blobs: All objects that move in a scene as active
blobs [19, 10]. Background subtraction is performed to
locate pixels whose color differs from the background
image’s values (see Figure 4(a)). While performing a rather
clean extraction of the moving object, subtraction has an
inherent limitation: moving objects occasionally have a
similar color to the background pixels they pass over.
Consequently, multiple blobs might be used to represent a
single moving entity. Since we only require that the entity
moves coherently, the multiple-blob representation is
sufficient and does not affect processing.

Our strictly low-level treatment of active blobs is
deliberate. We wish to make as few assumptions as possible
about the potentially amorphous objects that might be
moving through our scene. For the current implementation,
this means that every group of active blobs is necessarily a
moving object passing in front of something. A domain-
specific vision system might utilize this system as a pre-
processing stage, extending it with feedback and predictions
regarding the activities of the active blobs. Our current
objective is the accurate classification of the static blobs
into layers.

Static Blobs: The same reference frame used for
background subtraction is used for isolating static blobs.
Figure 4(b) was  initially segmented according to Laplacian
spatial-edge detection. However, edge detection of just the
background image reveals only some of the important
edges. Many neighboring objects have no clear boundary
between them if their colors are too similar. We refer to
such boundaries as hidden edges. Motion between objects
can reveal the hiding edges, at least temporarily, if the
active blobs are of a sufficiently contrasting color. As part
of our segmentation, we run through the image sequence
looking for hidden edges that appear only temporarily. The
scene depicted in Figure 4 appears in Figure 5 as a
combination of normal spatial edges and discovered hidden
ones. The moving person unhides some of these edges by
revealing (over several frames) a color-contrast where there
was previously none.

Figure 3. This shows a motion history image (MHI) of a
moving person in a scene.  Note how occlusion
information allows us to identify the chair and its
location in front of the person. For more information on
motion history images see [3].



In many scenes this processing is still insufficient to
form closed boundaries, so we performed some contour
completion of the edge detected reference frames manually.
Other automatic contour completion algorithms similar to
[14, 9] are in our plans for future work. However, we still
intend to keep manual adjustment of contour completion as
a part of our implementation, since segmentation is not the
focus of our work.

The information stored about each static blob includes
each blob’s aspect ratio and boundary zone. The boundary
zone is similar to a bounding box, but is a dilated version of
the blob’s footprint.

Occlusion of Blobs by Other Blobs: Our approach deals
with the scenarios where only the static blobs have a known
shape. Nothing is assumed about the moving objects
beyond their being clustered in depth. The 2D projection of
a static blob does not change, but the projection of an active
blob does. Consequently, we must consider occlusion
scenarios for active blobs which move in front and behind.

The simpler scenario occurs when the active blobs
move in front of a static blob. For those frames of the
sequence where a “significant” amount of the active blobs
overlaps the static blob, the static blob is marked as
occluded. Therefore, the static blob is “deeper” in the scene.
The criterion used to establish if the overlap amount was
significant is a pixel-count, which is scaled by the blob size
and aspect ratio.

The more difficult scenario entails identifying a static
blob as an occluder. Since the active blobs could be in any
shape, we cannot use the same approach to determine if the
active blobs are deeper. Instead, assume that moving
objects have difficulty occupying the same space as a static
blob’s boundary zone. Eventually, the moving object
should either occlude the static (the previous case), or the
active object will pass behind the static.

3 Sorting out Layers

Our initial use of the concept of layers was simply an
extension of the spatial relationship between blobs and
pixels; Layers (Li) are aggregates of blobs, just like blobs
are spatial groupings of pixels. While blobs are the result of
spatial segmentation, layers are produced through temporal
segmentation.

3.1 Assigning Blobs to Layers

Initially, since we have no a priori knowledge, we
assume that all blobs in a scene belong to a single layer
called the zero-layer (L0). The actual physical distance
between the camera and this or any other layer is unknown.
However, an active blob object moving through the scene
provides us with relative-depth cues that allow us to move
blobs from this zero-layer to either background (L-i) or
foreground (L+i) layers.

Occlusion of a static blob results in dropping the static
blob to a background (negative) layer. This is a “push” step
as depicted in the process diagram in Figure 6(c). There a
toy car performs the activity and the cup is pushed. Similar
processing is done in the other occlusion scenario, where
the static blob is in front of the region of activity. In that
scenario, the cup is moved to a foreground layer, and the
active blob again remains in the zero-layer. We call this
transfer of a blob to a higher layer “popping” the blob
forward.

As long as the static blob is not occluded, our
algorithm checks the amount of overlap between the active
blobs and each static blob’s boundary zone. If the overlap is
sufficient, we wait until the active blobs leave the boundary
zone. Figure 6(b) and 6(d) demonstrate this step of our
algorithm with the cup eventually being popped. That static
blob will be marked for popping to the present depth of
activity only if the boundary zone overlap ceases without an
occlusion of the static blob itself.

3.2 Generating Multiple Layers

So far, we have only discussed pushing and popping
blobs from the L0 to the L-1 and L+1 layers, respectively.
This is sufficient for scenes that only have one foreground
and one background, and where all the activity occurs
between them. Here, all static blobs that are occluded end
up in L-1, and all blobs that acted as occluders wind up in
L+1. However, many scenes are more complex and feature
objects moving within different fields of depth (i.e. between
various layers).

We assume that activity is only occurring in one depth
plane at a time, or that the active blobs are “walking”
between layers. An “activity layer” represents the current
depth of the moving objects relative to our 2D and 2½D
world. At the start of a sequence when all the blobs belong

(a) (b)

Figure 4. (a) Active blob in newlab2 sequence which
represents a partially occluded moving person. (b) Flood-
filled static blobs from same sequence are monitored for
consistency.

Figure 5. Hidden Edge Detection: Regular edges appear in
blue, “hidden” edges appear red for sequence newlab2.



to the zero-layer, the activity layer is also coplanar with the
zero-layer. As long as the static blobs that get segmented as
occluders or occludees are cut from the zero-layer, the
active layer remains at the zero-depth. Such is the case if
the moving objects move through the scene following a
simple path, which does not zig-zag back and forth around
the same objects.

However, many sequences consist of more complex
paths. If the active blobs occlude a blob already in the
foreground layer, the activity layer shifts to just in front of
that foreground layer (i.e, from L0 to L+2). Similarly, if
there is activity behind a blob in a background layer, the
activity layer shifts to sit behind that background layer
(from L0 to L-2). Successive pushing and popping is
performed relative to the adjusted active layer’s depth in the
same manner as when it was in L0 – comparing depths,
inserting new layers, or re-adjusting the activity layer as
necessary to maintain regularity.

3.3 Locus-Dependant Layer Correctness

Blobs in a given layer are not always closer to the
camera than those in more distant layers. A path followed
by a single set of active blobs will not result in a universally
correct depth mapping, since there could be multiple paths
through a scene, each with its own variations in layer
assignment. More domain information would be necessary
for a path-independent solution.

Since classification of layers is based on the 3D path
followed by the moving objects, then depth is correct at
least with respect to the motion’s locus. Two real objects
that are equidistant from the camera will appear in two
different layers if a person walks between them. Also, if the
path through the scene does not monotonically increase or
decrease the active blobs’ distance to the camera, layer
information must be stored as a function of time to
accommodate paths that loop around static objects. These
examples illustrate the inherent discrepancy between real-
world layers and perceived layers.

However, the generated arrangement of layers is
actually correct for tracking applications that perform
higher level analysis of this image sequence. These time-
dependent perceived layers are also useful for the tracking
of other moving objects through this scene, as long as the
sample moving object’s size and path are representative of
the other examined activities. Besides the path, the size is
significant because a small object will fail to provide as
much occlusion information as tracking a large object
would require.

4 Compositing Using Layers

Our layer representation was conceived, in part, with
compositing in mind. Instead of blue-screening, we can
apply our extraction algorithm to the motion sequence after
filming. Placing a blue-screen behind a static object is
roughly equivalent to observing activity behind that object.

When moving among the objects in the scene, the
“talent” is performing segmentation. Each resulting layer
contains color information for sets of blobs that did not
exhibit the ability to allow objects to pass between them.
The rest of each layer is marked as transparent. We
therefore have the capability to manipulate the scene at a
higher level than pixels.

Since the layers are arranged in the correct order of
depth, inserting a sequence with transparency information is
simple. In Figure 7, we present an example in which we
mapped an animation onto a synthetic layer, which did not
exist in the real scene. This new virtual layer, shown
featuring an animated dragon, can be inserted anywhere in
the stack of true layers (i.e, as the most foreground, most
background, or somewhere in between). The resulting re-
rendering of the scene produces a composite video with a
dragon. As would be appropriate to real objects at that
relative depth to the camera, the dragon is hidden or
revealed, albeit losing the translucent effect of the windows.

Our approach does not limit where the new layer is
inserted. Changing the depth of the virtual layer over time,
i.e, moving it higher or lower in the stack, can generate

Figure 6. Process flow diagram with Border Zone (BZ) overlay.



interesting effects. Such manipulation of the inserted layer
allows for simple motion between objects and in depth
relative to the camera.

 Removal of unwanted objects is done in the same
manner as insertion. Here, this is achieved by pulling out a
whole layer from the stack. It is important to replace the
resulting transparent holes with other objects at some layer.

5 Results and Discussion

We have experimented with different extended video
sequences. Each video consisted of scenes with varying
complexity. In this section, we present the results of
decompositing this video data. In each of the video
sequences, we recorded data without any motion and then
had a subject walk around in the scene.

In the following paragraphs, we discuss the results of
our technique on two representative video sequences from
our database of 15. Sequence “car1” is an outdoor sequence
with only two layers and contains translucent objects
(Figure 8). Sequence “newlab2” is a cluttered indoor
sequence of a construction site filmed under low lighting
conditions (Figure 9). Additional results can be viewed in
color on the project web-page.

For each sequence, a background image is segmented
using edge detection and contour completion. Some manual
intervention is required to clean up blob boundaries. Figure
5 shows the result of our hidden-edge detection of an indoor
sequence. While completing many blob boundaries
correctly, some spurious edges were also generated in parts
of the scene where the head and other high-contrast parts of
the body persisted for five or more frames. However, the
majority of these spurious edges did not form closed
boundaries, and were later correctly absorbed in the interior
of static blobs.

Thick edges (more than two pixels wide/tall) were
more problematic because they were not explicitly assigned
to specific static blobs. Such hapless edges were explicitly
ignored during layer-generation, as were static blobs that
were too small (area less than 10 pixels) to monitor
accurately. Thick edges, small blobs, and blobs that were
never affected by the activity in the scene all remain in the
unclassified layer, L0. These appear in our sample
composite sequences as artifacts, which are visible if the
animated dragon moves under L0. The blobs that were too
far from the active blobs’ path are not errors as they are the
result of a lack of occlusion information. They will continue
to be ignored until activity in an extended sequence exposes
them as occluders or occludees.

The algorithm is designed to break the depth scene up
into its smallest constituent parts. By definition, blobs are
texture-based components of the scene, and do not
necessarily have a one-to-one correspondence with objects.
As a result, the same object can be split into two separate
layers if the observed activities occurred with enough time-
separation. These split layers are adjacent to each other in
the stack. Since we do not prevent someone from
mistakenly placing a new layer between the split layers
during post-production, overlooking these split layers could
cause consistency problems. The problems could be
avoided by detecting and merging the split layers manually.

An unforeseen limitation of this work is the
significance of reflections and shadows. The sequence car2
(not pictured), which is similar to car1, erroneously
assigned a car from the foreground to the background layer.
Upon closer analysis, we discovered that the person
walking behind that car was both reflecting in its metallic
paint-finish, and was casting a shadow on its hood. That
limitation of our approach that will require special
handling.

6 Conclusions and Future Work

A method for decompositing video into its constituent
planar layers is presented.  These layers are sorted based on
their relative depths from the camera.  The depth of these
layers is determined by detecting the occlusion events
caused by a moving object (in our case a person). As the
moving object traverses the scene, the depth of the spatially
segmented blobs in the scene is adjusted. Spatial
information is obtained through edge detection and a
contour completion algorithm. In situations where parts of
the scene match the color of the moving objects, some
manual augmentation is required. The extracted layers
provide an effective representation for compositing and
tracking applications.

Our current implementation produces a stack of layers
that appear as billboards in front of a static camera. This
representation provides an intuitive way of inserting and
deleting layers for special effects applications. We show
decomposition of several image sequences as well as the
compositing of a synthetic layer into a real scene.

We envision several future extensions. We are
investigating several approaches that will deal with the
limitations caused by shadows and reflections. Camera-
motion compensation and multi-camera processing will be
added to allow our technique to aid in 2½D or 3D
reconstruction when the cameras move or zoom. Also,
activity recognition can be added to allow for monitoring of
multiple moving objects at a time.

Synthetic Layer (Frame 20) Composited (Frame 20) Composited (Frame 72)
Figure 7. Synthetic layer inserted between L0 and L1. Frames 20 and 72 from re-composited sequence. Note that dragon is

visible through the windows of the car.
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Scene L-1 L0 L+1

Figure 8. Multi-exposure from original car1 sequence and 3 extracted layers.

Scene L-1 L0 L+1

L+2 L+3 L+4

Figure 9. Multi-exposure from original newlab2 sequence and 6 extracted layers.


